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NAYLOR TRANSFORMS OF MELLIN TYPE*

W. J. HARRINGTON anp K. A. PATELY

Abstract. Some transforms introduced by Naylor (1963) are characterized in terms of Mellin
transforms. This facilitates the analysis of transform properties. A problem of steady-state heat in a
finite circular sector (or wedge) is considered to illustrate the use of one of the transforms and its
properties.

1. Introduction. In [1], Naylor introduced several Mellin-type integral trans-
forms related to boundary value problems involving the Laplacian differential
operators in polar and spherical coordinates. The transforms were generated
through an integral representation of solutions in terms of suitable Green’s func-
tions.

In this paper, it is shown that each of these Naylor transforms can be identified
as an ordinary Mellin transform by considering an extended domain of definition
of the function involved. This interpretation enables one to obtain a variety of
useful properties of the Naylor transforms directly from properties of the Mellin
transform. These include the inversion integral, operational properties, and con-
volution formulas.

Although Naylor defines the transforms on the domains 0 < r < a and
a <r < oo it is sufficient, and more convenient for our purposes, to consider
scaled radial variables r on (0, 1) or (1, c0) respectively.

2. Naylor transforms on 0 < r < 1 for plane polar coordinates.

2.1. Definitions and relationships to Mellin transforms. Consider f to be a real
function on 0 < r < 1 such that:

(i) fis piecewise continuous and of bounded variation in every finite interval
[a,bl where0 <a < b < 1;

(ii) For some real o > 0, {3 r=*~| f(r)| dr is convergent.

Let the Naylor transforms .#; and .#; be defined as follows:

) MUMn~@=ﬂ@éLw*+fﬂvmm

1
@ MUMn~@=améLw*—r“me

We extend the domain of r to (0, c0) and consider two extensions of the function f,
f, and f,, defined by

f(, 0<r<l,

3 Frar) =
) b2 +f1/m), 1<r< oo,
* Received by the editors September 8, 1971.
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2 W. J. HARRINGTON AND K. A. PATEL

with the + being used for f, and the — for f,. It is clear that {2 r*~1| f, ,(r) dr
= [or™*7 Y f(r) dr and is convergent. Thus one recognizes that the Mellin trans-
forms

n ML r)ir = ) = fow P () dr

are convergent if —a < Re(s) < a and that (with p = 1/r)
1 °e)

5) ottt = [ @+ [ isasp e = (5,0},
0 1

with the transform functions defined! and analytic in the strip |Re (s)] < a.

2.2. Inversion integral. The inversion of (1) and (2), in the light of (5), is
given by the standard Mellin inversion integral

1
(6) N 13{F1,06)} = f(r) = %J r—°F, ,(s)ds, O<r<l,
L

where L denotes the line, Re s = A, with |1] < a.

2.3. Operational properties. Let f be continuous on [0, 1]. Then on [0, 00),
fi is continuous and f, is continuous except for a jump of [—2f(1)] at r = 1.
Thus, if the Naylor transforms 4] ,{rf'(r)} exist, one readily obtains the formulas

™ Mf ()} = M{rf5 ()} = —sFy(s) + 2/(D),
) M (0} = M {rf (1)} = —5Fy(s).

If f and f' are continuous on [0,1] and if A] ,{[r(d/dr)]*f} exist, then
using (7) and (8) with g, ,(r) = rf ,(r), one obtains

2
©) /V{(rdi‘r) f} = M{ry)} = =5G,(8) + 2¢(1) = SF,(s) + 2 (D),

2
(10) M{(r%) f} = M1} = =5G,(9) = SF() = 29/ (1.

2.4. Convolution formulas. Consider 4] ,{f} = F ,(s) = .#{f,,} and
Mg} = Gy ,(s) = M{g, ,}. In terms of the extended functions f, , and g, ,
the standard Mellin convolution formula for .# “I{Fi(s)Gj(s)} is applicable pro-
vided F; and G; have a common strip of convergence. Thus

(11) ATHEGG9) = [ X frixg 0 d.

0
Before proceeding further, one should note that the definitions (1) and (2) imply
that Fi(s) and F,(s) are respectively even and odd functions of s. Thus one can

"In certain cases one can consider o =0 as a limiting case. Thus for each &> 0,
H3{r?} = 2s/(s* — 8%),|Re 5| < &.Inalimitingsense, we shall consider 4;{1} = 2/s,definedonRe s = 0
except at s = 0. The inversion integral on Re s = 0, interpreted as a Cauchy principal value at s = 0, is
applicable.
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readily obtain the following meaningful formulas in terms of f and g on their basic
domain [0, 1]:

N UF6)G(5)) = fo xS/ + fr)gx) dx
(12 1
+ f XULF0/%) + Firx)lglo dx
1
- fo XA + f(x/n)gl) dx.

N THE(G,(9)

- f XSG + Sr0lgo) dx
(13)

+ f XU f(r/x) — fr0)]g(x) dx

Il

1
- fo X ILfrx) + fy(x/mg0) dx.,

Il

& 5 HE(9G9)} f xS/ — frx)lglo) d

1
(14) + f xS () — g dx

1
- fo U000 — fx)lg(0 dx.

2.5. Extension of another Mellin property. As in the case of Mellin trans-
forms (see Harrington [2]), the application of Naylor transforms to problems
involving the Laplacian operator in polar coordinates often leads to transforms,
f(s)cos Os or f(s)sin s, where f(s) is a known transform. The extension of the
Mellin property [2] to Naylor transforms is not automatic but the analogous results
can be established for .4{ and .45 as set forth in the following two theorems.

THEOREM 1. Let f be a real continuous function on (0, 00) such that® f(1/r)
= f(r) with H{f} = K{f} = f(5), [Re(s) < a If, within some sector, —P
< arg z < B, f has an analytic extension in the subregion 0 < |z| < 1 with continuity
on the region to include |zl =1 and if lim,,,z°f(z) = 0, |Re(s)| < «, then for
6] < B,

(15 f(s)cos0s = A {Re f(re®)} and f(s)sinOs = A5{—Im f(re')}.

THEOREM 2. In Theorem 1, interchange A and A; and change the restrictive
property on f to read: “f(1/r) = — f(r)”. .
Proof of Theorem 2. In the sector |argz] < B, |zl < 1, one has f(2) = f(z)
and 2Re f(z) = f(z) + f(2). For each 0,0 < 0 < f, let L, and L_, denote, as in

2 In the last integral form one can observe that the integral defines a function h(r) on (0, o0) such
that h(1/r) = h(r). This is also true in (13); in (14), h(1/r) = —h(r).
3 Functions arising from convolution have this property. See (12) and (13).
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FiG. 1

Fig. 1, the directed radial lines each consisting of segments Ljy, Ly and L',
L” , respectively.
We consider the real-valued function,

2g(r) = f(re'®) + f(re™ %), O<r<l,
and

(16)  2.45(g) = f LFe®) + e ™) (P — > Ndr = I, + I, + I, + I,
0

where
1
I, = f freys~tdr=e 5| f(z)z° 'dz,
0 Ly
1
I, = f Sfre” )y~ tdr = & f(2)zF~ 1 dz,
0 L.e
1
Iy = —f Sre®yr =" tdr = & f(2)z*"tdz
0 LZg
and

1
I, = —f fre Oy Vdr = e | f(2)z° 'dz.
0 L§

In the consideration of I and I,, we extend f into the region |z| > 1,|argz| < f5,
by defining f(z) = — f(1/z). Here also f is analytic with continuity on the region
including the boundary |z| = 1.

Thus (16) can be written in the form

(17) 2M4{g) =e | f(2)z* tdz + € fz)z* " Ydz.
Lg L_g

If each of the complex integrals in (17) is equal to the corresponding integral along
0 = 0, then one obtains

A5{g} = (cos 0s) M{ f},

where
g(r) = Re f(re').
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Fi1G. 2. Paths of integration

To establish this, consider the paths of integration I'; = ABCDAandI', = BEFCB
as shown in Fig. 2.
By the stronger form of the Cauchy integral theorem [3],

@2 Ydz=0=| f(z)z* 'dz.
Iy I,
The conditions lim,_,, z°f(z) = lim,_,, 2°f(z) = 0,* |Re(s) < o, imply that the
integrals on the arcs, |z] = 6 and |z| = R, tend to zero as 6 - 0% and R —
respectively. Also the contributions to the two integrals from the arc BC nullify
each other.

Thus, with the analogous argument relating to L_,, we conclude that

fl2)z* " tdz =
Le

e o]

f@2tdz = P i0ydr = () = A1),
L-¢ 0

Similar considerations of the combination f(re'’) — f(re” ") yield the other
conclusion of Theorem 2.

The proof of Theorem 1 is analogous.

3. Naylor transforms on 1 < r < oo for polar coordinates. Closely related to
the transforms 4{ and 45 of § 2 are two transforms defined by Naylor on the
domain 1 <r < o0:

(18) LSO} = Fyfs) & f Tt Y ) dr,
1
(19) KO} = Fyfs) 2 fw = P S dr

We simply note that if g(r) = f(1/r), 0 < r < 1, then directly from (18) and (19)
one obtains

(20) M} = Mgy},
21 N0} = H{—gr)}.

The conditions, properties, and theorems of §§ 2.1-2.5 can be readily translated so
as to apply equally well to .45 and 4, on the domain (1, c0).

4 The second of these conditions follows from the first because of the property f(z) = —f(1/z),
|z > 1,]arg 2| < B.
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4. Naylor transforms on (0, 1) and (1, o) for spherical coordinates. In [1]
Naylor also introduces two transforms designed for use with spherical coordinates.

On (0, 1), consider a function g satisfying conditions (i) and (ii) of § 2.1. We define
the transform N, as follows:

1
22) NMMn~ﬁ=@@éfw—f“%mw
0

on the strip —a — 1 < Res < a. Letting

A rgry) , O0O<r<l,
(23) g,(r) = {—g(l/r), Fo 1,
one has
(24) N,{g} = M{g,}.

The inversion formula is obtained directly, namely,
@9) g = | 1G9 ds, 0<r<t,
L

where L denotes a line, Re s = Awith —a — 1 < 4 < o. The important operational
property is®

d
(26) N 2{5[r2g’(r)1} = 5(s + 1)Gy(s) — (25 + Dg(1).

Similarly if g(r) is defined on (1, o), the counterpart of .4 is given by

(27) N4{g(r)} = N,{h(r)},
where h(r) = —(1/r)g(1/r),0 <r < 1.

5. Applications. The Naylor transforms .4, 4, and N,, described in the
preceding sections, are particularly applicable to Laplace’s equation in polar and
spherical coordinates where the region is a finite sector or finite spherical cone.
In the use of the transforms, a variety of boundary conditions can be handled
particularly on the circular or spherical surface, r = 1.

The following example is presented primarily to exhibit the use of some of the
transform properties of §§ 2. A second paper is planned in which solutions to some
boundary value problems for finite spherical cones will be given.

We consider the steady-state heat problem in a finite sector (or wedge),
where T(r, 0) satisfies

(28) T, +rT,+ T, =0, O0<r<l1, |fl<a<m,

5 There is a transform analogous to .#], employing a + instead of — in (22). Unfortunately,
d
Nl{a[rzg’(r)]} = s(s + 1)G,(s) + 2g'(1) + g(1),

involving both g'(1) and g(1).
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with boundary conditions
(29) T(r, £o) = T, = const.; T(1,0) + hT(1,8) =0, h>0.
Because of the radiation boundary conditions at r = 1, we do not apply a
Naylor transform directly to T(r, 6). Instead, we observe that the function
(30) o(r,0) =rT, + hT

will satisfy Laplace’s equation, if T(r, 6) does, and hence we consider the related
problem

(31) r2v,, + v, + Vg = 0, 0<r<l1, |fl<a<m,
with
(32) o(r, +) = hT,,  v(1,0) = 0.
Letting V(s,0) = A{v(r,0);r — s}, one obtains from the application of the
A transform,

a*v 2 . 6
(33) 107 + sV =0, withV(s, +a) = 2hT,/s.
Thus
(34) V(s 0) = 2hT, cos Gs'

5COS s

Letting k = /2, one finds that

(39) M+ ) = M+ r*R) = asec as.
The application of convolution formula (14), with g(r) = 1, yields®
2
(36) wyreseeas| Hm o rctans* | = he).
s k| 2
Since h(1/r) = —h(r), we employ Theorem 2 to obtain (see [2])
2 k
37) o(r, 6) = hTo[l - Earctan—%} 0<r<l.
Integration of (30), with v(r, 6) given by (37), yields
2h (T 2xk
(38) T(r, 0) = To[l - —,,f X"~ arc tan x—mz_’i-e-dx].
' Jo 1 —x

An equivalent form is

(39) T(r,0) =

|1 - 4h i y r2nt Dk cos (2n + 1)k
T o (2n + )[2n + Dk + K]
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THE RAYLEIGH-FABER-KRAHN THEOREM FOR THE
CHARACTERISTIC VALUES ASSOCIATED WITH A CLASS OF
NONLINEAR BOUNDARY VALUE PROBLEMS*

CATHERINE BANDLEY}

Abstract. This paper is concerned with functionals which were introduced by Nehari and also
discussed by Coffman in connection with the study of nonlinear boundary value problems. Their
behavior under the Schwarz symmetrization is studied, and an isoperimetric inequality analogous to
that of Rayleigh-Faber—Krahn for the fundamental frequency of a vibrating membrane is derived.

Introduction. Let Q be a bounded region in R" for which the Green’s function
for the Laplace operator exists. We shall write P for an arbitrary point in R" and
R, for the positive real axis. Let F(s, P) be a positive function on R, x Q with
the following properties :

(A) F(-,x)is continuous on R, for almost all x e Q. F(s, -) is measurable for

allseR,.

(B) There exists a positive number ¢ such that for almost all P € Q and for all

5 < 8y,

sl_eF(sl’P) é sZ—SF(SZ5P)'
We define the function G(t, P) by

t
G(t,P) = f F(s, P)ds,
0
and consider the functional
H@) = 2(v) — f G(v?, P)dx
Q

(dx = volume element in R", 2(v) = [, grad® vdx, (x',x?, -+, x") are Cartesian
coordinates), within the class I of piecewise continuously differentiable functions
which vanish on the boundary dQ and are not identically zero in Q. This note will
be concerned with the functional

A(Q) = min H(v),
where v ranges over all functions in I satisfying the side condition
1 D(v) = f v2F(v?, P)dx.
Q

Following Nehari we call A(Q) the characteristic value.
Nehari [9] showed that if Q = (a, b), there exists a function u e I" subject to
(1) which minimizes H(v). Furthermore this function is a solution of the differential

* Received by the editors October 7, 1971, and in revised form January 7, 1972.
t Department of Mathematics, Stanford University, Stanford, California 94305. This work was
supported by the National Science Foundation under Grant GU-2056.
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THE RAYLEIGH-FABER—KRAHN THEOREM 9

equation u” + uF(u? P) = 0 in (a, b), u(a) = 0 and u(b) = 0. It might be observed
that the minimum of H(v) without additional restriction on v does not exist in
general. Coffman [2] generalized Nehari’s result for the case where Q < R",
n = 2. It can be stated as follows:

Let F(s, P) be locally Hélder continuous on R, x Q, and suppose that there
are positive constants g, ¢ and y < 2/(n — 2) such that F(s, P) < c¢s” + ¢ for all
seR, . (In R? there is no restriction on y.) If we assume further that (A) and (B)
hold, then A(Q) exists, and the minimizing function u is of class C? in Q, and solves
the Dirichlet problem Au + uF(u?,P) = 0in Q, u = 0 on 0Q(A = Y"_, 8*/(0x')?
is the Laplacian). If Q = R?, then more general results can be found in [6], [1].
In a physical system A(Q) corresponds to the energy.

Example. Consider a membrane which covers at rest a region of the (&, n)-
plane. We assume that the interior of the membrane is subject to an external force
(0,0, —zF(z%, x)) (x = (£ 7)); the membrane is fixed on the boundary. Let the
deformation normal to the equilibrium plane be denoted by u(x, y) and suppose that
this deformation is small. If the modulus of elasticity is 1, then the equilibrium
position is described by the equation Au + uF(u? x) = 0in Q, u = 0 on dQ. The
total energy is $A(Q).

In this paper we shall derive a bound for A(Q2) which depends only on F and
on the volume of Q.

1. Nehari [8] proved that for every function v € I satisfying (1) the inequality
3
H(@) = —— | v*F(?, P)d
02 1 | R0 P

holds. A(Q) is therefore bounded from below. It was pointed out in [8] that for
every function v e I' there exists a constant « 0 such that av satisfies the side
condition (1). This is an immediate consequence of (B) and the fact that
limg_ 4 F(s, P) = 0 and lim,_, ,, F(s, P) = c0.

In order to estimate A(Q2) we shall use the following property of H(v).
LemMa 1. If v satisfies (1), then the inequality

H(w) = H(v)

holds for every real number a.
Proof. Since F(s, P) is nondecreasing, G(s, P) is concave and hence G(s,, P)
—G(s,, P) = (s — s,)F(s;, P). Thus, observing (1) we have

H(ow) — H@) = (& — )2(v) — J {G(«?v?, P) — G(v?, P)} dx
Q

< (@@ - D2@) — f (*v? — v*)F(v?, P)dx = 0.
Q

From this simple lemma it follows that

A(Q) = min max H(av).

v=00n0dQ

This minimum property and a reflection argument show that the minimizing
function is positive. It is also easily seen that A(Q) is a monotonic decreasing



10 CATHERINE BANDLE

functional of the domain.

For the following considerations we shall need the Schwarz symmetrization
[12]. By this symmetrization a domain B = R" is transformed into a n-sphere B*
with the center at the origin and the same volume as B. A positive measurable
function f on B with f = 0 on 0B is transformed into a function f* on B* in the
following way : Let B, denote the region B, = {P € B; f(P) > t}. f* is the radially
symmetrical function with f* > ¢ on B¥ and f* =t on 0Bf. The next result is
based on the inequality of Rayleigh—Faber—Krahn [12] for vibrating membranes.

THEOREM 1. Let F(s, P) = F(s) satisfy (A) and (B) and be independent of P.
Then among all regions Q < R" with a given volume the n-sphere yields the minimal
value of A(Q).

Proof. Let {u,}*_, be a sequence of functions in I', subject to the side condition
(1), and with the property

AQ) = lim H(u,).

We denote by u the function obtained from u, after the Schwarz symmetrization.
For each u* we determine a number «, such that

Do) = f Zu? F(o2u?) dx.
Q*

It follows from the definition of u that [, G(eguz) dx = [ . G(ogu}?)dx. Since the

symmetrization diminishes the Dirichlet integral, we have Zp(o,u,) = Doua,u

(see [12]), and thus by Lemma 1,

AQ) = lim [@Q(anun) - f G(o2u?) dx]
n—w Q

= lim inf [@m(anu:‘) — | Glau? dx] .
Q*

n—* oo

This inequality together with the minimum property of A(Q*) proves that A(Q)
> A(Q*).

Remark 1. The same arguments show that A(€2) is diminished by the Steiner
symmetrization [12].

Remark 2. Suppose that Q is a sphere and that the minimizing function u of
the variational problem exists. Then u is radially symmetric and nonincreasing in
r(r* = Y"_ (x)?). From this fact it is not difficult to obtain a lower bound for
the maximal value of the function u which solves the Dirichlet problem Au + uF(u?)
=01in Q = {x;|x] £ R}, u =0 on 9Q, and yields the minimum of H(v). As an
example we consider the case where F(s) = s and Q = {(x, y); x* + y* < 1}.
u has the representation

u(z) = %}” In|z — Z|u**Y(2)dA,,
Q

)
z=x+1iy, zZ =x"+1iy, dA, =dx'dy.

Since max,_q #(z) = u(0), and since u is decreasing, we have

u(0) > 2im
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Remark 3. Some growth conditions on F(s) are necessary in order to obtain a

minimizing function of class C*(Q). Indeed, consider the functional
1
Q) = 3 _ 2m+2

3) AQ) vzl})l;gm m:lx{@(ow) e ljn (ow) dx},
and suppose that the minimizing function u is of class C*(Q). It is therefore a
solution of the corresponding Euler equation Au + v*™*! =0 in Q, u = 0 on
0Q. If u(r) is the solution for Q; = {x;|x| < 1}, then ¢~ '/™u(r/z) is the solution for
the sphere Q, = {x;|x| < t}. An easy computation yields

) AQ) = t7CmT2mEAQ,),
where n is the dimension of the space. Since A(Q,) is a monotonic functional of ¢,

we must have m £ 2/(n — 2). This condition was obtained by Pohozaev [11] in a
different way. If we compute the value for o, then (3) becomes

B . m |' @(v)m+1 1/m
© ALy = v=Oonon 1 + 1] fov*m+2dx

We now consider the case n = 3, m > 2. If we take
{cos nkr/2 in [0, 1/K],
v =
0 in [1/k, 1],
k > 1, then v is admissible for the variational characterization (5) of A(Q,).
The computation shows that the right side of (5) tends to zero if k — co. Hence
A(Q,) = 0, and by the same argument and the monotonicity of A(Q), we can

prove that A(Q) = 0 for an arbitrary domain Q. If n = 3 and m = 2, there exists a
constant § > 0 such that

AQ) =p forall Q.
Because of an inequality by Ladyzhenskaja [5]:

{2} 2 48f 0 dx! dx* dx?,
Q

it follows that A(Q) > 0 for all Q. If we can show that f8 is the same for all circles,
then the assertion will be proved. Let ¢t; < t,, and u,(r) be a sequence of radially
symmetrical functions subject to (1) such that

A(Q,)) = lim H(u,).
The functions v, = t; ?u,(r/t,) with t, = t,/t, are admissible for the variational
characterization of A(Q,,). Hence
AQ,) £ lim H(v,) = A(Q,).
On the other hand, we have from the monotonicity that
AQ) = AQ,).
2. Let Q = R?, and consider functions F(s, P) of the form

F(S7 P) = p(P)FO(S) + G(P)s
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where p(P) and o(P) are positive on Q and F(s) satisfies (A) and (B) of § 1. If the least
eigenvalue of the membrane problem Au + Aou = 0in Q, u = 0 on dQ exceeds 1,
then it is possible to find for each function weI" a constant « # 0 such that (1)
holds for v = aw (see [2], [3],[8], [9]). Under all these assumptions A(Q) exists.
If F(s, P) is locally Holder continuous on R, x Q, then there is a minimizing
function u which solves the boundary value problem Au + u{p(P)F,(u*(P)) + o(P)}
=01in Q, u = 0 on 0Q (see [2]). It may be observed that A; > 1 is also necessary
for the existence of the function u. Indeed, since u does not change sign, it can be
interpreted as the first eigenfunction of the problem Av + um(P)yv = 0in Q,v = 0
on 0Q, where m(P) = p(P)Fy(u*(P)) + o(P). We have m(P) > o(P), and by the
monotonicity of the eigenvalues 1 = u, < 4, (see [4]).
We shall use the following notations:

M, (B) = prdxdy, M B) = ffodxdy,
B B

where B = Q is an arbitrary domain, and x, y are the Cartesian coordinates. Let
r =./x* + y? and K be an arbitrary real number. Then we define

4 4 )
Ky 10

4 ,
gK(r)= W lfK<0,
1 ifK =0,

and M (B) = J'_[ 5 8k dx dy. Let Fy(s) be fixed, and consider A(Q) = A(Q, g, p) as a
function of Q, o and p. Q¥ denotes the circle with the property

ff gxdxdy = ffo dxdy,
o Q

and Q* is defined in an analogous way. The next result is a generalization of
Theorem 1 of § 1. It is related to some extensions of the Rayleigh-Faber—Krahn
inequality for inhomogeneous membranes [1], [10].

In order to simplify the proof we shall assume that there exists a function
u e C? belonging to I and subject to (1) which yields the minimum of H(v). Other-
wise we have to consider a minimizing sequence as we did in the proof of Theorem
1.

THEOREM 2. Suppose that Q is simply connected, A, > 1 and that there exists a
number K such that the following inequalities hold in Q:

—Alnp —Alngo

<
2p = K, 20

<K, 41— KM,>0 and 4n — KM, > 0.
(@) If QF = QF, and if the first eigenvalue of the problem Au + uggu = 0 in
QF, u = 0 on 0QF, exceeds 1, then we have, for fixed F(s),
A(Qa ag, P) g A(Q:a gKa (Mp/Ma)gK)a
M,=M,(Q),M, = M,Q).
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(b) If QF = QF, and if the first eigenvalue of the problem Au + u(M,/M )gu
= 0in Qf, u = 0 on 0Q}, exceeds 1, then

AQ,a,p) = M, (M,/M,)) g, dxdy.

Proof of part (a). If f is an arbitrary positive function, let B, denote the
circle with center at the origin and the property that

Let Q(t) = {PeQ;u(P) Z t}, and let uf, be the radially symmetrical function on
QY such that u®) > tin Qf(¢) and uf;) = ¢ on 0Qf(t). We shall write ¢ = M,/M,,
p = cp and h(P) = max {u}(P), u,(P)}. Since u; > 1, there exists a number o
such that
D, (0h) = f f Ph{Fo(a?h¥)e™! gy + g} dx dy.
Qo)
The proof is based on the following lemma [1].

LeMMA 2. Let v be an arbitrary positive function in Q which vanishes on the
boundary 0Q. Let G(t) be the domain {PeQ;uv(P) 2 t}. If a positive function f
satisfies in Q the inequalities (—Aln f)/2f < K and 4n — Kffﬂfdx dy > 0,
then for every (t,,t,)(t, = t,),

(6) J-f grad®> vdxdy = ff grad?® v}, dx dy.
G(t1)\G(12) G (t)\GY)(t2)

Because of the assumptions regarding o, it follows therefore that

(7 Jf grad> udxdy = jf grad® u¥, dxdy

Qt)N\Q(2) O, (1)\Q(12)

forallt, <t,.
Because of ¢ = 1, we have (—Alnp)/2p < K/c < K. Since 4n — K ([, pdxdy
= 4n — KM, 2 0, we can apply Lemma 2 to u;,, and we obtain
8) ff grad? udxdy = ff grad® u¥y dxdy.
Q(t1)\Q(t2) Qt5)(t1)\Q{5)(t2)
From (7) and (8) we conclude that

© Do) 2 iy, (th)

The following relations are immediate consequences of the definition of u’(':,) and
uk,:
(o)

(10) ff{ :2“2 Fy(s) ds}p dxdy = ff{ J:zur%) Fy(s) ds}c' lg dxdy
Q Q4

and

(11) ff wulodxdy = Jf Cuilggdxdy.
Q Q’(“d)
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From (10) and (11) and the monotonicity of F,(s) we have

a2h2
ff G(u?)dxdy < f [{c‘lf F, ds} + azhz]gx dxdy,
0

Q Q:‘c)
and by (9) and the same arguments as in the proof of Theorem 1,
A(Q, o, P) g A(Q(’lfy)a 8k> (Mp/Mo)gK)'

Part (b) can be proved in a similar way:

Example. Consider functions ¢ and p such that Alng =0, Alnp =0,
MM, 21 and M, < mj§ (j, = 2.4048 -- -, first zero of the Bessel function of
order zero). We have K = 0 and gx = 1. From the inequality of Nehari for in-
homogeneous membranes [10] it follows that 4, = mjo/M_ = 1, and from the
Rayleigh-Faber-Krahn inequality u, = nj2/M_, = 1. Hence, Theorem 2 yields

AQ,a,p) 2 AMQE), 1, M, /M),

where

Q¥ = {(x,y)eRZ;\/x2 +y* < \/Mo/n}.
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A GENERATING OPERATOR FOR SOLUTIONS OF CERTAIN
PARTIAL DIFFERENCE AND DIFFERENTIAL EQUATIONS*

JOAN ROHRER HUNDHAUSEN{t

Abstract. This paper concerns an algebraic method for generating additional solutions of an
n-dimensional homogeneous linear partial difference equation from a known solution. A parallel
theory is developed for the continuous case via the Taylor series expansion; the pertinent partial
differential equation is linear and homogeneous of order ¢, with constant coefficients. In both the dis-
crete and the continuous cases, a generating operator is introduced and is shown to commute with the
given difference or differential operator, respectively. Applications are presented for both cases.

1. Introduction. In the context of this paper, generation refers to an operation
performed upon a known solution ofa difference or differential equation to produce
another solution. Generating processes have been devised for various special
forms of difference operators; these include methods of differentiation, integration
[2] and convolution of solutions [3], [4]. Continuous analogues of many of these
processes may be applied to corresponding differential operators. In particular,
algebraic generating processes for harmonic and polyharmonic difference operators
have been studied by Duffin and Shelly [5]. The content of this paper extends a
result developed in [5] for polyharmonic operators to a more general class of
linear partial difference operators with constant coefficients; it is also shown that a
parallel theory holds for linear partial differential operators with constant coeffi-
cients which are homogeneous of order /. A generating operator is explicitly
displayed for each case. The transition between the treatments of the discrete and
the continuous cases is provided by the vehicle of the Taylor series.

Although perhaps the more orthodox approach is to derive discrete analogues
from the better-known continuous theorems, here is a case which exemplifies a
statement appearing in the Editor’s Foreword to the text by Miller [7]: “It is
possible to derive theorems about differential equations from theorems on
difference operators, and the methods might be more transparent in the latter case.”
Thus the discussion of the discrete case precedes that of the continuous case.

Some applications of the generating process are presented in § 4. The generating
operator is developed for the case of the n-dimensional Laplacian operator ; both
continuous and discrete versions are considered. A particularly interesting
application in the discrete case lies in the context of the theory of discrete analytic
functions. Here a modification of the generating operator coincides with an
operator introduced by Duffin [2] which is useful in generating a sequence of dis-
crete analytic polynomials.

2. The generating operator in the context of difference equations. In prepara-
tion for development of the theory in the discrete case, we impose a cubical grid
of width h upon n-dimensional Euclidean space. Nodes of the grid structure are

* Received by the editors September 16, 1971.

t Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico
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16 JOAN ROHRER HUNDHAUSEN

denoted by points x = (x;, X,, -+, X,), Where x; = Z,h, £, integer,i = 1,2, --- , n
Complex-valued functions ¢(x) defined at these nodes are designated as discrete
or lattice functions. In order to prevent formulas from becoming too cumbersome,
we adopt where advantageous the notation introduced by Schwartz [8]. For two
vectors

x=(x15x2a""xn)’ m=(m1am21"'amn)

where the m; are 1ntegers x™ denotes the monomial x7T!x%2 - - xi'» m! denotes the
product [m1|'|m2| !-++|m,}!, and |m| denotes the sum my| +|my) + -+ +|m,).
With the designation e; as the characteristic vector having 1 in the ith position and
0 elsewhere, the fundamental translation operators X7 may be defined concisely as

XTip(x) = p(x + hme),  mjinteger, i=1,2,---,n

The translation operators are clearly linear and commutative, and XY¢p = I¢
= ¢. Also

XTX52 . XMo(x) = X™o(x) = (p(x +h) miei).

i=1

For differentiation, the operational symbols D; = 0/0x;,i = 1,2, -+, n,can be
combined into a gradient vector D = (D,, ---, D,), and for k = (k,, k,, -+, k,),
where the k; are nonnegative integers, the general derivatives of ¢(x) may be
abbreviated to D*¢(x). The Taylor series expansion for X™¢(x) becomes

X"p(x) = Z ey i{—‘m"D"q)(x).
=0  |kl=¢

Let M represent a linear difference operator of the form

(1) M=Ya,xm

where m ranges over a finite set of vectors having integer entries and the coefficients
A = Gy, m,...m, are complex constants. We are concerned with the family of
solutions of the homogeneous difference equation M¢(x) = 0. Anticipating a form
of Taylor series expansion for M, we introduce the associated or derived operators

M, =) a,mXx"
m

Noting that M,(1) = )" a,m", we may exhibit the relationship between M and its
derived operators via the Taylor series expansion as follows:

%) M=Yax"=73 K Y Mk(l)D"
m £=0 |k|= 5

The derived operators themselves have the expansions

SN Ms+k(1)D"

<o  w=ck

where s = (s,s,, -+ , 5,) with 5; a nonnegative integer. Also for p = (p,, Pz,
p,), p; nonnegative 1nteger the relation X™[x;p0(x)] = (x; + hm)X™p(x) is the
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basis for derivation of the general formula

P1 p2 Pn pl p2 pn _
ORI R IR o o o [ I ) Y
ri=0r2=0 rm=0 \I'y r, r,
where the vector r = (ry,r,, -+, 1,).
We now define the generating operators in the discrete context.
DEFINITION. M,; = x,M, — XM, i # job j=1,2--,n
For future reference we cite the Taylor series representation

- kel 1
C)] Mij = Z g Z Ei[ijk+e,»(1) - xiMk+e,(1)]Dk-
=0 |k|=¢ K’

The following theorem shows that the operators M, ; are useful in generating
additional solutions of the difference equation M@(x) = 0 from a known solution
f(x). The proof involves a simple application of (3) and is based upon the condition
that the relation Mf(x) = 0 holdsin a suitably extensive region of discrete Euclidean
space, viz., a region containing at least each point (x + h)7_, me), where
m = (my,m,, ---, m,) appears in the summation formula (1) for M. Several
corollaries follow almost immediately from the theorem ; their proofs depend upon
extensions of this condition and for the sake of brevity are omitted. Finally, we make
the basic assumption that the relation Mf(x) = 0 holds in a sufficiently extensive
region of discrete Euclidean space and do not repeat it in the statement of the
theorem or the corollaries.

THEOREM. If Mf(x) = 0, then M[M;f(x)] = 0, fori # j,i,j=1,2,--, n.

Proof.

MM ;f(x)] = x;MM, f(x) + MM, f(x) = x;MM, f(x) — MM, f(x)
= (M, — x;M, )M f(x)
= M, Mf(x) = 0.

The notation M1 indicates that the operator M is to be applied g times in
succession ; for example, M?> =)' % a,a,X™** where m and k range over the
same finite set of vectors. Formula (3) is helpful in developing successive powers of
the operators M. B

COROLLARY 1. If Mf(x) = 0, then MI[M;f(x)] =0 fori # ji,j=1,2,---,
n;g=12 ---.

COROLLARY 2. If Mf(x) =0, then M[M&f(x)] =0, i #j,i,j=1,2,---,n;
g=12---.

Here a sequence of additional solutions may be generated by repeated applica-
tion of the generating operator ; the proof follows easily by induction. Also different
generating operators may be applied successively to a known solution, thus
generating additional families of solutions.

COROLLARY 3. If Mf(x) = 0, then M[M [M, f(x)]] =0, i # j, r #s, i, j, ,
s=1,2,---,n

3. The generating operator in the context of differential equations. The rep-
resentation (2) illustrates the fact that a difference operator M is always an approxi-
mation to a linear homogeneous partial differential operator .# of order £ having
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the form
(%) M= oDk
kl=¢
where o = o ;,...4, are complex coefficients; ie.,
M — M()I
() im M= MOL_ s

h—0 h4
The exact value of the integer g and the exact form of .# are uniquely determined
by the values M (1), again emphasizing the essential role played by the derived
operators of M. On the other hand, the great variety of difference expressions (and
translations thereof) which may be used to approximate derivatives renders
possible the approximation of a given form .# by many different forms M. For
further details see Collatz [1].

Because of this approximation relationship between the discrete and con-
tinuous cases, the theory of the generating operator as developed in §2 has a
parallel in the continuous case ; the natural vehicle of transition is the Taylor series.
The schematic diagram in Fig. 1 serves as a brief outline of the process by which the
generating operators .//Zj corresponding to a given operator .# are developed.
We assume .# as given in the form (5).

FiG. 1

Reference to the Taylor series representation (2) for M together with the
desired approximation relationship M — M(1)I = WY pg=e 6D* + O *Y) de-
monstrates the necessity of the conditions
7 M1)=0 for1 < |k| <7,

8) M, (1) = k! for |kl =¢.

These in turn may be used together with the Taylor series representation (4)
of the corresponding generating operators M;; to determine, in the spirit of the
approximation relationship (6), corresponding generating operators .#;;. Thus

for a vector p = (p;, p,, - -+ » P,) having nonnegative entries, condition (7) enables
us to write

<
I

S
~
L

1
g =W 2 i MpeelD) = XMy (1D + O,
i#j, i,j=1,---,n.
Noting that |p + e] = |p| + |e] = ¢, we use relation (8) to obtain
ap+ei(p + ei)! = Mp+e,-(1) fOI'|p| =/ —1.

Finally after simplifying the factorial expressions we define the generating operators
ﬂii .
DEFINITION

My = | IZ X0ty 1eP; + 1) — X054 (p; + 1)]DP,
pl=¢—-1

l#], i,j=1,2a""n'
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We thus have a family of homogeneous differential operators with the property
M, = — A > they are useful in generating additional solutions of the differential
equation .4 ¢(x) = 0 from a known solution f(x). Indeed, some members of the
family may be null operators; it is not difficult to discern from the definition that
M, ; will be a null operator whenever derivatives with respect to x; and x; are en-
tirely absent from each term of the given 4.

The following generating theorem may be proved independently of its discrete
counterpart in §2. The basis for the proof is the commutation relationship
between .# and ./, ; which we state as a lemma.

LEMMA. Let f(x)e C**~[R], where R is some region of Euclidean n-space.
Then 5 5

MM [ (X)) = M[ M (x)].

Proof.

ML = 5 D] T Dyt )= x4 o |

|k|=¢ lpl=¢-1

= Ikl‘ét’akl I_Z;_l (o +,(P: + DD*(x;D%f) — 01,1, (p; + 1)DH(x,Df)]

= IkIZJ Ockl sz . [“p+e,-(l7i + 1)(ijk+pf + ijk+p_ejf)
= pl=¢-

_ap+ej(pj + 1)(xka+pf + kiDH.p_ef)]

= | IZ {(ap+e((pi + l)ijp - 05p+ej(Pj + l)x,-D") Z O(kaf
pl=¢-1 |k|=¢

+ Z ak(ap+ei(pi + l)ijk+p_ej.f - “p+ej(pj + l)kka+p_eif)}

|k|=¢

=AM+ T T [te(p + Dk D

Ipl=¢—1 |k|=¢
_“k“p+e,-(l7j + l)kka+p—eif]‘

A careful rearrangement of indices enables us to write the lengthy expression in the
form

> W 4o, 0+ eDi + DIk; + 1)Dk+eitp=eif
lpl =71 k=7~ 1

= T T eyt Dl + DD
Ipl=¢—1 |k|=¢-1
which can be seen to vanish identically.
The lemma readily establishes the proof of the following theorem.
THEOREM. Let f(x)€ C**~'[R] such that 4f(x) = 0 in R. Then

MALf(X)] =0 inR, i#j, ij=1,-,n.

Letting .#% and .4 1. denote repeated applications of the respective operators,
we may state three corollaries, counterparts of those stated for the discrete case.
The proofs, similar to those indicated for the discrete case, are omitted.

COROLLARY 1. If f(x) e C4* V[ R] and M (x) = 0 in R, then

MUM )] =0 inR fori#j, i,j=1,2,---,n, g=1,2,---.
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COROLLARY 2. If f(x)€ C*t1“~V[R] and Mf(x) = 0 in R, then
MM Lfx)] =0 inR fori#j, i,j=i,---,n, qg=1,2,---.
COROLLARY 3. If f(x)e C**"%[R] and Mf(x) = 0 in R, then
//[/Zif/ﬁrsf(x)] =0 inR fori#j, r#s, i,j,r,s=1,---,n.

4. Examples and applications. As a first example we consider the n-dimensional
Laplacian operator A = )7_ 3%/0x} and a discrete harmonic operator having
relatively simple form, viz.,

M=Ya,X"= 3 (X;+ X;")— 2nl.
m i=1

Although this example has been treated by Duffin and Shelly [5], it is nonetheless

instructive to place it within the present context of Taylor series expansion and

derived operators and from these to demonstrate the form of the corresponding

generating operators. The simple form of the operator enables us to write for the

Taylor expansion

2 n n
M) = M)S() + h z Me‘u)ﬂ S5 ML

11]1

Using the convention 0° = 1 one can easily verify that

M(1) =0,
Me;=Xi_Xi_1’ Mei(1)=0’ i=1a2a"'an;
0 fori # j,
= M, . .(1) =20, i,j=1,2,---,n
cites {Xi+X,._1 fori = j, ervell) Y g

(using the Kronecker delta symbol), so that in fact,
Mf(x) = h*Af (x) + O(h*).
The generating operators become
Mij = xj(Xi - Xi_l) - xi(Xj - Xj—l)’

and it is interesting to note that these simulate via the Taylor expansion (4) the
corresponding family of operators

>t

I
ij—-xja—xi—x,.b;j, i#j, ,j=1,2,---,n.
The latter may be recognized as analogues of the components of the vector
r x grad in three dimensions, which are known to generate harmonic functions
when applied to a harmonic function.

An interesting application of the discrete version of the generating operator
lies in the context of discrete analytic function theory. We recall that a complex
function f is termed analytic in the continuous theory when df/0z = 0, where
of /0z = Hof /ox + i df /0y) = 0 is the complex form of the Cauchy-Riemann
equations. By analogy, a discrete analytic function f'satisfies the equation Lf = 0
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in some region of the discrete xy-plane, where L is a linear difference operator with
constant coefficients. A crucial property of L is that it is an approximation to
0/0z; for detailed treatment of other properties of discrete analytic operators, see
Duffin [2] and Hundhausen [6].

Thus the theory developed in this paper is useful in generating a sequence of
discrete analytic functions via Corollary 2; we cite an important example of the
process for the case of a particular operator L. For the discrete analytic operator
L=1+iX — XY — iY, Duffin [2] introduces the operator

=zl + X + XY+ Y) =iz — X + XY — Y))]

and shows that if Lf = 0, then L(Zf) = 0 also. Algebraic simplification and use of
the relation Lf = 0 show that Z is a variation of L, ; indeed, Zf = (3 — )L, f.
To achieve greater symmetry relative to the point of application, Duffin forms a
new operator Z from the average of Z applied at the four points z, z — 1, z — i,
and z — 1 — i, and finally establishes the interesting relation

©) Z2" = 70+,

Here z™ is the nth member of the sequence of discrete analytic polynomials,
which were originally defined by a process of recursive indefinite discrete integra-
tion with z'® = 1; relation (9) provides an alternate (and simpler) method of
generating this particular sequence of functions.

Finally we note that for discrete analytic operators L, the corresponding
generating operators L, , are aptly symbolized by Z since the conditions imposed
upon L — L(1)I in order that it approximate 0/0z, viz., L,(1) = iL, (1) # 0,
are exactly those which determine L, , as an approximation to multiplication by z.
More precisely, the Taylor expansions (2) and (4) become

(L — LI f = L,(1) of/0z + O(h?);
L., f =iL,(l)zf + O(h).

Thus in this particular context the generating process may be considered a simu-
lation of multiplication in the continuous case.
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A VOLTERRA EQUATION WITH PARAMETER*

KENNETH B. HANNSGENY

Abstract. We discuss the Volterra integral equation x'(f) + ij‘:) a(t — x(t)dv =k, A= Ay > 0.
We find conditions under which solutions are bounded on {0 < ¢ < oo}, uniformly in 2. We deduce
results on the asymptotic behavior of certain Volterra equations in Hilbert space arising, for example,
in viscoelasticity.

1. Introduction. In this paper we discuss boundedness of solutions of the real
Volterra equation

(1.1 x'(t) + qua(t — )x(t)dt =k, x(0) = xq, 0<t< o
0

(primes denote differentiation with respect to t).

Let x(t) = x(¢, A) denote the solution of (1.1), where 0 < 1y < A < o0 and
Xxo and k are prescribed constants. Theorems 2, 3 and 4 below give conditions
ensuring that

1.2) |x(z, A < B(lxol +1k), O0=t<o0, dg=Ai<o0,

where B depends only on a(f) and A,. The conditions on a(t) will include the follow-
ing.

(H) a(t) is continuous, nonnegative, nonincreasing, and convex on (0, c0),
0 < a(0+) < oo, 5 alt)dt < co, and a(t) > 0 as t — oo.

In [5] we showed that for fixed positive A, x(t, ) is a bounded function of ¢,
provided (H) holds; if in addition a(¢) is differentiable on (0, o), then

(1.3) x(t,A) >0 ast— oo.

Our interest in the uniform estimate (1.2) comes from questions of asymptotic
behavior of solutions of certain integral equations in Hilbert space. Let L denote a
symmetric linear operator defined on a dense subspace K of a real, separable
Hilbert space H. Assume that {(Ly, x> = 4o{x, x>, x €K, and that the inverse L~ !
of L is a compact operator on H. Consider the equation

(1.4) y(t) + LJ: h(t — )y(t)dt = pu + tv,

where u and v are prescribed elements of H and h(t) = [ a(r) dr. Following
A. Friedman [3], we expand y(t) in terms of eigenvectors of L ; then the expansion
coeflicient y,(t)satisfies(1.1), where A = 4, isthecorrespondingeigenvalue. Theorem
1 below says that this method yields information about y(t) when (1.2) holds.

We discuss (1.4) and related work of C. M. Dafermos [1], [2] and A. Friedman
and M. Shinbrot [4] in § 2. We state our main results, the sufficient conditions for
(1.2), in § 3; proofs follow in §§ 4 and 5.

* Received by the editors October 7, 1971, and in revised form January 21, 1972.
T Department of Mathematics, University of California, Los Angeles, California 90024. This work
was supported by the National Science Foundation under Grant GP-27973.
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Throughout this paper we let u(t) = u(t,A) and w(t) = w(t, 1) denote re-
spectively the solutions of

(1.5) u'(t) + Aft alt — tu(t)dt =0, u0) =1
0

and

(1.6) w(t) + lf alt — tw(t)dr =1, w(0) = 0.
0

One easily checks that
(L.7) x(t) = xqu(t) + kw(t) and w'(t) = u(z).
Then (1.2) holds whenever |u(t, 1)] + [w(t,A)) £ B0 Xt < 0,1y £ 1 < ).

2. Equations in Hilbert space. Let H be as in § 1, with inner product < -, - )
and norm || - ||. Let {);}>, be a complete orthonormal set of eigenvectors of the
operator L, with corresponding eigenvalues {/,}.

THEOREM 1. Let a(t) satisfy condition (H), and let h(t) = [% a(t) dz. Suppose
lut, )] £ Mand|w(t,2)) E MO Lt < 0,4y 1< ). Let

(2.1) Yilt) = wu(t, &) + vw(t, 4y),

where p, = {u, x> and v, = (v, x> . The series

(22) y(t9 u, V) = Z Yk(t)Xk
k=0

converges in H, uniformly in t, to the unique continuous solution of (1.4). Moreover,
(2.3) p(e, w, I < 2M3(l|pll? + 11v]13).

The following is an immediate consequence of uniform convergence in (2.2).

COROLLARY 1. Let the hypotheses of Theorem 1 hold, and assume that a(t)
is differentiable on (0, o0), so that (1.3) holds. Then || y(t, u, v)| - Oast — co.

Proof of Theorem 1. Uniform convergence in (2.2) and the estimate (2.3)
follow from the inequality y2(t) < 2M?(u? + vZ). Then y(t) = y(t, y, v) is continu-
ous. Setting x = y,, 4 = A, k = v, xo = i in (1.1), integrating, and dividing by
Ay, we obtain the identity

(2.4) A7y + fo Bt — ya) dt = A (e + tvy).

Multiply y, by both sides of (2.4) and sum over k; this yields

(2.5) L™yt + J: h(t — D)y(t)dt = L™ Yu + tv).

Thus L can be applied to both sides of (2.5); this gives (1.4). Conversely, if v
=Y v(t)x satisfies (1.4), v, satisfies (2.4), so v, = y,. This proves Theorem 1.

We remark that our proof follows the proof of Theorem 4.1 of [3]; as in that
paper, only the uniform boundedness of the family {u(t, 1), w(t, 1)} was used here,
and the sum (2.2) could be replaced by an integral for the case where L is self-
adjoint but L~ ! is not compact.
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We also note that if [|L'ull® + [|L"|* = Y2 o AZ"(ué + vi) < oo, > 0,
the same argument shows that L"y(t, u, v) = Y, Avi(t)x, converges uniformly.

Under the conditions of Theorem 1, the equations R(t)u = y(t, u,0) and
S(t)v = y(t, 0, v) define R(t) and S(t) as uniformly bounded, strongly continuous
operator-valued functions ; moreover

R(¢) + Lf h(t — ©)R(r)dt =1
0

(I = identity). Friedman and Shinbrot [4] analyze this operator equation in
Banach space in the case where h(0) > 0 and i’ € L1(0, c0); in Theorem 1 above,
h(0) = 0.

Consider the more general nonhomogeneous equation

(2.6) 2(t) + Lf h(t — 7)z(t)dt = p + tv + F(1),
0

where F(t) = { f(r)dt + [ [% g(0) do dr. The operators R(f) and S(t) are resolvents
for this equation ; some calculation shows that the solution of (2.6) is

2.7 z(t) = R(t)pu + S(t)v + ft R(t — 7)f(z) + S(t — 7)g(r)dr.
0
As an application of our results, consider the equation
(2.8) Z"(t) + (a(0) + c)Lz(t) + Jq a'(t — t)Lz(t) dt = g(t),
0

where (H) holds, a(0) < o, and ¢ = 0. Dafermos [1], [2] obtains results on asymp-
totic behavior for a wide class of equations arising in viscoelasticity and including
(2.8) withc¢ > 0 as asimple particular case. Ifinstead ¢ = 0, integration shows thata
solution of (2.8) is a solution of (2.6) (f = 0, v = z'(0), 4 = z(0)); then by formula
(2.7), lz(#)|l is uniformly bounded on {0 < t < oo} when the hypotheses of Theorem
1 hold and [ ||Ig(r)]| dt < .

3. The scalar equation. We state our results in terms of # and w. In the
following, B denotes a finite, positive constant, independent of ¢t and 4; its value
may change from line to line.

THEOREM 2. If condition (H) holds, then|u(t, A)| < \/—2—(0 <t< 0,0 < i< o).

THEOREM 3. If condition (H) holds and a(t) € L*(0, 00), then

(3.1) |w(t, A)| < B, 0t< o, Ah=1< .

THEOREM 4. Suppose condition (H) holds, a(t) is twice differentiable on (0, ),
and a(t) ¢ L*(0, o). We have three alternative cases:

(i) If a(0+) < oo and a" is bounded away from zero on every finite interval
(0, L], then (3.1) holds.

(i) If a"(t) is nonincreasing on (0, 00), and if

_ -1
(3.2) a(t) = 0(t™") and ol o(t*), t—0,

for some B,0 < B < 1, then (3.1) holds.
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(iii) If a”(¢) is nonincreasing on (0, ), and if

-1
(3.3 a0 o), t—-0,
then (3.1) holds.

In view of (1.7), our results give sufficient conditions for (1.2).

Theorem 2 gives a uniform bound on u for all positive A. No such bound is
possible for w. In fact, integration of (1.6) shows that

(3.4) wit,A)=t— 1 Jt h(t — tw(z, A) dr.
0

Then if [w(t, )] £ B, (3.4) says that w(t, 1) - t as A — O for each fixed ¢, a contradic-
tion.

Our proofs of Theorems 2 and 3 come essentially from the work of J. J. Levin
[7], which deals with the case of fixed A. For Theorem 4 we show that some esti-
mates in [5] can be made uniform in A.

4. Proofs of Theorems 2 and 3. For Theorem 2, recall [8, p. 230] that when
a(t) satisfies condition (H), we may write a(t) = [*_o(t) dr, where «(7) is a non-
positive, nondecreasing function and a(t) = a(t+),0 < t < oo. With u(t) = u(t, A),

define t , . ,
V() = —;—uz(t) + %/Ia(t)(fo u(t) d‘E) - %/1 J;) I:J:—t u(s) ds] oft) dt.

Direct computation using (1.1) (see [6]) shows that V(t) — V(0) =j"0 Vi(r)dr
with V,(t) < O a.e. Therefore

u*(f) < 2V(t) £ 2V(0) = 2u*(0) = 2,

as asserted.

For Theorem 3, choose n > 0 such that A,[[7 — 2{*Ja(t)dt = y > 0. Choose
an integer N > n such that 2Ny > 3. Fix 4 = A,, and let w(t) = w(t, ). Suppose
there exists T > 0 such that |w(T)| = 4N and |w(t)] £ [W(T)| (0 £t £ T). Since
W = |u| < 2byTheorem2,|w(t)) = 2N(T — N <t < T).(Notethat T — N > 0,
since w(0) = 0.) But

T—-N T
1 —w(T) = [J + f :I/la(T— Tw(t) dr,

0 T-N

JT_N Aa(T — t)w(t)dr
0

= 4N1J a(t) dt
N

and

f Ad(T — w(z) dt

T-N

N
= 2N,1J~ a(t) dt.
V]

Hence,

321 -w(T) =2 ZNA[JW — ZJw}a(t) dt
0 N

= 2Ny > 3.
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We conclude that no such T exists and |w(f)| = |w(t, 1)) < 4N. This proves
Theorem 3.

5. Proof of Theorem 4. The proof depends on the integral representation

© eitt
(5.1) aw(t, 1) = L Re{it[}@(‘c) R i‘c]}dt’ t>0,

which we derived in [5]. Here

R
¢(t) = lim J a(t) cos tt dt
R-o Jo

and

R
Y(r) = lim a(t) sin 1t dt.
R-o Jo
Briefly, we showed in [5] that the Laplace transform W(s, 1) = [J e™w(t, 1) dt
is analytic in {Re s > 0} and continuous in {Re s = 0} except possibly at s = 0;
moreover W(s, 1) = [s(s + AA(s))]” !, where A(s) is the Laplace transform of a(t).
The complex inversion formula

2aw(t, A) = e‘"j e"W(o + it, A)dr, >0, t>0,

holds; a contour shift, together with some estimates near s = 0 and a change of
variable, yield the representation

aw(t, ) = jw Re {™W(it, A)} dx.
0

Since ¢(t) and — (<) are the real and imaginary parts of A(it), we obtain (5.1).
Let ¢,(t) = [Y* a(t)costtdt, and let @,(1) = ¢(t) — @,(r). Using the
monotonicity and convexity of a(t), we proved several facts about ¢, ¢,, ¢ and
¥ in [S]; we collect these facts in the following lemma.
LeEMMA 1. With a(t) as in Theorem 4, the following relations hold (0 < © < 00):

(5.2) 0 < () < f " avd,
0
1 n/3t
(5.3) 0<3 f a(t) dt S ¢,(0),
(5.4) 0 < —0,(0) < Y1) < 40,(0),
(5.5) 0:1(0) < 9(0) + Y(0),
(5.6) (1) > 0.

For details, see Lemmas 3 and 5 and inequalities (3.23) and (3.24) of [5].
Since a(t) ¢ L(0, o), ¢,(t) > o0 as © — 0, by (5.3). Choose p > 0 such that

(5.7 ®1(7) 2 21/4,, 0<t=p.
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Since
/2t

i</>1(T) = —f ta(t)sinttdt <0,
dt

0

1/p,(z) | 0 as = | 0; in particular 1/¢p,(z) is of bounded variation on [0, p], and by
the familiar theorem concerning the kernel (sin t¢)/7 [9, p. 64] it follows that

? sin tt
5.8 lim J dt = 0.
(8) =0 Jo T01(7)

We write (5.1) as

p T(2) 0
0 P T(A)

where T(4) will be determined separately for each case of Theorem 4.
LEMMA 2. In cases (i), (ii), and (iii), |I,| £ BO <t < 0,4y < A < o).
Proof. Rewriting the integrand in (5.1), we see that

[ Ap(7) P cos 1t
I, = JO cos Tt[‘ch(‘c,l)] drt . Dz(t,/l)dT
J" sintt  Ag(7) .
o T D*t,d) "

where D(z, 1) = |Ap(t) — iAf(1) + it|. (The existence of these three integrals was
proved in [5]; the first inequality in (5.11) below and the fact that ¢(t) - oo as
7 — 0 provide the required estimates.)

Using elementary inequalities for complex numbers, we find that

271230e(t) + Y(x) — t/A] £ D(x, 4) £ A1(7) + @5(7) + (o) + t/Ao].
Using (5.5), (5.7) and (5.4), we see that
(5.11) 401(1)/2,/2 £ D(x, 4) < 1040,(7), 0<1=<p.

Then we can estimate the middle term in (5.10) as follows:

(5.10)

] p
(5.12) f cos ttD (1, A) dt | < 8252J o1 *(t)dt = B.
0 0
Moreover,
(5.13) 0< W) 8Y(r) _ 8004y(r) 0<<p.

wD*(t,4) = Atp3r) = tD*(t,A)

The existence of the first integral in (5.10) implies that the last expression in
(5.13) is in LY(0, p); hence so are the other two expressions. Therefore,

g AY(x) #Y(1)d
fo cos Tt[m:l dt =B

(5.14) =
o 103
We write the last term in (5.10) as

< 84!

P o P
J(t,A)=1f def E(c, 4) sin tt d,
Ao 194(1) 0
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where
E(x,)) = {2*¢19 — 22¢* — [ — 1)*}/129,D*(z, A).
Straightforward estimates using (5.3) and (5.4) yield the inequality
|E(t, )l < B[At~'Y(z) + 1]/AD*(z, 4).

From (5.11) and the fact that the expressions in (5.13) are in L!(0, p) as functions of
7, we conclude that

0 0
E(r,A)sinttdt | £ B, J o7t W) + Ag']dr =B
0 0

On the other hand, (5.8) shows that

. f sin T, } )
04(1) ’
therefore |J(t,4)) S B0 <t < o0, 1y £ A < o). In view of (5.10), (5.12), and

(5.14), this proves Lemma 2.
Next we prove (3.1) in case (i) of Theorem 4. We set

(5.15) T(1) = max {p, (2ra(0)2)"/?}

in (5.9).
We estimate I, first. By (5.2) and the monotonicity of a(t),

0 < AW(1) £ Aa(O)n/t < THA)/2t < 1/2, T(A) =t < .

Then (with D(z, A) as in the proof of Lemma 2) we have

D(z,2) 2 © — (1) 2 1/2, T() =< o,
so|lj] =2frt *dt=8B
For I,, integration by parts shows that

(5.16) 10(t) = I!ergo {— fo sin tt a'(t) dt},

since a(o0) = 0. Equation (5.16) is also valid when a(0+) = oo, because condition
(H) implies that ta(t) < [ a(t)dr - 0 as t — 0. Let

(5.17) N(z) = greatest integer < 21/p.

Note that N(t) = t/p when t = p. Since a(t) is convex, — a'(t) is nonincreasing and

2N(t)n/t
T0(1) = f sin tt[ —a'(t)] dt
0
(5.18)

N@)—1 pn/t
= ) sin tt{ —a'[t + 2kn/t] + a'[t + (2k + 1)m/7]} dt.
=0 Jo

Now 2N(t)n/t < 4n/p. Since a” is bounded away from zero on finite intervals,
there exists #n > 0 such that —ad'(t) + a'(t + ey =ne if 0 <t <t + ¢ =4n/p.
Then
N@)—1 pn/t
) 2t Inpn ), sin tt dt = 2nqN(t)/x* = 2nn/tp, T = p.
k=0+vY0
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Using this and (5.15), we make the estimate

1 (T® dr p
I =+ < ——[T*A) — p?
155 ot S T~ 07

< pa(0)/2n = B.

These estimates for I and I,, together with Lemma 2, establish (3.1) in case (i).
LEMMA 3. In cases (ii) and (iii) of Theorem 4,there is a positive number Q such that

(5.19) (1) 2 Q7 TZ P,

where 8 comes from (3.2) in case (ii) and f = 1 in case (iii).
Proof. We may assume that

(5.20) —a(t) = o8, 0<t=d4n/p,

where § > 0. Define N(7) as in (5.17). We again have relation (5.18). Using the
mean value theorem and the fact that a”(¢) is nonincreasing in cases (ii) and (iii),

we make the estimate
N(t) prnjt
() 2 Y sin 1t a"(2kn/t)m/T dt
k=1J0

(5.21)

N(r)
=2nt" % Y, a"(2kn/7).

k=1

But 2[N(t) + 1]n/t > 4n/p, so

N(r) 4n/p
2ne™t Y a"(2kmf7) = J a’(t)dt

k=1 2n/t
= d'(4n/p) — d'(2n/7),

since the first expression is an upper sum for the integral.

Since ¢(7) > 0 for all t (see (5.6)), we deduce (5.19) from (5.20), (5.21) and
(5.22). This proves Lemma 3.

Now consider case (ii) of Theorem 4. Choose y > 0 such that a(t) < yt™#
(0 < t £ 7/p)and define

T(A) = max {p, (2AN)"/E=P},

where A = yn “P/(1 — ).
By Lemma 3 we have

T(4) T(4)
”2|§1J~ dr ég‘[ 1784y
A, 1) A,

< 9
T2 - P

(5.22)

[(QA)VC-P2~ = B,

Fort = T(J),
n/t
0= () £ lyf t7Pdt < BAT127PAP T = Ag,
0

where the first two inequalities come from (5.2). Therefore, with D(z, 1) as in the
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proof of Lemma 2, we have D(tr,4) =t — AY(t) = 1/2(t = T(4)) and |I;]
=< 2_[;" 172 dt = B. Lemma 2 again provides a bound for I,, so (3.1) holds in case
(ii).

Finally, we estimate I, and I; in case (iii). By (5.2), (1) - 0 as T —» c0. Choose
a number w so large that |Y(7)|< 1 if t 2 w, and let T(4) = max {p, , 24}. Then
D(t,A) =1 — AW(r) = 1/2(r = T(A)) and |I5| £ 2]’;‘;’ 17 2dt = B. For I, we use
(5.19) with § = 1. We have

1 (T de
< - < =
sy ms2=5

This completes the proof of Theorem 4.
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ON THE EQUATION OF EULER-POISSON-DARBOUX*
D. W. BRESTERS?}

Abstract. Weak solutions of the initial value problem for the EPD equation are constructed
using distributional methods. After taking the Fourier transform with respect to the space variables
we obtain an equation related to the Bessel differential equation which can easily be solved. The
inverse transforms are then found using some results obtained earlier by the author.

It is shown that for values of the parameter A which are greater than n — 1 (n being the space
dimension) the solution is the same as the one obtained by Weinstein [16]. However, the method of
this paper can be used for all values of the parameter. Also the exceptional values A = —1, —3, =5, - -
fit in quite naturally. Conditions for the regularity of the solutions are given for all values of A.

1. Introduction. Consider the hyperbolic differential equation

0> A0
(1.1) (A—-————t—a)u(t,x,l)=0, t>0,

with initial conditions

limu(t, x; A) = ¢(x),
(12) o )

lxlfg au(t, x;4) =0,
where A = 0%/0x} + -+ + 02/0x2,x = (x;, X5, *++ , X,) and A is a real or complex
parameter. For 4 # 0 the problem considered here is a singular Cauchy problem.

The case considered most frequently is obviously the one where A = 0.
Equation (1.1) then turns into the n-dimensional wave equation. For 4 = 0, (1.1)
appears in several branches of applied mathematics such as the transonic flow
of compressible fluids. For A = %, (1.1) corresponds to Tricomi’s equation. If we
replace A by —A, we obtain an elliptic equation which appears in generalized
axially symmetric potential theory and has applications in hydrodynamics and
the theory of elasticity.

Equation (1.1) is generally referred to as the equation of Euler-Poisson—
Darboux (abbreviated as the EPD equation). It is almost impossible to mention
all publications on the EPD equation. Hence we restrict ourselves to the following
rather arbitrary survey. References [7],[9] and [15] are of historic interest. The
most essential steps forward have been done by Weinstein [16], [17]. His studies
were followed by several others from the ‘“Maryland-School” of which we mention
Diaz and Weinberger [8], Martin [14] and Blum [1], [2]. Several recent publica-
tions still depend on the work of Weinstein (for example, Young [18]). The papers
mentioned above all give solutions in the classical sense. For a treatment in the
distributional sense we refer the reader to Lions [13] and Carroll [S]. Lions uses
“operateurs de transmutation” (after an idea of Delsarte) and Carroll applies

* Received by the editors March 23, 1971.
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Fourier transformation with respect to the space variables only. Neither constructs
solutions but both derive theorems on existence, uniqueness and convexity
properties of the solutions.

It is the aim of this paper to show that the method applied by Carroll can
also be used to construct the solution of the Cauchy problem (1.1)+(1.2). In the
author’s opinion the greatest advantage of this method is that it gives solutions for
all values of A. Weinstein considers first positive integer values of A which are
greater than n — 1; the solutions obtained for these values of A are then used to
obtain solutions in the other cases by means of a generalized method of descent
and recurrence formulas.

The situation for 4 < 0, where the solution is no longer uniquely determined,
can also be clarified by the method of this paper and the exceptional values
A= —1, =3, =5, --- fit in quite naturally. We shall use Fourier transformation
with respect to the space variables only and it will appear that the required inverse
transforms can easily be found from the tables of Fourier transforms as given by
Gel’fand and Shilov [10] and by the author [4].

In the subsequent section we denote by “distribution” a generalized function
defined on the space S of testing functions which decrease, together with all their
derivatives, faster than any negative power of |x| as |x| — co. In this case the
Fourier transform is a one—one mapping of the dual space S’ into itself.

Finally it may be remarked that the method of solution introduced in this
paper can be modified in order to solve the Cauchy problem for the equation

2
(1.3) (A _ o —%‘%)u(t,x;i)= ctu(t, x; A).

This problem has been studied by Young [18] by means of methods related to
those of Weinstein.
It is the author’s intention to study problem (1.3) in detail in a subsequent

paper.

2. Solution of the Cauchy problem.
2.1. Preliminaries. We consider again the singular Cauchy problem:

0* A0
(Ax—ﬁ—?a)u(t,x,i)=0, t>0,
(2.1) u0, x; A) = ¢(x),

u(0,x;4) =0.

Applying Fourier transformation with respect to the space variables only we obtain

0?2 A0
2.2 (k2 + 2t . b?)a(t’k) =0,
2.3) 0, k; ) = k),

(2.4) (0, k; ) =0,
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where k = (k;, k,, --- , k,) corresponds to x = (x;, -+, x,), k> = k3 + k3 + ---
+ kg, (e, k; ) = Fyu(t, x; 2)] and @(k) = F,[$(x)].
First we construct a solution G,(t, k) of (2.2) which satisfies

(2.5) lim G(t,k) =1,

-0

.0~
(2.6) lim —G,(t, k) = 0.

-0 Ot
When G,(t, k) is found, the solution of (2.2),(2.3),(2.4) is
27 ii(t, k3 ) = Gy(t, k) - Plk)
and the solution of (2.1) is then given by
(2.8) u(t, x; 2) = Fi '[Gy(t, k)] * d(x) = Gy(t, x) * $(x),
where F, ! denotes the inverse Fourier transform with respect to k = (k,,
k,,---, k,) and the symbol * denotes convolution with respect to x = (x, -- -, x,)
only.

We call G,(t, x) the fundamental solution of the Cauchy problem (2.1). It
satisfies the EPD equation with initial condition ¢(x) = d(x). In order to prove
that (2.8) actually represents the solution of problem (2.1) we shall show in §2.3
that:

(i) G,(t, x) is a well-defined distribution in S (i.e., the dual of the space S,

of testing functions depending on x) which is twice continuously differen-
tiable with respect to the parameter ¢ for all t = 0.

(ii) The convolution product in (2.8) exists for a large class of functions and

distributions ¢(x).

2.2 Construction of G(¢, k). By the transformation
(2'9) Gl(t9 k) = t(l - i)/zh(ta k)a

equation (2.2) becomes

(2.10) s t

d&2h dh ([ (=W
dt? dt B 2

Ji-o.

that is, the Bessel differential equation.

The following two cases are considered separately :

Case 1. (1 — A)/2 noninteger.

Case 11. (1 — 1)/2 integer.

For future use we summarize below some general formulas for Bessel func-
tions of the first kind J,(z) and the second kind Y(z):

1

PTo+ 1) v # neg. integer,

(2.11) lim z7%J (z) =
z—0

(2.12) J_2) = (—=1"J(2), n integer,



34 D. W. BRESTERS

(2.13) %{Z_”Jv(Z)} = —z7"J,44(2),
(214 i{Z”Jv(Z)} = 2"J,-4(2),
dz
0 for v>0,
(2.15) li_{ré z2’J(z)={ o0 for v<O,
1 for v=0,
(2.16) li_{r; 'Y (z) = — %(_vz’ v > 0.

Formulas (2.12), (2.13), (2.14) hold for Y,(z) as well.

We start with Case I: (1 — 1)/2 noninteger (4 even). The general solution
of (2.10) is then given by:

(2.17) h(t, k) = AJ 1 —y2(kl - t) + BJ 5 1)2( Kl - 8),

where 4 and B are arbitrary complex numbers which may depend on
k| = /k? + --- + k2. Hence,
(2.18) Git, k) = At =P2J (k- 1) + BE 20 (k] - 0).

Now A and B should be chosen such that G(t, k) satisfies conditions (2.5) and (2.6).
Using formulas (2.11)+2.15) we easily obtain that

— k=g mr(“zr 1),

while A = 0 for A = 0 but remains undetermined for 4 < 0. Hence we have for
A<O0(A#2+1,1=0+1, +2,--):

A+
Gy(t, k) = 24~ “/ZF( )(|k| - /1)/2‘](1 y2(kl 1) + A4- - l)/z-]u w20kl - 1),

(2.19)

while for 1 = 0 (and # 2I + 1) the second term vanishes (4 = 0).
Next we consider Case II: (1 — 1)/2 integer (that is, 4 odd). We obtain
(2.20) Gyt k) = C- 1"~ P2J ;o) 1) + DI P2Y, gy (K] - 1),

where C and D are arbitrary numbers which may depend on |k|. Using again for-
mulas (2.11)+2.16) we obtain that conditions (2.5) and (2.6) are satisfied if we take

/1+1)

C = 20~ 1)/21-( k|* =% for A =1,3,5, -

D=0
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and

C = arbitrary,
D= —m2% V201 — 2)/2)k|* P for k= —1, -3, -5, --.

Summarizing our results we have
a-v2p(A 1 (-2
(2.21) Git,k) =2 H—— (Il - 1) Ja-p(kl-2) foralld =0,

~ A+1
Gyt k) = 2%~ 1)/21—‘(%) (k| - t)(l—l)/zJ(,l— 12kl - 1)

2.22)
+At(1_l)/2J(1_l)/2(|k|‘t) fOI'/1<0, A«# ""1,_3, _5,"'
Bt h = — 2 gy,
t, = )T _ .t
L N1 -2
2.23)
FBtARg (k] 1) for A= —1,—3,—5,.--,

where A and B are arbitrary complex numbers. It follows immediately that a
unique solution for the Cauchy problem (2.1) is certainly not possible for negative
values of A.

The difference between two solutions of the problem (2.5),(2.6),(2.7) is
always of the type

(2.24) C-11- }')/ZJU _ay2(lkl - 1),

where C is an arbitrary complex number which may depend on k. Also we remark
that for A = —1, —3, —5, - -- the solution will be of a different character than
the solutions for other values of 4, due to the occurrence of a Bessel function of the
second kind Y,(z) which is singular at z = 0. We shall return to this case after we
have studied the inverse Fourier transformation of the obtained solutions G,(t, k).

3. The fundamental solution G,(z,x) for A # —1, —3,---. In §2.2 we
obtained that for A # —1, -3, —5,---,

A+1
(3.1 G(t, k) = 2%~ 1)/21"(—;—) (k[ - t)(l_wzJu.— 20kl - ©)

is a solution of (2.2) which satisfies conditions (2.5) and (2.6). Moreover, (3.1)
gives a unique solution in the case where 1 = 0.

For the solution of our original Cauchy problem (2.1) we need the inverse
Fourier transform of (3.1) with respect to k = (k,, k5, - - -, k,). We use the follow-
ing formula from the table of Fourier transforms as given by Gel’fand and
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Shilov [10]:
l:(mZ + P)‘-‘!- 2u+n/2+1nn/2—-1mn/2+u
T+ 1) ] B JIA
u+n/2(mQ£-/2) T

—sin (u + q/2)n K
pra QuF 2 T o Gin (u + n2)m

(3.2)

Ju+ n/2(mQ 1—/2)

. . h—9q
: {sm (n+q/2n- QFmI2 +sin n

2
Ju—n/2(mQ 1—/2)
: Q(i¢+n/2)/2 >

where P is a real quadratic form Z:l,s=1 2°x,x, = (x,I'x), A =detT, I' is the
matrix (g"%) and q is the number of terms with negative sign in the canonical form
of P. J (z) and K ,(z) denote the usual Bessel functions. Q is the dual of the quadratic
form P, that is, Q = (x, '~ 'x), while @, = Q for Q > 0 and vanishes for Q < 0.
Terms with Q, vanish for Q < 0. Q_ = |Q| for Q < 0 and vanishes for Q > 0.

Now if we take

P=—xi-xi——x (=—x9,
0=~k Kk — - -k (=K,
A—n-—1
p=0, g=n, u=+, m=t, |[Al=1,

and denote by |k| the square root /k?, we obtain:

(t2 _ x2)(j_.—n—1)/2 2(i.+1)/2n,,/2_1tu_1)/2
[1"((,1 —n+ 1)/2) :|= k|~ D2 Ja- 20kl 1),

and consequently,

(33) F

X

_ tl—al—‘((/1 + 1)/2) (1> — xH)¢-r-v2

(3.4) G,(t,x) 2 I'(A—n+1)/2)

and the solution of problem (2.1) is given by

1D+ 1/2) (2 — X202
n"? I'(4—n+1)/2)

It should be remembered that (3.5) gives the solution for all A # —1, —3, =5, ---

but that only for 4 = 0 the solution is uniquely determined.
In the case where (4 — n — 1)/2 is a negative integer we use the fact that

(3.5) ut,x; )=t P(x).

(t* — x?)%

(3.6) o+ e

= 5402 — x?).

We remark again that all distributions appearing in our solutions are defined
on the space S, of testing functions depending on x = (x, ---, x,) only. The
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variable t only appears as a parameter on which the solution depends continuously
for t = 0. The latter property is based on the fact that the Fourier transform is a
continuous linear one—one mapping and on the properties of Bessel functions.
In the same way we can conclude that the distribution G,(t, x) is twice con-
tinuously differentiable with respect to the parameter ¢ for all ¢ > 0.

Next we consider the existence of the convolution in (3.5). Since (t2 — x?)*
has as its support the interior of the sphere |x| < t, we may conclude that the
convolution exists for arbitrary ¢(x) € S’ (see, for example, de Jager [12, pp. 24-25]).
Hence, a distributional solution of our problem exists for arbitrary ¢(x) e S'.

For a solution in the classical sense we shall have to impose some conditions
of differentiability on the function ¢(x). In that case u(t, x; 1) should be a twice
continuously differentiable function of x for all ¢ > 0 (remember that it is already
such a function with respect to t).

We consider the expression

o o

o t2 _ x2v -
6x§”( T oxr

3.7 0> — x*)(* — x?),

where m = [v + 1], that is, the largest integer which is smaller than or equal to
v + 1. For k positive the symbol 8~*/dx ~* denotes the primitive of order k with
respect to x (see, for example, [10, pp. 118-124]). It is easily seen that (3.7) contains
8(t> — x?) as its most singular part. It follows from the definition of (¢ — x?)
that 6(t> — x2)*¢(x) is defined and regular for ¢(x) e C° (that is, ¢(x) continuous).
Hence for the existence in the classical sense of

m

ox?

(% = x?)} * $(x)

we need only assume that ¢(x) e C°. Consequently,
(22 — xR % g(x)

is a C%-function if we require that ¢(x) be

A—n—-1 A-n+1
[ ] ]

times continuously differentiable. This result is in agreement with that of Wein-
stein [16]. For A > n — 1 the solution as given by (3.5) is easily rewritten in the
form in which it has originally been presented by Weinstein (cf. [16]).

If we put for the surface of the unit sphere in R;

2752
rs2)

we have from (2.29),

W,
U, x37) = PETELAR — O x g),
@41
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or equivalently,

68 uxid =D gk g de,
Wi+1 Jer<t

where &2 = "_ &, x + &t = (x; + &it, x5 + &ot, -0, X, + &) and dE = dE,

dE, - de,.

We describe briefly the way in which Weinstein derives formula (3.8). He
starts with the solution for A = n — 1 which can easily be found. Next, (3.8) is
proved for integer values of 4 which are = n — 1 and then the validity of (3.8)
for noninteger values of A, which are greater than n — 1, is shown by means of,
as Weinstein calls it, the generalized method of descent. Then recurrence formulas
relating the u(t, x ; A) for different values of A are used to obtain the solution for
values of 4, smaller than n — 1 and not equal to —1, —3, —5, - --

We remark that the distributional attack used in this paper produces the
solution for all 4 # —1, —3, —5,--- at once. We have already seen that for
A < 0 the solution is not uniquely determined. The difference between two such
solutions is always of the form:

(3.9 FUC 17204 _syn(lKl - 1)),

where C may depend on k. Consequently, the difference between two arbitrary
solutions for 4 < 0 is always of the form:

(3.10) G, _(t, x) ¥ P(x) =t u(t, x;2 — A),

where G, _,(t, x) is the fundamental solution of the Cauchy problem (2.1) with
2 — 1 as the value for the parameter, and y(x) is an arbitrary function or distribu-
tion belonging to S'. Hence, u(t, x; 2 — A) is the solution of some Cauchy problem
(2.1) with arbitrary initial condition y(x). :
It is easily checked that u(f, x; 2 — 4) for all A < 0 has the properties
lim ¢t~ *2u(t,x;2 — 1) =0,

t—0

lime™*2 "ty (t,x;2 - A) = 0.
10

(3.11)

Conditions (3.11) are the ones given by Blum [2] for the difference of two solutions.

It should be noted that in the presentation of these conditions by Weinstein
[16] or Hadamard [11, Chap. VIII], u(t, x; 2 — A) does not denote the solution of
a Cauchy problem of type (2.1) but an arbitrary solution of the EPD equation.
In our presentation u(t, x; 2 — 1) is considered as the solution of a Cauchy problem
and then conditions (3.11) are automatically satisfied. It is also easily seen that
conditions (3.11) when applied to the general solution G,(t, k) as given by (2.18)
or (2.20) lead to a difference between two arbitrary solutions for 4 < 0 which is
of the form (3.10). Hence, Blum’s conditions (3.11) are equivalent to the condition
that u(t, x; 2 — A)is the solution of some Cauchy problem (2.1), thatis, u(t, x; 2 — )
satisfies

limu(t,x;2 — A) exists in the distributional sense in §’,

t—0

(3.12) )
limuft,x;2 — 1) = 0.
=0
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Finally, we remark that (3.10) with conditions (3.11) or (3.12) also gives the form
of the difference between two arbitrary solutions in the case where 4 = —1,
-3,

We investigate this case more extensively in the next section.

4. A fundamental solution for the exceptional values of the parameter 1. In
this case a nonunique solution of the Cauchy problem (2.1) will always contain
a term

—m0-v2 a2
4.1 ——F_ )ATARY -1)].
4.1) T = ) [kl - 2) (1 —ay2(kl - )]
We should find the inverse transform occurring in formula (4.1). The calculations
can be simplified, however, if we make use of the arbitrariness of the solution for
A<O.
It is clear from § 3 that

— =12

4.2) mﬂc— (k| - ) _Wz{Y(l —ay2Ukl - 8) £ T — 520Kl - £)}]

will also be a fundamental solution of our problem. Hence we can also take
(= 1)/2

K (1))

Fi (k| - ) _WZHEP— w20kl - 1)]

or

— i 1)2
(1 - 4/2)
where HY = J, + iY, and H® = J, — iY, are the Hankel functions of the first
and second kind.

In order to obtain the inverse Fourier transforms we use the table of Fourier
transforms as given by Gel’fand and Shilov [10, (17), (18), p. 351]. If we take

G,(t,x) = Fy (k] - ) '“/zHﬁ’_m(Ikl -1)],

2

b

P=—x}—-x3— —x}=—x
Q=—ki—-ki— - —k>=—k?,
p=0, g=n, c=t,
we obtain after some simple calculations

F((n - A+ 1)/2) (-4 ei,,m'/z

(43) G}.(tax) = F((l — i)/z)nnlz

(tZ _ x2 i iO)(l—n—l)/Z‘

Using the results obtained by the author in [4] (or an earlier paper [3]), it is easily
seen that for n even formula (4.3) can be written as a combination of

(t2 _ x2)(}.—n—1)/2 and 5(n—}.—1)/2(t2 _ x2)
while for n odd we obtain a combination of

(t2 _ xZ)(j.—n—l)/Z and (t2 _ x2)(;l—n—l)/2.
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In both cases the first term is connected with
F (k] - )@ —l)/ZYh — 20kl - B)].

Hence, this first term is essential in so far that it will always be present in the
solution. Consequently, the fundamental solution is no longer concentrated
within the sphere |x| < ¢t and the existence of the convolution

(4.4) G(t, x) * ¢(x)
is no longer ensured. However it follows from the behavior of
(Ikf - 1)@ —/1)/2)/;1 ~ny2(lkl - 2)

that every distribution @(k) € S’ is a multiplier for this distribution. Consequently
the convolution (4.4) exists for arbitrary ¢(x)e S’. For a solution in the classical
sense, ¢(x) will have to satisfy certain conditions of differentiability. It is easily
seen from (4.3) that these conditions are the same as those derived in § 3 as far as
the variables (x,, x,, - - -, x,) are concerned. But even then the solution can display
a singular character with respect to the variable ¢ at t = 0.

It follows immediately from (4.1) and (2.14) that

a 1-2
(5;) F [u(t, x;A)], A=—1,-3,.--,

behaves for t — 0 like
k| ~*Yo(lk| - 1) - p(k).

Consequently (0/81?)1"114(t,x;~ A) has a logarithmic singularity at t = 0. This
singularity vanishes if |k|! ~*¢(k) = 0, that is, if

AT-D2(x) = 0.

It follows that a solution for A = —1, —3, —5, - -- has logarithmic singularities
in certain of its derivatives unless we assume that the initial condition ¢(x) is
polyharmonic of order (1 — A)/2. This is a well-known result which was obtained
earlier by Weinstein [16], Diaz and Weinberger [8] and Blum [1].
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IMPROPERLY POSED INITIAL VALUE PROBLEMS FOR
SELF-ADJOINT HYPERBOLIC AND ELLIPTIC EQUATIONS*

DAVID COLTONY¥

Abstract. Integral representations are obtained for the solution to Cauchy’s problem for hyperbolic
equations along a convex time-like surface, the exterior characteristic initial value problem for hyper-
bolic equations, and Cauchy’s problem for elliptic equations along an analytic surface. Each of
these problems is improperly posed in the real domain and hence our representations are constructed by
integrating over appropriate regions in the space of one and several complex variables.

1. Introduction. Until about twenty years ago the problem of constructing
approximate solutions to improperly posed initial value problems in partial dif-
ferential equations was ignored by most mathematicians on the basis that such
problems did not correspond to meaningful physical phenomena and hence such
efforts were at best misguided and at worst fruitless. However, during the past two
decades it came to be realized that such problems do in fact arise in mathematical
physics. One such appearance is in the form of inverse free boundary problems in
fluid mechanics (cf. [14]), and another is in boundary value problems where part
of the boundary is inaccessible to measurement and hence the boundary data is
incomplete (cf. [24], [26]). The physical origin of these problems has led to two
different mathematical approaches.

In the case of inverse free boundary value problems the interest lies in con-
structing a “catalogue” of explicit solutions, and hence analytic data is prescribed
on some analytic surface and it is desired to construct an approximate solution
to a well-defined initial value problem. On the other hand, in the situation where
the boundary data is incomplete, the initial data is not known exactly and ap-
proximations are constructed by assuming an a priori bound on the solution and
then applying a Rayleigh—Ritz procedure [29].

Alternatively one can assume that the initial data itself satisfies an a priori
bound, approximate it by a polynomial in some appropriate region (cf. [23]), and
then treat the resulting initial value problem in the manner developed for inverse
free boundary problems.

In all approaches the basic problem remains the same : the initial value prob-
lem is improperly posed in the sense that the solution does not depend continuously
on the (real) initial data and hence one cannot approximate the solution by simply
constructing the solution corresponding to approximate initial data.

In this paper we consider three classic examples of improperly posed initial
value problems in partial differential equations: Cauchy’s problem for hyperbolic
equations along a time-like manifold [3], [21], [22], [11, pp. 754-760] ; the exterior
characteristic initial value problem for hyperbolic equations [12], [18], [25]; and
Cauchy’s problem for elliptic equations [4], [5], [6], [14], [17]. Each of these
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problems is improperly posed in the sense that the solution (if it exists) does not
depend continuously on the initial data and possesses coherence properties [12],
[14], [21], [11, pp. 754-760]. (It should be noted, however, that in the case of
analytic coefficients uniqueness is no problem since it is assured by Holmgren’s
theorem [12], [21], [13, pp. 185-188].)

We shall first treat in detail the exterior characteristic initial value problem
and Cauchy’s problem along a time-like manifold for the self-adjoint hyperbolic
equation

(L.1) Upywy = Uy F Uy + Gy, Xg, X3)u — f(Xy, X5, X3),

where q(x,, x,, x3) and f(x,, x,, x;) are analytic functions of their independent
variables. We shall then briefly show how to modify these results to treat Cauchy’s
problem for the elliptic equation

(1.2) Ug gy T Uy, T U+ qlxg, X5, XU = f(X1, X5, X3).

For the special case of equation (1.1) when g = 0 (i.e., the wave equation) the
problems we are considering have been studied by Pucci [25] and Cannon [3]
who showed existence, uniqueness, and continuous dependence on the data (in
the complex domain) under the assumption that the initial data was analytic in
one of its variables and differentiable to a sufficiently high order in the remaining
variable (our results show that in the case of Cauchy’s problem the smoothness
conditions imposed by Cannon on the initial data can be weakened somewhat).
It should also be noted that in the case of Cauchy’s problem similar results had
previously been given for general hyperbolic equations in two space variables by
Titt [27] through the use of contraction mapping and majorization arguments.

However, our aim (and that of Cannon and Pucci) is more ambitious in that
we want to obtain the solution as a linear functional of the data when the data is
analytic in one of its variables and is prescribed either along a smooth time-like
surface or on intersecting characteristic planes. Such an approach is advantageous
in that it leads in a natural manner to results on existence, continuous dependence
on the initial data, and approximation procedures. In the special case when the
manifold on which the initial data is prescribed is noncharacteristic and analytic,
and when the initial data is analytic in all of its independent variables, our work
can be compared in some respects to that of Hill [19] and Garabedian [13,
pp. 211-224].

Our results for hyperbolic equations and their analogue for elliptic equations
in three independent variables are of additional interest in that they provide
integral operators analogous to those of Riemann and Vekua in two independent
variables [13], [30]. In the elliptic case these operators have several advantages
(and some disadvantages) over the author’s previous construction of integral
operators in [7] (which can be viewed as an extension of Bergman’s operators in
two independent variables [1]) and a brief comparison of these two approaches
will be discussed in § 3. It should be noted that in the elliptic case it is assumed that
the initial data and the initial surface are analytic, and hence in this case the initial
value problem under consideration could be solved locally via the Cauchy-
Kowalewski theorem (cf. [20, pp. 116-119]). However,in addition to no longer being
able to represent the solution by quadrature, this approach is far too tedious for
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practical application, and even if a series solution is constructed it may not converge
in the full region where the solution is needed in a particular example (cf. [29]).

2. The hyperbolic equation (1.1). We shall now construct integral representa-
tions of the solutions to the Cauchy problem along a time-like manifold and the
exterior characteristic initial value problem for (1.1). For convenience’s sake we
make the assumption that g(x,, x,, x;) and f(x,, x,, x;) are entire functions of
the (complex) variables x,, x, and x;. It will be clear from our analysis that this
assumption can be relaxed to assuming only g(x,, x,, x;) and f(x,, x,, X;) to be
analytic in some polydisc in C?, the space of three complex variables. We also
need the following definition [27].

DEFINITION 2.1. A function g(x,, x,) of two real variables x, and x, is said to
be partially analytic with respect to x, for x, = a in the interval a < x, < f8
provided it can be represented by a series of the form

2.1) g(xy,X;5) = bo(x,) + by(x)(x; — a) + by(x;)(x; — a)z + -

whose coefficients are continuous functions of x, in the interval @ < x, < f and
provided that the series (2.1) converges absolutely and uniformly for o < x, < f,
|x; —a £y Theregiona < x, < B,|x, — al =< yis known as the region of partial
analyticity. The extension to more variables is evident.

We now introduce the coordinates

(2.2) X = X3 — Xy, y=x; + x5, z =X,
and rewrite (1.1) in the form
(23) Llu] = u,, + 4u,, + Q(x,y, 2u = F(x,y, 2),

where F(x,y,z) = f(x;,x,,x3) and Q(x, y, z) = q(x;,x,,x3). Let u and v be
“well-behaved” functions to be prescribed shortly. Integrate the identity

(2.4 vL[u] — uL[v] = Qup — 2uv,), + Quv — 2uv,), + (vu, — uv,),

over the torus D x Q, where Q is the circle |z — | = 6 > 0 in the complex plane
and D is the region in the Euclidean plane R? bounded by a contour C consisting
of a vertical segment C, joining a point B on the smooth, monotonically decreasing
curve y = y(x) to a point P above this curve, plus a horizontal segment C, joining
P to a point 4 on y = y(x), plus the arc C4 defined by y = y(x) joining A and B
(see Fig. 1).
y
A P

!

Fi1G. 1
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Note that the integrals are to be interpreted in the sense of the calculus of
exterior differential forms (cf. [2], [13, pp. 167, 213]), which attaches a meaning to
them even when the differential dz is complex. Note also that the cylinder y = y(x)
in Euclidean three-space R? is time-like with respect to the hyperbolic equation
(2.3). For our purpose it is important that the curve y = y(x) be monotonically
decreasing and hence that the region D be as in Fig. 1 rather than as in Fig. 2.
This is because of the fact that the curve AB in Fig. 2 is not time-like but space-like.
Furthermore, we shall later on allow the curve C, to degenerate to a segment of
the vertical characteristic plane through 4 and a segment of the horizontal charac-
teristic plane through B. In the case of Fig. 1 this will correspond to an exterior
characteristic initial value problem, whereas for Fig. 2 this becomes a (well-
posed) interior characteristic value problem.

y

Fi1G. 2

The result of integrating (2.4) over the torus D x Q, and then preforming an
integration by parts on the right-hand side of the resulting identity, is, in the nota-
tion of the calculus of exterior differential forms,

J:[f (vL[u] — uL[v])dx dydz

DxQ
(2.5) + f [2v(A, 2)u(A, z) + 2v(B, 2)u(B, z) — 4v(P, z)u(P, z)] dz
+ 4 uv,dydz — 4 uv, dx dz
[ waeel

+ 2 jj [(uv, — vu)dydz — (uv, — vu,)dxdz] =0,
C3xQ

where we have made use of the fact thatdx dy = O ondD x Q. Note that an expres-
sion of the form v(A4, z) is a function of three independent variables, i.e., v(A4, z)
= v(x, y, z), where (x, y) are the Cartesian coordinates of the point 4 in R2.

We now choose u and v such that equation (2.5) reduces to an expression for
the solution u of L[u] = f satisfying prescribed Cauchy data on a smooth convex
surface, where Cj is the intersection of this surface with the plane z = {, i.e., C; is
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a function of {. It is further assumed that the normal to the initial surface is never
parallel to the z-axis and that C, is an analytic function of {. First let u be a twice
continuously differentiable solution of Lu = f, where u and its partial derivatives
of order less than or equal to two are partially analytic with respect to z in some
neighborhood of the curve y = y(x) and such that u satisfies prescribed Cauchy
data on this curve. For v we construct a fundamental solution of L[v] = 0 which
satisfies the boundary conditions

(2.6) v,=0 onC; xQ,
2.7 v,=0 onC, x Q,

and such that at the point (P, z) = (£, 1, z),

(2.8) (P, z) + analytic function of (z — {).

1

" 8mi(z — ()
Note that conditions (2.6) and (2.7) are analogues to the boundary conditions
satisfied by the Riemann function in two independent variables, and imply that
in (2.5) the integrals over C; x Qand C, x Q vanish. We shall now show that the
function v exists and possesses the necessary regularity properties for it to be
substituted into (2.5).

Recall [13, pp. 152-168] that a fundamental solution S = S(x, y, z; &, #, {) of
L{u] = 0 is of the form

(2.9) S=U/R+ W,

where R = /(z = 0> + (x = &)(y —n), U =Y, UR?, and W is a regular
solution of L{u] = 0. The terms U,, | = 0,1,2, ---, can be computed recursively.
When the coefficients of the differential equation are entire, so is U, both as a
function of (x, y, z) and the parameter point (&, #, ) (cf. [13, pp. 161, 167]). The
term U, is given by the formula

(2.10) U, = Py eXp(— f (C — 3/2)-‘15—5),
0

where (in the case of (2.3)) s is a parameter measured along the geodesics of the
metric whose arc length element ds is given by the quadratic form

(2.11) ds* = dx?® + 4dx dy,
C is defined by
1] 0*R? 0*R?

and P, is a constant. Equations (2.10) and (2.12) imply U, = P,,, a constant. We
choose P,, = 1/(8xi). Hence we have

(2.13) S =

y UR '+ W.
snig T 2 U
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Now let us look at the singularities of 1/R in the complex z-plane for x and y
in the region D of Fig. 1. In this case (x — &)(y — ) = 0. If we cut the complex
z-plane along a line parallel to the imaginary axis between { + i/(x — &)(y — n),
1/R is an analytic function of z outside this cut. (Note that if the region of integra-
tion were the region D in Fig. 2, we would have (x — &)(y —#) £ 0 and the

complex z-plane would have had to be cut along the real axis.) In particular, 1/R
is analytic for |z — {2 > |(x — &)(y — 1), i.e., for

(x =9 —nl
(2.14) BT P

Hence if W is, for example, an entire solution of L[u] = 0, S is regular for all points
(x,y,z) and (&, n, () satisfying the inequality (2.14). Thus if the point (&, ,() is
sufficiently near to the curve y = y(x), S can be substituted for vin (2.5). The range
of validity of (2.5) with S substituted for v can now be extended by analytic con-
tinuation, provided S satisfies (2.6) and (2.7) and the domain of regularity (as a
function of z) of the Cauchy data is known.

We now turn our attention to choosing W such that (2.6) and (2.7) are satisfied
by S. From (2.13) and the definition of R it is seen that one way this can be accomp-
lished is to construct a solution W of L[u] = 0 satisfying the boundary conditions

< 1.

(2.15) W= -3 Ufz— *!
I=1

on the characteristic plane x = &, and

(2.16) W= —3% Ulz-*!

l

1

on the characteristic plane y = #. (Note that 1/(87iR) satisfies the boundary condi-
tions (2.6)(2.8). Furthermore, due to the form of equations (2.6)—(2.8), there exist
boundary conditions different from (2.15) and (2.16) that could be chosen to define
the function W.) This defines a characteristic initial value problem for L[u] = 0
with analytic (in fact entire) initial data. Hence from Hormander’s generalized
Cauchy-Kowalewski theorem [20, pp. 116-119] we can construct an entire solu-
tion W of L[u] = 0 which satisfies the initial data (2.15) and (2.16). Equation (2.13)
now gives a suitable function v = S to be substituted into (2.5). Note that from
(2.13) we have that S satisfies condition (2.8). In the special case when ¢ = const.
= A% a possible choice for the function S = S, is

cos AR
) S, = .
@17 * 7 8miR

Now in (2.5) let v = S and let u be a twice continuously differentiable solution
of L[u] = f whose partial derivatives of order less than or equal to two are
partially analytic with respect to z. From (2.8) we have

(2.18) 4J (P, z)u(P, z)dz = u&,n, Q).
Q
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Hence (2.5) becomes
uE. .0 = + 2f [S(A,z: &1, 0u(A, 2) + S(B, z; &, 1, Qu(B, )] dz

—2” [u(x, y, 24, ¥, 2.1, 0)
C3xQ

(2.19) — S(x,y,z;&,n, Qulx,y,z)]dxdz

+2 ” [u(x, . S,y 23 &1, 0)

Ci3xQ

— S(x,y,z;¢,1,0uyx,y,z)]dydz

+ fff S(x,y,z;8,n,OF(x,y,z)dx dydz.

DxQ

Equation (2.19) is the desired integral representation of u in terms of its Cauchy
data along a smooth time-like convex surface, where C; denotes the intersection
of this surface with the plane z = (. Equation (2.19) also shows that at the point
(&, 1,0, u(&,n, ) depends continuously on its Cauchy data in C; x G, where G is
anarbitrarily small neighborhood containing the branch line{ + i\/(x — &)(y — 1)
for all points (x, y)e C5.

The solution of the exterior characteristic initial value problem for L[u] = f
can now be obtained in a manner analogous to the method used to solve the
characteristic initial value problem for hyperbolic equations in two variables [13,
p. 131] by setting v = S(x, y, z; &, , {) in (2.4) and integrating this identity over the
rectangle ATBP in Fig. 3. In other words, we allow the curve C; to degenerate
onto the characteristics C, = AT and C5 = TB(where C, and C; are independent

of 0).

y
{ A C, P
C, D C,
T Cs B
X
Fi1G. 3

Performing this deformation, and integrating by parts along the charac-
teristics to eliminate the partial derivatives of u there, leads to

Wm0 = + 4[ [S(4, 25 &7, Ou(A. ) + S(B.z: .7, Du(B. 2)

— S(T,z;E,n, Qu(T, z)] dz (cont.)
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(2.20) + 4Cfisy(x,y,Z;é,n,C)u(x,y,z)dydz
—4 ff Sx(x’y’Z;‘fa’?aOu(X,y,Z)dxdz

CsxQ

+ fffS(x’y’Z;é,ﬂ,C)F(X,y,z)dxdydz,

DxQ

Equation (2.20) gives the integral representation of the solution u of L[u] = f as
a linear functional of its initial data on two intersecting characteristic planes which
is valid in the wedge bisected by the plane y = x and bounded by the two charac-
teristic planes, i.e., equation (2.20) gives the solution of the exterior characteristic
initial value problem.

3. The elliptic equation (1.2). Similar integral representations to those
developed in § 2 for hyperbolic equations can also be found for the elliptic equation
(1.2), provided we make the further assumptions that the initial data is analytic
in each of its independent variables and that, in the case of Cauchy’s problem,
the surface on which the data is prescribed is also analytic. To see this we make
use of the fact that twice continuously differentiable solutions of (1.2) are analytic
functions of their independent variables (cf. [13, p. 164]) and introduce the change
of variables

(3.1) X = Xy, z = X, + ix;, ¥ = x, — ix;

defining a nonsingular map of C? into itself. The elliptic equation (1.2) can then be
written as '

(3.2) Upy + 4ty + Q(x, 2z, 2% = F(x, z, z¥),

which is formally of the same hyperbolic form as equation (2.3). Repeating the
analysis of § 2 now leads to the integral representations (2.19) and (2.20) (with z
replaced by x, x replaced by z, and y replaced by z*) for the solution of the Cauchy
and complex Goursat problems, respectively. (In the case of Cauchy’s problem,
z = z(z*) is the expression in conjugate coordinates of the intersection of the
plane x = { with the initial surface.) In this case our analysis is reminiscent of
Vekua’s [15], [30] and Henrici’s [15], [17] development of the analytic theory of
elliptic equations in two independent variables. It is also similar to the integral
operators constructed by Colton in [7] (see also [8], [9], [10], [16] and [28]).

The operators constructed in this paper have several advantages over the
approach used in [7]:

(i) The form of the integral representations arises in a natural manner.

(i) The integral representation of the solution to Cauchy’s problem can be
readily obtained. In particular, this considerably improves upon the results in
[10] where the Cauchy data was required to be prescribed on the plane x; = 0
instead of on an analytic surface as in the present work, and where furthermore
the coefficient g(x,, x,, x3) was required to be independent of x, .
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(iii) The nonhomogeneous equation can be treated.

On the other hand, several disadvantages must be mentioned. One of these
is that difficulties arise in treating non-self-adjoint equations since the leading
(singular) term of the fundamental solution S in general no longer satisfies the
Goursat data as it does in the self-adjoint case. Extensions to higher dimensions
also run into difficulties due to logarithmic terms appearing in the construction
of S in an even number of independent variables and also due to the fact that the
geodesic distance R between two points no longer has a pole-like singularity along
the characteristics. The author is at present looking into these problems, and the
results will hopefully be reported in a future paper.

We finally note in passing that different representations than those obtained
in this paper can be derived for the solutions to improperly posed Cauchy problems
for elliptic and hyperbolic equations by means of an appropriate change of
variables in the complex domain and use of a fundamental solution (cf. {3], [13,
pp. 614-621]). In this case the fundamental solution is not required to satisfy
prescribed boundary data along the characteristics. On the other hand, new prob-
lems are created since the representation now includes terms involving the deriva-
tive of an improper integral and/or the finite parts of divergent integrals.

Note added in proof. The fact that the solution W of L[u] = 0 satisfying the
Goursat data (2.15), (2.16) is entire follows from the results of Jan Persson in his
paper Linear Goursat problems for entire functions when the coefficients are variable,
Ann. Scoula Norm. Sup. Pisa, 23 (1969), pp. 87-98.
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CYCLICLY RELATED DIFFERENTIAL SYSTEMS*
G. J. ETGEN anp N. C. WONGY

Abstract. This paper is concerned with first order, linear, vector-matrix differential systems in
which the coefficient matrix is an n x n g-circulant matrix whose entries are real-valued, Lebesgue
integrable functions. The objective of the paper is to establish the general solution of such systems and
to exhibit their exponential nature. Extensive use is made of the work of C. M. Ablow and J. L. Brenner
on circulant matrices. The results obtained in this paper extend the work of W. M. Whyburn on cyclicly
related functional equations and the work of E. J. Pellicciaro on cyclicly related differential equations.

1. Introduction. This paper is concerned with establishing the general solution
of vector-matrix differential equations of the form

(1) y = B(x)-y,

where B(x) is an n x n g-circulant matrix whose entries by(x), b;(x), -+, b, _ 1(x)
are real-valued and Lebesgue integrable on the interval [a,b]. By an n x n
g-circulant matrix with entries by, b,, ---, b,_;, we mean an n x n matrix whose
first row is the vector (by, b, ---, b,_;) and which has the property that each
succeeding row is obtained from its immediate predecessor by a cyclic shift of
g-columns to the right.

This work is motivated by the results of W. M. Whyburn [5], P. Barnhard
and E. J. Pellicciaro [2], and W. E. Baxter and E. J. Pellicciaro [3]. In particular,
in [5], Whyburn considered the cyclicly related system of equations

2 y2=kz A X)Yi 4 m+ ks i=1,2,---,n,
=1

where m and h are given integers, the subscripts i + m + hk are reduced modulo n,

and the functions a,(x) are Lebesgue integrable on [a, b]. Whyburn obtained the

general solution of (2) in terms of exponential functions. In [2] Barnhard and

Pellicciaro consider the more general system

(3) y:= Z ak(x)yi+a(k)a i = 1,2,"',",
k=1

where o is a function whose domain is the set {1,2, --- , m} and whose range is a

subset of the set {1,2, ---, n}. They show that the system (3) can be expressed in

the vector-matrix form

) y' = AX)y,

where A(x) is an n x n l-circulant whose entries cq(x), ¢,(x), - -+, ¢,_1(x) are
certain sums of the functions a,(x), - - - , a,,(x). Baxter and Pellicciaro [3] continued
the study of cyclicly related systems by considering the vector-matrix equation (1)
in the two cases: B(x) a 1-circulant and B(x) an (n — 1)-circulant.

* Received by the editors March 16, 1971, and in final revised form March 2, 1972.
T Department of Mathematics, University of Houston, Houston, Texas 77004.
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The purpose of this paper is to obtain the general solution of certain systems
of the form (1) where g is any integer. Of course, in view of the definition of a
circulant matrix, we can, without loss of generality, assume 0 < g < n — 1.
The matrix methods employed in this paper make extensive use of the results of
C. M. Ablow and J. L. Brenner [1]. In the context of [2] and [S], our results may be
interpreted as establishing the general solution of certain cyclicly related differential
systems of the form

(%) yi = Z ak(x)yg-i+a(k)’ i=1,2,---,n,
k=1

where, as above, the functions a,(x) are Lebesgue integrable on [a, b], « is a function
with domain and range {1,2,---, m} and {1,2,---, n}, respectively, and the
subscripts g - i + a(k) are reduced modulo n. In particular, it is easily verified that
the system of equations (5) can be equivalently written in the vector-matrix form
(1) where B(x) is an n x n g-circulant with entries bj(x),j = 0,1, ---, n — 1, given
by

b(x) =Y afx), g+ ak)=j+ 1(modn).
P

In order to obtain the general solution of (1) for arbitrary g, 0 < g <n — 1,
we distinguish two cases: (g, n) = 1, i.e., g and n relatively prime, and (g, n) > 1.
The next section considers the case (g,n) = 1 and § 3 handles the case (g, n) > 1.
We conclude the paper with some immediate generalizations of § 2 and § 3.

2. The case (g,n) = 1. Using the methods of [1], we give the following
definition.

DEFINITION 1. Let (g,n) = 1 and let ~ be the relation defined on the residue
classes 0,1, ---, n — 1(mod n) as follows: h; ~ h, if and only if there exists a
nonnegative integer g such that h, = h, - g% (mod n).

It is readily verified that ~ is an equivalence relation separating the residue
classes 0,1, ---, n — 1 (mod n) into the equivalence classes [hy], [h,], -, [h].
We shall assume that [h,] is the equivalence class containing 0 and it is easily seen
that [h,] contains exactly one element, namely, 0. As shown in [1] the elements in
(hj), 1 £j <k, are: h;,h;-g,---, h;-g*Y (mod n), where ¢(j) is the least non-
negative integer such that h;-g?’*! = h;(mod n). Thus, associated with each
equivalence class [h;],j = 0, 1, - - -, k, there is a nonnegative integer ¢(j) such that
q(0) = 0, % _,[q(j) + 1] = n. We note, in addition, that in the case g = I,
q(j)=0,j=0,1,---, k,k = n — 1, and the equivalence classes generated by ~
are merely the n residue classes modulo n. For notational convenience we shall
denote the elements in the equivalence class [h;] by h; = hjo, hj-g = h;y, -,

hg® = hj,;.j = 0,1, -+, k.
The following theorem has been established by Ablow and Brenner [1,
Thm. 4.1].

THEOREM 2.1. Let Bbe anyn x ng-circulant,(g,n) = 1. Let [hy],[h], -+, [h]
be the equivalence classes generated by ~ . Let y(p)be the n-component column vector
whose components are 1, p?, p??, --- |, p"~ VP where p = exp (2ni/n). Let M be the
n x n matrix whose columns are the vectors y(ho), p(hio), (hy1), -+, Y(higa)s
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Whyy), -+ Yy . Then M is nonsingular and M~'BM has the block diagonal

form M~'BM = diag [R,,R,, ---, R,], where for each integer j,j = 0,1, --- , k,
R;is the [q(j) + 1] x [q(j) + 1] matrix having the form
C 0 0o - 0 w(hjg;) |
w(h;o) o .- 0 0
R; = 0 w(hj) - 0 0
0 0 o wlhiggy-1) 0

provided q(j) > 0 and R; = [w(h;o)] if q(j) = 0, where
(6) w(h;,) = by + byp" + b,p*Me 4 .. 4 b, pn™ Dhip,

Our next definition gives a property which will be required of the g-circulant
matrices B(x) of (1) on [a, b].

DEFINITION 2. Let B be an n x n g-circulant matrix, (g, n) = 1, with entries
by, by, -+, b,_y. Let [hyl,[hy], - -, [h] be the equivalence classes generated by
~ . The matrix B has property ¢ provided the entries of B whose subscripts belong
to the equivalence class [h;] are equal, j = 0,1, - -+, k, that is, b,,, = b, , = b
j=0,1,--- k.

We now apply Theorem 2.1 to the matrix differential equation (1).

THEOREM 2.2 Let B(x) be an n x n g-circulant matrix, (g, n) = 1, with entries
bo(x),by(x), -+, b,_1(x). Let [ho),[h,], -, [h] be the equivalence classes
generated by the equivalence relation ~. If B(x) has property o on [a, b], then for
each integer j, 0 < j < k,

hjaw?

k
() wlhy) = wlhyo) = 0,x) = bolx) + Y. by, ([ + -+ ],

p=1,2---,4(j), and each block R{(x) in the block diagonal form M~'B(x)M
has the form

0 0 - 0 1]
10 -- 00
(8) Rix)=0/x)|0 1 0 0.
0 0 -~ 1 0]

Proof. Referring to [1, Thm. 4.1], we have the system of equations
B(X)Y(hjo) = W(hjo)y(hjl)’
B(x)?(hﬂ) = W(hjl)y(hjz),
) :

B(x)y(h i j)) = w(h a j))'}’(h jo),
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j=0,1,---, k. Naw assuming that B(x) has property o, we have, from (6), for
eachj,0 =j <k,
k
w(hj,) = bo(x) + X by (x)[p"r"=0 + phirhet 4 ... 4 phirheacs]
s=1
for p=0,1,---, q(j). We claim that w(h;,) = w(h;o) = 0,(x), p= 1,2, ---, q(j).
Choose any positive integer p, 1 < p < ¢(j), and any s, 1 < s < k. Then for some
integert,1 <t < ¢q(s), p + t = 0(mod (q(s) + 1)). Thus we see that the exponents

hjphso = hjgphs’ hjphsl = hjgphsg’ Y hjphsq(s) = hjgphsgq(s)
may also be interpreted as
thhspa thhs(p+ 1), " thhs(p+t) = thhSO’ thhsl s TN thhs(p— 1)

and w(h;,) = w(hj,). It is clear from (7) and (6) that if B(x) has property o, then
0,(x) = w(hj,) for each j. We conclude, therefore, that the system of equations (9)
has the form

B(X)V(hjo) = Gj(x)y(hjx),

B(x)?(hﬂ) = aj(x)?(hjz),
(10) .

B(X)V(hjqu)) =0 j(x)?(hjo)

and the theorem follows.

Our next theorem shows that each of the blocks R (x) obtained in Theorem 2.2
can be diagonalized.

THEOREM 2.3. If R is a [q + 1] x [q + 1] matrix having the form (7), then
there exists anonsingular {q + 1] x [q + 1] constant matrix N suchthat RN = ND,
where D is a diagonal matrix having diagonal entries 0(x)r,, O(x)rZ, ---, 0(x)rd,
0(x), and r, = exp 2mi/(q + 1)), a primitive (q + 1)st root of unity.

Proof. Let p be a positive integer such that 1 < p < q + 1 and consider the
(g + 1)-component column vector N, whose components are rd*! =7, y2@+1=»,
--+, 1, respectively. It is easily verified that N, is a characteristic vector of R
corresponding tothe characteristicroot 6(x)rs. Consequently,the[q + 1] x [g + 1]
matrix N whose columns are N;, N,, ---, N, satisfies the equation RN = ND,
where D is the diagonal matrix having entries 0(x)r,, O(x)rf, -+, B(x). The matrix
N is nonsingular since it is a Vandermonde matrix, and the proof of the theorem
is complete.

We are now in a position to obtain the general solution of (1) where B(x) is a
g-circulant, (g, n) = 1, having property g on [a, b]. Let M be the n x nnonsingular
constant matrix defined by Theorem 2.1, and let u be the n-component column
vector defined by the equation

(11) y = Mu.
Then y' = Mu' = B(x)y = B(x)Mu so that (1) is transformed into
(12) u' = M~ 'B(x)Mu.
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Now M ~!B(x)M has the block diagonal form described by Theorem 2.1. Partition
the column vector uinto k + 1 blockshavingq(0) + 1 =1,9q(1) + 1, ---, q(k) +1
components, respectively. Let u(j) denote the jth block of u, j = 0 L.,k
Then the vector-matrix equation (12) can be written as a system of k + 1 vector-
matrix equations

(13) w(j) = R(x)u(j), j=0,1,--, k.
Using Theorems 2.2 and 2.3 and letting
(14) v = R(x)v

denote any one of the k equations u; = R(x)u(j),j = 1,2, ---, k, of (13), we define
the [g + 1]-component column vector z by v = Nz, where N is the nonsingular
[q + 1] x [g + 1] constant matrix defined by Theorem 2.3. Equation (14) is then
transformed into

(15) z' = D(x)z,

where D(x) = diag [0(x)r,, B(x)rj, <o, 00)rd, 0(x)], r, = exp (2mif(q + 1)). Clearly,
the vector-matrix equation (15) is equivalent to the q + 1 first order equations
(16) Z;’=0(x)rgzp’ = 1’2""aq+ 1.

By the elementary theory of linear differential equations, the general solution of
(16) is given by

17) zp=cpexp{rgf 0(t)dt}, p=1,2,---,4,

where ¢, is an arbitrary constant.
We can now use the transformations which define the vectors z and v to solve
for the n components of the vector y. We obtain

y(x) = coexp {f 0,(t) dt}

(18) ol et ‘ x
XY e [ Y i rexp {rzm | (Mr)dt}]),

j=1\s=0 r=1
f=1,2"--,n, where 0(x), j_ 0,1,---, k, is given by (8) and co, ¢,(j),
p=12--,4q()+ 1,j=1,2,---, k,are arbitrary constants.

We have established the following theorem.

THEOREM 2.4. Let B(x) be an n x n g-circulant matrix, (g, n) = 1, of Lebesgue
integrable functions on [a, b]. If B(x)has property o on[a, b], thenthe general solution
of (1) is given by (18).

Concerning the cyclicly related system (5), we have the following corollary of
Theorem 2.4.

COROLLARY. Given the system of differential equations (5), where (g,n) = 1,
let

b(x) =Y al(x), g+ oaft)=j+ 1(modn),

t
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If then x n g-circulant matrix B(x) has property a on[a, b], then the general solution
of (5) is given by

Ys(x) = coexp {_r Wolt) dt}

(19) ko al) )+ 1
z (Z pU - 1)h,s|: Z J)rs[qU)+1 ?lexp { q(J)f Y i(t) dt}])

ji=1\s=0
f =12, ,n,wherecy,cj),p =12 Lq())+ 1,j=1,2,---, k,arearbitrary
constants and  (x) = 0{(x),j = 0,1, , k, 0/(x) defined by (8)

In the case g = 1, equations (19) reduce to equations (12) of [2]. With g = 1,
m = nand « the function defined by a(k) = g + hk, qand h given integers, equations
(19) reduce to equations (6) of [5].

3. The case (g,n) > 1. Consider the vector-matrix differential equation
(1) where the n x n g-circulant matrix B(x) has the property (g,n) =d > 1.
Let e and m be the relatively prime integers such that dm = n and de = g.
Examining the equations of (1), we have

n—1
(20) Vi = 'Zo bn-g(i—1)+j(x)J’j+1a i=1,2,---,n,
j=
where the subscripts n — g(i — 1) + j are reduced modulo n. It is easily verified
that (g,n) = d > 1 implies y, = V.4, = Vaomsp = *** = Vsm+p> Where 1 S p < m
and s = d — 1. Thus, we conclude that there exist arbitrary constants ¢, ,, ¢,,,, = * - ,
Cp>P = 1,2, .-+, m,suchthat y,,,, , = y, + ¢,,, 1 <t < s,and our homogeneous
system (20) may be reduced to the nonhomogeneous system
m—1 2m—1
Z b, g(p— 1)+,( )y}+1 + Z b, —g(p— 1)+;(x)[y1+1 m T Crg+1- m)]
(21) Jj= Jj=m
+ 0+ Z bn—g(p—1)+j(x)[)’j+1—sm + cs(j+1—-sm)]7 p=1,2,---,m.
j=sm

Let b¥(x) = Y5 _, b;+im(x). Then the nonhomogeneous system (21) can be
written

m-—1

(22) Vp = Z by eo- 1)+ (X1 + Z Cibn—gip-1)+ (%),

j=o0 j=m

p=1,2,---, m, where the arbitrary constants c;; have been renumbered c,,,

Cut1s " » Cp. Writing (22) in vector-matrix form, we have

(23) V' = B*x)y + [*(x),

where B*(x) is an m x m g'-circulant, g’ = g(mod m) having entries b¥(x),
b¥(x), - -+, b¥%_(x) which are Lebesgue integrable on [a, b], y is an m-component

column vector and f*(x) is the m-component column vector having components

n

folx) = Z Cibu—gp-1)+ (%) p=1,2,.--,m.

J=m
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Now, using the elementary theory of linear differential equations, we find the
general solution of (23) by first obtaining the general solution of the corresponding
homogeneous equation

(24) V' = B*(x)y.

To illustrate the procedure which we shall employ in finding the general
solution of (1) in the case (g,n) = d > 1, we shall assume first that (g’,m) = 1.
With this assumption, let [h,] =0, [h,],---, [h] be the equivalence classes
generated by ~ . If B¥(x) has property ¢ on [a, b], then the general solution of (24)
is given by (18) with bj(x) replaced by b¥(x) and with n replaced by m.

Let x4, a < x, < b, be any fixed point on [a, b]. Using the general solution
vector y(x), with components y,(x), - -+, y,.(x), obtained above, we solve the m
initial value problems

y = B*x)y,

(25) y(x0)=6i’ i=1,25”"n’

where J, is the m-component column vector having a 1 in the ith component
and zeros elsewhere. Let W(x)bethem x mmatrix whose columns are the solutions
of (25). Then W(x) is nonsingular and the general solution of (23) is given by

(26) Y) = W(x)[y + f S 40 dt],

where y is an m-component column vector whose components are arbitrary
constants. We summarize this discussion with the following theorem.

THEOREM 3.1. Let (g,n) = d > 1 and assume that (g, m) = 1, where m = n/d.
Let B*(x) be the m x m g'-circulant, g = g(modm), with entries b¥(x)

= 4" b, m(x). If B¥(x) has property ¢ on [a,b], then the general solution of (1)
is given by (26).

The special case g = 0 occurs as an interesting corollary of Theorem 3.1.
Letting g = 0 we have, from (1), y| = y, = -+ = y,. Thus there exist arbitrary
constants ¢,,c5, -+, ¢, such thaty, = y; + ¢;,i = 2,3, ---, n. The vector-matrix
equation (1) can now be written equivalently as the nonhomogeneous first order
equation

n—1 n—1
(27) Yy = I:';O bj(x)]h + ,Z,l Civ1bi(x).

The general solution of (27) is easily seen to be

yi = exp { [ dt}(cl [ [exp{ - [ a0 ds} h c,+1bj(t>] dt),

( ) y,-=y1+ci, i=2,3,-~-,n,
where f(x) = Y21 b(x).

09j
COROLLAR\; Let the n x n matrix B(x) of (1) be a O-circulant. Then (1) can be
written equivalently as the nonhomogeneous system (27) and the general solution is

given by (28).
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We now consider the general situation in the case (g, n) = d > 1. Letm; = n/d
and let d, = (g, m;) = (g,,m,), where g, = g(mod m,). Let m, = m,/d, and let
d, = (g,,m,) = (g,,m,), g, = g, (mod m,), and so on. Clearly the sequence
d > d, >d, > ---is finite and ends with either d, = m,ord, = 1.

Consider equation (1). As indicated in the discussion preceding the statement
of Theorem 3.1, (1) can be replaced by the nonhomogeneous system (23), which we
now write as

(29) y = B;(x)y + fi(x),

where B,(x) is an m; x m; g,-circulant matrix, (g,,m;) = d; > 1, and f;(x) is an
m,-component column vector. We consider the associated homogeneous equation

(30) y' = By(x)y
and in the same manner replace it by the nonhomogeneous equation
(€29) Y = Byx)y + f2(x),

where B,(x) is an m, X m, g,-circulant, (g,,m,) =d, > 1 and f,(x) is an m,-
component column vector. Continuing we obtain, after p steps, the nonhomo-
geneous equation

(32) Y = Byx)y + f,(x),

where B,(x) is an m, x m, g,-circulant matrix, (g,,m,) =d,, d,=0ord, =1,
and f,(x) is an m,-component column vector. Now consider the associated homo-
geneous equation

(33) V' = B, (x)y.

If B,(x) is a O-circulant, we find the general solution of (33) using the corollary
to Theorem 3.1. If B,(x) is a g-circulant, (g, m,) = 1 and B,(x) has property ¢ on
[a, b], then we find the general solution of (33) using the results of § 2. Once we
have the general solution of (33), we obtain the general solution of (32) as indicated
by the discussion preceding Theorem 3.1. Continuing through p applications of
this procedure yields the general solution of (1).

4. Extensions. The results and techniques of the preceding two sections
depend entirely on the structural properties of g-circulant matrices and not on the
entries of the matrix, except in so far as integrations are required. Consequently
we have the following immediate generalization of (1). Let I'(x) be an n x n
composite g-circulant matrix whose entries Dy(x), D(x), ---, D,_{(x) are m x m
matrices of Lebesgue integrable functions on [a, b]. Let Y be an n-component
composite column vector with components the m x m matrices Y;(x), Y,(x), - - -,
Y,(x), and consider the “vector-matrix’’ differential equation

(34) Y = T(x)Y.

DEFINITION 3. Let Q(x) be an m x m matrix of Lebesgue integrable functions
on [a,b]. The m x m matrix E([} Q) is defined to be the unique solution of

(3% Z' = Q(x)Z, Za) = 1.
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Itis well known that E(f* Q)is the matrix analogue of the exponential function.

We now have the following generalization of Theorem 2.4.

THEOREM 4.1. Let I'(x) be an n x n composite g-circulant, (g, n) = 1, whose
entries Dy(x), D4(x), - -+, D,_,(x)arem x m Lebesgue integrable matrices on [a, b].
If T'(x) has property o on [a, b], then the general solution of (34) is given by

Y,(x) = CO-E(JxOO)

: o -1 i [q(/)+ 1 —p] iy
eSS o |8 oy oel [ o) |}
J= N

=0

(36)

f=12---,n, where

k
oj(x) = DO(x) + Z Dhs(x) [r:jhso + -+ rﬁjhsq(S):L j= Oa 17 Tt ka
s=1

and C,, C(j) are m x m matrices of arbitrary constants.

If (g, n) = d > 1, then we can use the procedure outlined in § 3 to obtain the
general solution of (34).

Concerning the cyclicly related system (5), we note that there is no restriction
on the positive integer m. Consequently, we can also obtain the general solution of

(37) yi= Z aj(x)yg~i+a(j)a i=1,2,---,m,
i=1
where Z, 1 aj(x) converges absolutely and uniformly on [a, b]and a isany function

whose domain is the set of positive integers and whose range is a subset of

(1,2, -+, n).

The matrix analogue of (5) and (37) is

(38) Yi= Y A0y,

gita(i)?

1<sk<ow, i=1,2,--,n

where A(x),j =1,2,---, k, are m x m Lebesgue integrable matrices on [a, b]
such that the matrix series ) f_, 4,(x) converges absolutely and uniformly on
[a, b].

Finally, we note that we can apply these techniques to cyclicly related
functional equations of the form

m

(39) L(y) = Y, afx)Vgitaiys

Jj=1
1Em=< o, i=1,2,---,n

where L is any linear operator. As indicated by our previous work, system (39)
can be converted into the vector-matrix equation

(40) L(y) = B(x)y,

B(x)an n x n g-circulant. For a wide class of operators, it will be possible to solve
(40) using the techniques presented in § 2 and § 3.
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THE EIGENVALUES OF THE BETHE DIFFERENTIAL SYSTEM*
J. ERNEST WILKINS, JR.{

Abstract. The eigenvalues of the Bethe differential system, d{(1 — x*)dy/dx}/dx + kxiy =0
(=1 < x < 1), Yy(£1) finite, are approximately determined. The first nine positive eigenvalues are
given to 68, and the first three terms of an asymptotic expansion for the large eigenvalues are derived.

1. Introduction. The Bethe differential system consists of the equations

d N4 _ _
E{(l—x)—d—;}+kxt//—0, l<x<l,

() Y(+1) finite,

and we shall be interested in the values k for which there exist nontrivial solutions
Y(x) of this system. This differential system was first studied by Bethe, Rose and
Smith [1] and some of its basic properties were proved by Scalettar [2], both of
whom were interested in electron scattering and transmission.

We shall show that the eigenvalues are 0 and two infinite sequences k,,
k_,= —k,suchthat0 < k; <k, < --- < k, > + o0. Each eigenvalue is simple,
i.e., there is exactly one linearly independent eigenfunction ¥,(x) corresponding to
the eigenvalue k,. The eigenvalue ¥ _,(x) corresponding to — k, may be defined as
Yo —x).

The smallest positive eigenvalue k, is 14.5280, and the first nine positive
eigenvalues are furnished in Table 1. We also derive the asymptotic formula

k, = 6.875186(n + 1) — 091185 — 0.05675(n + 3)"2 + ---,

valid for large n, which gives excellent agreement even when n = 1. The first term
of this expansion had been found by Bethe et al. [1], who also estimated k, as
14.476.

2. An equivalent integral equation. If & is an eigenvalue of the system (1),
so that xy(x) e L(—1, 1), it follows that the quantities

a=1im 1 -x)Y b= tim -

x—>—1 dx’ x—=+1 dx

exist and are such that
1
a—b= kf te) dt,
-1

) (1 —x2)zl—f=a—kf1t¢(t)dt.

If we divide (2) by 1 — x, or by 1 + Xx, integrate over (— 1, x), or over (x, 1), and

* Received by the editors August 31, 1971.
1 Department of Physics and Astronomy, Howard University, Washington, D.C. 20001.
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then let x approach +1, or —1, we conclude from the finiteness of y(+ 1) that
a = b = 0, and hence that

1
3) f xp(x)dx = 0
-1
if k # 0. Equation (3) is also true if k = 0 since the only finite solution y(x) of (1)

when k = 0 is constant.
Since a = 0, the result of integrating (2) over (— 1, 1) is that

2fj1x|//(x)dx - —kf_ll dxf: (o) dt = —kfl(l — Oewle) de.

In view of (3), we see that, when k # 0,

1
) f x2y(x)dx = 0.
-1
If we divide (2) by 1 — x2, and integrate over (— 1, x), we find that
k[ (1 —x)(1+71)
5 v - w-n =5 e {G5 20 Mo

If we multiply (5) by x2, integrate over (— 1, 1), we infer from (4) that

k! 1 —1¢2 2
w(—1)=§f_lt¢(t){ . +1n1+t}dt.

Making use of (3) and (4), it now follows from (5) that any solution (x) of the
Bethe differential system (1) for which k # 0 must satisfy the Fredholm integral
equation of the second kind,

1
(6) Y(x) = kf H(x, tyty(t) dt,
-1
in which
3hn 1 _xiadaedl Mg
2 (1 -0+ x) 4 15’ <t<x<1,
(7) H(x,t) =
1 1 x2+3xt+ 12 11
2 - ., —1<x<
2ln{(1_x)(1+t)} 4 +15’ 1=x=st=s1.

Conversely, suppose that (x) is any function which satisfies the integral
equation (6) almost everywhere, and that k # 0. It is easy to verify that 0 < 11/240
= H(1,1/2) £ H(x,t), and it follows from the (Lebesgue) integrability of
H(x, t)ty(¢t) for almost all (and hence for some) x that rj(t) is integrable over
(—1,1). From this and the analytic form for H(x, t) we infer that, for almost all x,

2Y(x) = k{—A(x)In(1 + x) + B(x) — C(x)In(1 — x)},
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in which

A(x) = fltw(t)dt, Clx) = f o,

B(x) = — f " In(l — g de — f “In(l + 0 de

V22 x? + 3xt + t2
+J - 2 t(t)dt.

The functions A(x)In(l + x), B(x), and C(x)In(l — x) are absolutely
continuous on the respective intervals (—1, 1], (—1,1), [—1, 1). Hence y/(x) may
be redefined on a set of measure zero so that it is absolutely continuous on (—1, 1),
and Y(x) = O(1) + O[In (1 — |x|)]. Therefore, x2y%(x) is integrable, and from
Schwarz’ inequality we now see that

V2(x) < k2h(x) J U eprdr, b = f " Hx 0 dr.

A straightforward calculation shows that h(x) is continuous on [ — 1, 1], and hence

¥(x) is bounded. This insures that A(x)In (1 + x), B(x), and C(x)In(1 — x), and

therefore y(x) also, are absolutely continuous on [— 1, 1] if the first and third of

these functions are defined to be zero when x = —1 or x = + 1, respectively.
Differentiation of (6) now shows that

1+x+x k[l —x+ x?
x— zf ( tap(t)dt+§L(—1_x

1
_3k t2y(t) dt
4 J-4

ty(t)dt

on[—1,1], and hence
{(1 - x%) '//} —kxy(x) + de xt(x + t)W(t)dt.
-1

Moreover, from (6) and an easily justified inversion of the order of integration,

1 1 1
f ap)dx = k | gy de f xH(x, 1)dx = 0
since the integral of xH(x, t) can be calculated in an elementary fashion to be zero.
In addition,

f_ll x2Y(x)dx = k f_ll ty(t) dt fl

1
X2H(x, )dx = %1 — In 2k f (o) dt = 0.
-1 -1
We conclude that any function y/(x) which satisfies the integral equation (6) almost
everywhere can be redefined on a set of measure zero so that /(x) is a solution of
the Bethe differential system (1).
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3. Properties of the equivalent integral equation. We have already observed
that the integral of H?(x, t) with respect to t is a continuous function of x. Hence,

1 1
®) f f H2(x, t)dx dt < +oo.
Moreover, it is obvious that

9) H(x,t) = H(t, x).

If it were known that the functional
1 1
J[gl = f J g*(x)xH(x, t)tg(t) dx dt
-1J-1

is nonnegative for an arbitrary complex-valued function g(x) in L,(—1, 1), then
the integral equation (6) would belong to the class of J-definite integral equations
of Zimmerberg [3], and certain interesting conclusions could be drawn from his
general analysis. (In fact, Zimmerberg requires that H(x, t) be a bounded function
with regularly distributed discontinuities. Zaanen [4, pp. 418-422 and p. 565] has
shown how to replace this hypothesis with (8).) We shall now establish this
property of the kernel H(x, t).
Consider the Legendre differential system

d 5 dP .
E{(l - X )E} + kP =0, P(+1) finite.

Manipulations like those in § 2 show that this differential system is equivalent,
when k # 0, to the Fredholm integral equation

(10) P(x) = k fl Ho(x, O)P(t) dt

in which

IIA

lln;+ln2—% f-1<t<x=1,

1 -1+ x)

Hy(x,t) =

1 1 .
S, —_ . < < <
ln(1 x)(1+t)+ln2 3 f—1<x=tZ1.

Equation (10) is a Fredholm integral equation of the second kind with a kernel
H y(x, t) which satisfies the relations (8) and (9). The eigenvalues are known to be
k, =11+ 1),1=1,23, -, and the corresponding normalized eigenvalues are
(I + 1/2)*2P(x). The result that

o 20+1 2

f J h*(x)H o(x, t)h(t) dx dt = Z M0+ 1)

for every h(x) in L,(—1, 1) is a well-known [5, p. 118] property of kernels Hy(x, t)
satisfying (8) and (9). Since

j " Poh() dx

H(x,t) = Hy(x,t) — 3P, (x)P,(t) — SP,(x)Py(t) + 13(x* = H(t* — P+ 1 —In2,
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it follows that, for every g(x) in L,(—1, 1),

® 204+1 2

J(g 1= 2
(11 (5

*16

(x)xg(x) dx

2
+(1 -2

b

f l xg(x) dx
-1

(x2 - %)xg(x) dx :

and so J[g] > 0 unless xg(x) is orthogonal to 1, x2 — 2, and P(x) (/ = 3). Since
Py(x) = 1 and P,(x) = 3(x? — 2) + %, it follows that J[g] > O unless xg(x) is
orthogonal to P(x) when | # 1, i.e., unless g(x) is constant, and then J[g] = 0.

It now follows immediately from the results of Zimmerberg [3] that all eigen-
values k are real, and that the index (i.e., number of linearly independent eigen-
functions) of each eigenvalue is equal to its multiplicity (as a zero of the Fredholm
determinant of the integral equation). In fact, each eigenvalue is simple, for it is
easy to see that there cannot be two linearly independent eigenfunctions y,(x) and
¥ ,(x) both satisfying the differential system (1) for the same value of k.

It is obvious from inspection of the differential equation (1), or from the
observation that H(—x, —t) = H(x, t), that y(x) is an eigenfunction corresponding
to an eigenvalue k if and only if Y(—x) is an eigenfunction corresponding to an
eigenvalue —k.

It follows from another result of Zimmerberg [3] that there are at least N
positive eigenvalues if

fl xf2(x)dx > 0
-1

for all nonidentically vanishing f(x) in an N-dimensional linear subspace of the
set L of functions f(x) for which there exists a continuous function g(x) such that

1
(12) fx) = J_l H(x, t)tg(t) dt.

Let the functions f(x) be defined whenn = 2,3, ---, N 4+ 1so that
fix) = (Bn + 2)(3n + 3)x3 — 2(3n + 3)(3n + x> + (3n + 4)(3n + S)x>+?

when x = 0, and so that 2f,(x) = f,(—x) if x < 0. Since it is easy to see that
1 1
f xfi(x) dx = f x*f(x)dx =
-1 -1
it follows from the identity
2 f 3(°
f H(x, t (l—t) (x)—ij (x + t)tf(t) dt
-1

that f,(x) is in L with a function
— — ___1_ i 2 dfn
mwmw-wﬁlxﬁk
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whichiscontinuouson(— 1, 1).If f(x) = ). a,f,isany element of the N-dimensional
linear space spanned by the linearly independent functions f,(x),n = 2,3, -
N + 1, then

flxﬂamx—lfxﬁamx>o
-1 _20

unless f(x) = 0 on (0, 1), and hence unless f(x) = 0 on (—1,1). Since N is an
arbitrary positive integer, we conclude that there exist a denumerable infinity of
positive eigenvalues k; < k, < k; < ---, and a corresponding sequence of real
eigenfunctions y,(x).

The totality of eigenfunctions may be orthonormalized so that

1
J Xy (X)W (x) dx = J,,sgnk,, -0 <p,qg< +o00.
-1

In terms of these eigenfunctions another result of Zimmerberg [3] is that

(13) 1= % alf s
1 © 1 2
[ reorax= 3 cemk)| [ s0ar0odx)

wherever f(x) is in the set L defined above, or even if f(x) is in the larger set L3
of functions f(x) representable in the form (12) with a function g(x) in Ly(—1,1).
(The prime on the summation sign indicates that the value p = 0 is to be omitted.)
The identity (13) does not hold for all f(x) in L,(—1, 1), since the right-hand side
vanishes when f(x) = x, by virtue of (4), while the left-hand side is 4(1 — In 2)/9,
according to (11).

4. An equivalent Jacobi matrix. While we have deduced the existence of
the sequence of eigenvalues of the Bethe differential system (1) from properties of
the equivalent integral equation, it is more convenient to determine the numerical
values of the eigenvalues in a somewhat different manner. An eigenfunction y(x)
of (1) can be expanded into a series of Legendre polynomials,

20 41|12
(14 v =+ § o) Bee

In view of the orthogonality and the recurrence relations satisfied by the Legendre
polynomials, we see that the series (14) satisfies the differential equation (1) if and
only if the coefficients g, satisfy the conditions that

Bo=—%)'"?B, Bi=0, k™'B=Bi_ iy + BBy, 122,

(15) B, = {I(l + 2)(21 + 1)(2! + 3)} 12,

Therefore, the nonzero eigenvalues of the Bethe differential system are the
reciprocals of the characteristic values of the (Jacobi) matrix

B = (Bj) = (BS1+1,m + Bi= 10— 1 mim=2.3,-
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It is a consequence of known results on Jacobi matrices [6, p. 553] that the
characteristic values of B may be obtained as limits of the characteristic values of
the finite segments of B. B. Forutanpour has used a general purpose computing
machine program for finding characteristic values for symmetric matrices and has
evaluated the characteristic values of the first few even-ordered segments of B.
In this manner he finds that the first nine positive eigenvalues of the Bethe dif-
ferential system are those given in Table 1. It is possible to get bounds on the value

TABLE 1

Values of the first nine positive eigenvalues
of the Bethe differential system (1)

=

kll

14.5280

42.0486

83.3044
138.308
207.060
289.563
385.816
495.820
619.573

N=RE-CREN Be N A e

of the smallest eigenvalue k, by making use of the general result that the sum of the
eigenvalues of a matrix is equal to the trace of the matrix. Since — 1/k is a character-
istic value of B if 1/k is, with a characteristic vector (—1)8,, it follows that

Y ki =5t (B*) = Uy, p=12,-",
n=1

and consequently that

(16) ky = Uy, '@,

(17) kl é (UZp/U2p+2)1/2'

It is easy to see with the help of the partial fraction expansion of B that

& & (11 1 2( 1 1
- 2 _ 2l = _ =z -
U= 2 Bi= 2 ‘{6(1 1+2) 3(21+1 2l+3)}'
The telescoping series can be summed immediately, showing that U, = 1/180.
In a similar manner,

n? 6907

= 22 -5
=108 ~ 75600 — 2.279207 x 1077,

Us= ) (B} +2B}B},))
152

Ug = tz'z {BIG + 3BIZBIZ+1(BIZ + Btz+1 + Btz+2)}
5441 n?

_ 5441 B
=~ 3572100 _ 6480 1.065407 x 1077
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The inequality (16) becomes k; = 14.523 when p = 3, and the inequality (17)
becomes k, < 14.626 when p = 2.

5. Asymptotic properties. The differential equation (1) has singularities at
+ 1 and a turning point at 0. It is possible to make use of the results of Langer [7]
in order to construct an expansion, asymptotic for large k, of the general solution
of the differential equation on the open interval (— 1, 1). Similarly, the results of
Dorodnicyn [8] enable the construction of an asymptotic expansion of that solution
of the differential equation which is finite at — 1, or + 1, which is valid on the half-
open interval [— 1, 0), or (0, +1]. By comparing these asymptotic expansions we
can deduce an asymptotic expansion for the large eigenvalues of the differential
system (1). The result we obtain is that

{r(1/4} 5/(12n) 2—+[35n4/3{F(1/4)}8] ,
(18) k, = g1 +1/2)2[ U V) A P V7 ]

We first observe that, if u = (1 — x?)2y(x), 12 =k, ro(x) = (1 — x?)72,
o(x) = x'"*(1 — x?)~ 12 when x = 0, p(x) = e™/?¢(—x) when x < 0, then

d*u
dx?

(19) —— 4+ {A20*(x) + ro(x)}u =

In view of the results established in § 3, we may assume that k > 0, and hence that
A>0.

The formal manipulations of [7] used to get an asymptotic expansion of the
solution u(x) of (19) are the following. Suppose that v(x) = W(x)V (), in which
& = 20(x), Y(x) = {@(x)} @ (x)}® = Y(—x),

J o(t)di whenx > 0,
O(x) = 470

e3"2P(—x) whenx < 0,

and V(&) is any solution of the differential equation

v 1dv
(20) d_éf + 35 dﬁ + V=0.
Now suppose that
@ 509 = (14 58)e + [po s B =pem,

in which

_ 1 [rrl) = 60 _ Bl + B0
o) = o [ "Gy st = P F AT,

1 o(t) + ax(t) {ro(t) — 00} — 2B5(0)0(t) — Bo(1)O(1)
BZ(X) ¢(X) f 0 2(p(t) 0 0 dta

_ Ve _ @' 3fe)®, 5 fet)? _
0=~ ‘2<o(x)‘2{<p<x)} +36{a>( )} o=,
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D. — 1 4%+ %Bo+ By — 0By + 2BoBs0” + B30
1 14.

n By — ohB, + B3o° + 2BoB,0 n B30
Y JE

It is easy to see that

0*(x)————( ) —;+‘1‘+x + x*E(x),
O(x) = 2x302 [1 n 3i + 91 + x6E(x):| ,
(22)
624>
0(x) = 2 + 25— + x*E(x),

ro(t) — 0(t) _ 2t712 N 150¢3/2
20t) 7 539

+ t"2E(®),

in which E(x) stands for a convergent power series in x2 (not necessarily the same
function at each occurrence). The integral defining f,(x)@(x) therefore exists, and

1/2 2
Bolol) = [ Xy x“E(x):l.

Hence f(x) is even and a,(x) is odd. Since 6(x) is even, the numerator of the
integrand in the definition of B,(x) is odd, the integrand itself is ¢!/2E(t), and hence
B.(x)p(x) = x32E(x) exists and is such that ,(x) is odd.

It follows that

d’z 2 2
W+{l(p(x)+r0( )+ O(4~ }Z'—

and hence z and z’ are, for a suitable choice of a particular solution V(&) of the
differential equation (20), asymptotically equal to u and ', with an error which is
O(A™%). (This last assertion is a rather informal translation of a more carefully
worded assertion rigorously demonstrated in [7].) Since D, = 1 + O(4™*%) and
D) = O(A™*%), y and y’ are also asymptotically equal to u and v’ with an error of
O(A~%) on any closed subinterval of the open interval (—1, 1).

The general solution of the differential equation (20) is

V(&) = (/D)'Playd 30 + azd -y 3(9)],

in which a, and a, are arbitrary constants and J, is the Bessel function of the first
kind and order a. Hence

= {Q(X)/¢(X)}1/2[Q1A1 + a,A4,],

u'(x) = 1{q)(x)€0(x)}1/2[a131 — a,B,],

(23)
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in which

Ay = {1+ p A7 + 04~ )}Jl/a(/m’) + 279 {Bo + B2A7? + O(A™ M _,5(AD),

Ay = {1+ uA™2 + OGN 1 3(A0) — A7 1p{Bo + P47 7% + 0474} ,5(A),

By = {1+ ppA~2 + O(A~ NN _55(A0) + A7 Y{us + ped ™2 + 02~ N} 5(A0),
B

B, = {1 + pA™2 + O(A™*)}J,;5(A®) — A~ s + uad™2 + 0N} _y 5(AD),

"y = % _ ﬁgg' _ Bo +2ﬁo<p o= Bo —2ﬁo<p R 6ITI> s — Boo,
_ (Bo — B3¢®) (@/(6®) — ¢'/(29)) — By — Bolro + 0) — 2B,9°
Ha = 2§0 .

In view of the relations J,,3(e3™2A®) = e* ™21, | 3(AD), J.,5(e*™2AD)
= —1,,,;5(Ad), it is also true that, if x > 0,

u(—x) = {®(x)/p(x)}'*[~a,C; + a,C,),
24 W(=x) = H{O)9(9}[a,Dy — azD),
in which
Cy= {1 — A= + O(A~ Y, 4(®) — 2~ p{Bo — fod™2 + O~ *)H _,4(3),
Co={1 — A7 + 0" HH _13(40) — A7 p{Bo — o272 + O(A7*)},;5(A0),
Dy = {1 — pA7% + O(A™ ) _53(A0) + A7y — pad ™2 + O(A™ )} 5(AD),
D, = {1 — A7 + O™} ,5/3(A®) + A7 Hps — pgd ™2 + 0™} -1 ;5(A0).

Having established (23) and (24), let us now consider the neighborhood of the
singularity at 1. Suppose that

! 3/2
o= Lo - D B

w(x) = {n/Ap(x)}"*J o(n).

Then (1 — x?)~12w(x) is finite when x = 1, and we now suppose that

o\ w
50 /12)/12’

Y(x) = (1 + AZ)W +

in which
L0, = roll) LSy + 2(00%()
90(x) <p(x)f e = 2 :

2050, + 6,0 2+ 720, — 1o)
6 1 1 2\V1 0 dt,
2 = <p(x)f 20l

Lo 3N 1] e )2
0. = 5000 Z{«p(x)} * Z{a —@(x)} :
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If x = 1 — ¢, it is easy to see that

ro = (26)7%{1 + ¢ + 0(c?)}, Q= (28)_1/2{1 - % + 0(82)},

25) 0% = {1 - g + 0(82)}, a— 0= (28)1/2{1 - % + 0(82)},

T 1662

0,

_, - 1
0, = (2) {1 - g + 0(32)}, ’02(/) = 3ggril + 00

The integral defining d,(x)¢p(x) therefore exists, and

1/2
S0 = _(23; (1+0@)}), & = 335{1 + 0()} .

The integrand of the integral defining J,(x)@(x) is now seen to be O(e~ 1/2), so that
0,(x)e(x) exists and is such that d,(x) = O(¢).

As a consequence of the definitions, it follows by reasoning analogous to
that used above for y(x) and y'(x) that u and u’ are asymptotically equal to a
suitable constant multiple of Y and Y’, with an error of O(1™%) on any closed
subinterval of the half-open interval (0, 1]. Therefore,

(26) u(x) = az{(a — ©)/p}'?A;, u(x) = azA{(a — ®)p}'*B;,

in which a5 is an arbitrary constant, and
Ay = {1 = viA72 + 0™} o) + 27 1p{d + 0,472 + 0(2~)}J (),
By = {1 +v;,A7% + O™} 1(n) — A7 vy + v4d7% + 0™} o),

s o522 4 S0 9@ _ 8 — 850
v1—§|:50+50(p +a—(D+ o | v, = 3 ,
-1 i
=g w) o T
y, = 0o = 050 (@/(2a — @) + ¢'/29)) + 3G + do(ro + 0;) + 20,07
4 2(,0 .

We now observe that the differential equation (19) is unaltered if x and 4 are
replaced by —x and il. Hence equations analogous to (26) may be derived for
negative values of x. Thus we see that, when x > 0,

27 u(=x) = a{a — V)/p}'2C5,  w(—x) = —a,A{(a — D)g}'"*D3,

in which a, is an arbitrary constant, and
Cs = {1+ v;A72 + 0™ H}Hon) + 27 @{dg — 8,472 + O™} (n),
Dy = {1 = v;A™2 + 0 H4(n) + A7 {v3 + v,d™2 + 0@~} I().
If we now compare (24) and (27) we find that
a;®'? = ay(a — ®)V}(C,D; ~ D,C3)[(C1D; — D Cy),
a,®'? = a,(a — ®)*(C,D3 — D,C3)/(C,D, — D,C,).
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The denominator C;D, — D,C, can be expressed as the product of two deter-
minants,

1+ 0% —Bop/i + O(273)
1{ 1 @@

Is(A®) 1 y5(A®)

I_5;5(A®) 1,5(4®)

1(1 o _,.| 2sin(n/3)
= e — 4+ 014" — 7,
,1{6<I> 202 ( )} TAD
and so does not vanish since
1 ¢ 1 14+ x2
60 2% 6f3{t'*di/(1 — )2} 431 — x2)'?
- 1 1
6[5tt2dt  4x>?

=0 whenx > 0.

Moreover, since I_, — I, = (2/n) tan (an)K,, and K,(z) = O(e ?z~ '/?), it follows
that

C, — Cy = 0112012 D, — D, = Oe~"®A~ 20~ 11?),
In addition, I,(z) = O(e*z~'/?), and hence
Cy = 03~ 12(q — @)7112), D, = 0"~ M)~ 112(q — @)~ 112),
a, — a, = a0 2®)) = a,0(A™"

for every integer n, if x is sufficiently close to 1 that a < 2d(x).
A comparison of (23) and (26) now shows that for such x,

a, @V} (A, + A,) = az(a — ®)V2A4; + o(A7"),
a;@'*(B; — B,) = az(a — ®)"/*B; + o(A7"),
and consequently, dropping the o(A™") terms,
(28) (4; + A2)B; = (B, — B,)A4;.

With the help of the asymptotic expansions for the Bessel function J, and some
manipulation of the trigonometric functions involved, we see that

6\1/2 n
A+ A, = (n_é) [{1 — pA™% + O(A™ %)} sin (6 + Z)
+ A" Hp, + p3A~% + O(A™*)} cos (f + g)],
6\? n
B, — B, = (%E) l:{l + psA™% + O(A™%)} cos (é + Z)

+ A" Yps + peh™2 + O(A™ %)} sin

é+§)],
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_r
U

271 {py — poi=2 + 04} sin (11 - 4)]

Ay = (n%)m [{1 — pA72% + O(A™*)} cos

PR i e A72 4 O(A~ %)} si ”
3_(7r_r7 {1+ pi0o + O(A™ %)} sin ’I—Z

n
— 2" Ypyy + p12A7? + O }Cos(ﬂ‘“z)]’

in which the coefficients p,, p,, -, p;, are expressible as explicit formulas
involving B, 3,, @, @, ry, 0, 5,,9,,6,,and a.
The characteristic equation (28) may now be written in the form

{14 (ps — p7 4 p2p1)A72 + O(A™ %)} cos (& + 1)
+ 27 Hps + p11 + A7 ps + P12 — Pspr — P1P11) + O(GTH)}

-sin (& + n)
+ A72{ps — p7 + Papi1 + P1 — Pro + Psps + O(A7?))
sin <’,‘+E sin _z
(29) 4/ %™\" "

— A" Mpy = ps + ps + piy + A7 2ps + po — Paps + P2P10 + Ps
+ P12 — Psp7 — P1P1) T 0(1~4)}

- COS (é +§) cos (n—g) =0.

Let us introduce the symbol

1 5
G = — 0 — ——— — ——
Bow — do¢ Sa—0) 720
so that
dG , , @ S
z}; - (ﬂo‘/’) - (50(/7) - 8((1 _ q))z + 72(1)2a
d*G @ 5¢' @? 5¢°
6 1/ — _ .
dx (BO(P) ( 0(p) ( (I))Z + 72(1)2 4((1 _ (I))3 36(p3

It follows from the definitions of §, and J, that dG/dx = 0, so that G is a constant
and d*G/dx? = 0. It is then easy to verify from the explicit formulas for the coeffi-
cients p, that

62 1dG G

2 2(p x 2

G2 1 dG G?
2 2(p ax 2’

ps+ P11 =ps—pr=—G, Pa = P17t P2P11 = =5

Py — Pio T+ Psps =
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G 1(¢ 5 1 )dG
Ps + P12 — PsP7 — P1P11 = —— + +

6  20|¢® 720 8(a— ®)fdx
1 d*G G?
—=—-——-H=——-H
2% dx? 6 ’
Fpo— papat papro= — - L3 L 4G,
P3 T Po = PaPg T P2P10 = 6 160 |90  a — ®f dx
G3
=—|—-H
(e

in which

6 3602 31104@%°

PEPERNP 0 25
H, = 0 0lp, — 0% - .
2= 02 + ==+ 4(p{r0 0+ da— 07 ~ 384a — 0

303 5¢? 1105
H=H, - H,, H1=32(P+ﬂ0(p +%{"0—9*+ (p}+

We shall show in the next section that
G = 5{I'(1/4)}?/48(2m)""*,
H = 35a/384 = 35(2n)*/%/384{I(1/4)}2.

Assuming these results for the moment, we can write the characteristic equa-
tion (29) in the form

1 - —G—2~ + O(A™ %)} cos da E G — L G—3 — H| + O(A" %} sinda = O(1™%
242 A 2\ 6 B ’
For large values of n, this equation has the solution

l)n Ga (Ga)? + Ha®

_ - _ _ -5
A“_(” wrdn et O

2

Actually, all we can show from the reasoning above is that the error term is
O(n~*%), but it seems reasonable to conjecture that an analysis of the next term in
all of the expansions used would result in a term which is O(n~ ). Therefore,

1\?n> 2G G*+2H
k=(n+§) %————u+0(n‘4)

a (n+H*n®
_{ra/at 1) 5 25+ 35n4/3{r(1/4)}°%)
- T(n * E) {1 T 12nn + D " (n + *n? * }

00567489
(n+2)°

By comparison with the results of Forutanpour recorded in Table 1, it is seen
that these three terms of the expansion produce a result which is correct to within

2
= 6.87518581(n + %) — 0.9118498 —
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one unit in the sixth significant digit when n is as small as 3, and has an error of only
0.0041, or less than 0.03%,, when n = 1.

6. The numerical values of G and H. We have already seen that G is constant.
In this section we shall evaluate that constant, and also evaluate H, which is itself
a constant. From the definitions, we see that

*ro — 0 —0, 5 1
G = dt di— 2 -
Jo 2¢p * L 2¢ 20 8a— D)
_ p% . s (p, — 0% ®
li 0 -
) ( 72(1)2) de+ lim ), { 20 8a- @)2} d

1
72(1) 8(a — D)

Il

= lim fr"_g*dt— >
s I 20(s) 8{a — D)} |’

s’o1 =

In view of the specific analytic form of the functions r, and ¢,

G — lim J 54 22 — 3% PR 1
B 50 | J, 320521 — 232 720(s) 8{a — D(s)}
i [ 5 Ldf o S - ')
) LL 241 — ) T d\§(1 = )2 T 480n

5 1
- 20(s)  8{a - fl)(s)}]

= pim oS
24 ), 121 — V2 T o 48532 720(s)

1 1

+ g im ["’(S) T a— o )}
5{I(1/4}*
48(2m)"2

5
= gBU/4.1/2) =

since it follows from (22) and (25) that the limits of the bracketed quantities are
Zero.
After some similar, although more complicated, manipulations we find that

(B[ . 56T\ Fe— 0% (r— 0% . 1105
H, = lim R@ ro = 0" + 367 ¥ gy 4% T 3110407,

o= 0¥ (ro — 0%)¢ _rm—mg&
8¢° 40§, ) 8¢ ’

_ i | 1 9 . ¢? ro — 0% _(ro — 6%)¢’
Hy = H@(r" B 7Ry R Ve (cont)
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25 _ ro — 0% B (ro — 0%)¢’
384(a — D), 8¢3 4¢* x

J(ro 07 }

In view of the specific analytic form of the functions r, and ¢,
(ro — 0% (5 + 2t — 3t%?
8p® 2048131 — 232
[ =50 — 224> — 1974t* + 5654t° — 3360¢° )’ 35¢172
a 18432:°%(1 — 1232 384(1 — t2)11?

and consequently,

H=H, —H, =~ lt”’(l — %) 12 4
-t 27384 ),
Bo . 5(p2 Fy — 0% (ro — 0%)¢’ 1105
+ lim [{4([) O+ 602 T 83 20 T 311040,

50 + 2245 + 1974s* — 5654s° + 336038]
184325°/%(1 — s2)32

) ) @2 ro — 0% (ro — 0%’
_ 1 _0_ _ 0* 0 _ [0)
o Hw("’ t 4a = <1>)2) TRy 49"
_ 25 _ 50 + 224s'% + 1974s* — 56545'¢ + 33603'8]
384(a — D)’ 184325 7%(1 — 5222
— 354/384,

since it is a consequence of (22) and (25) that the limits of the bracketed quantities
are zero.
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ADIABATIC INVARIANCE OF A SIMPLE OSCILLATOR*
WOLFGANG WASOW{

Abstract. J. E. Littlewood [5] has derived asymptotic expressions, as ¢ — 0+, for the function
r? = P(ev)u® + ¢~ !(er)(du/dr)?, when u is a solution of the differential equation d?u/dt® + ¢p*(et)u
= 0. He assumes that ¢(t) > 0, ¢(+o0) > 0, ¢™(+ ) = 0, and ¢ € L(— 0, c0), for all n > 0.
In the present paper, Littlewood’s results are re-proved and strengthened by using the established
methods for the solution of differential equations by asymptotic series. A new result is an explicit series
construction in powers of ¢ for the function 2. Littlewood’s asymptotic expression was in terms of
the unknown solution of the differential equation.

1. Introduction. If the function g(t) in the differential equation
d*u

(1.1) Gzt g =0

for the motion of a simple oscillator is a constant, the energy

1 du\?
(1.2) E[gl(z)uz + (ﬁ) ]

is also a constant. If g is not constant but changes very slowly with the time 7, the
function (1.2) can be interpreted as measuring the “local’” energy, and it is
plausible that it, too, changes slowly.

The statement: “‘g changes slowly”” can be mathematically formulated by
setting

(1.3) g(0) = #(e7),

where ¢ is a small positive parameter. It is then convenient to make a change of
time scale by setting

t = ¢T.
This transforms the differential equation (1.1) into
d2
(1.4) &2ii + P*(tu = 0 (u = Wu)
The function (¢, ¢), defined by

du\? o
(1.5) ri(t,e) = |:g2u2 + (E) ]/g = ¢u® + ¢~ 12,

turns out to have simpler and more striking properties, for small ¢, than the local
energy itself.

In fact, Littlewood [5] proved that, under appropriate hypotheses on ¢
(hypothesis (H), below),

(1.6) r%(c0, &) — r}(—o0,€) = O(") for all n > 0.

* Received by the editors November 22, 1971, and in revised form March 23, 1972.
T Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
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In his proof, Littlewood made no use of the established theory of asymptotic
expansions for the solutions of linear differential equations. In this paper it will
be shown that Littlewood’s results follow almost immediately from a refined
version of the standard theorem on asymptotic solution (see, e.g., [7, § 26]), which
can be proved by taking into account Littlewood’s particular hypotheses on ¢(t).

The method of this paper also yields an asymptotic series for r(t, ¢), as
¢ - 0+, whose coefficients depend only on ¢(t) and on the initial data. Littlewood’s
corresponding series involves the unknown solution of the differential equation.

The problem of replacing the right member of (1.6) by an asymptotic expan-
sion, or at least the leading term thereof, requires varying methods depending on
more special properties of ¢(¢). Some remarks applicable to certain types of
analytic differential equations are included in § 6. A more complete account will
be published elsewhere. Other results in this direction can be found in [1], [3]
and [4].

The term ‘“‘adiabatic’ is commonly applied in physics to phenomena which
involve some changes that are much slower than others. An example is wave
propagation in a fluid where the compression caused by the wave passes so fast
that very little of the heat generated by it can diffuse. This makes it approximately
a process without heat exchange, i.e., adiabatic in the original sense of the word.
The quantities that change slowly in such processes—or, in other words, those
nearly invariant—are the adiabatic invariants. Mathematical problems of this sort
are sometimes said to involve two time scales : ““fast’’ and “slow’’ time. An asymp-
totic analysis from a more general viewpoint can, for example, be found in [2].

The simplest—but by no means the only—physical interpretation of the
mathematical problem studied in this paper is that of a pendulum whose length
is changed at a rate much slower than the frequency.

DEerFINITION 1.1. An indefinitely differentiable real or complex function f
of t will be called gentle if

d*f/dt" e Li(— o0, o), n=0,1,2,---.
By integrating the derivatives of f one sees that
lim d"f/dt" = 0, n=0,12---.
t—> oo

The term “gentle” has occasionally been used in the mathematical literature
with a meaning different from the one above.

Hypotheses (H).

(i) ¢is a small positive parameter.

(i) ¢ is a positive function of t in — o0 < t < 0.

(iii) lim,,  @(t) and lim,_, _ ¢(¢) exist and are positive.

(iv) ¢ is gentle.

These are the same assumptions as in Littlewood [5].

2. Reduction to a Riccati equation. The transformation

X
x= ¢,y =7, =()
y
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changes the differential equation (1.4) into the equivalent vectorial system

2.1) sz’=( a9 )z:Az,
-¢ -
where
22 ¥ = $/2¢.
Observe that i is a gentle function. The function r2 takes on the simple form
(2.3) rr=x% + )%
The change

1 1
(2.4 z = Sv,, S=1. .

i =i

of the dependent variable diagonalizes the leading part—with respect to &—of the
coefficient matrix in (2.1) and takes the differential equation into

, (w ey
EUO =
ey —ig
We shall show, following essentially the method of Sibuya in [6] (see also
[7, §26]), that there exists a matrix P(t, ¢) of the form

@.5) )vo ~ Byo,.

(2.6) P(t,e) = (81_) (:, 3 ek i))
where the bar represents complex conjugation such that the transformation
2.7) vy = Pv
reduces (2.5) to
(2.8) &b = B,
where B is a diagonal matrix of the form
ip(t) + &2b(t, ¢ 0
29) . = [ 0 " —ig(t) + e2b(t, )]

Substituting (2.6), (2.7) into (2.5) and identifying the result with (2.8), (2.9) we
are led to the relation

(2.10) B,P — PB = ¢P,
and, hence, to

(2.11) ep =Y + 2ipp — &2pb,
(2.12) Yyp=">

as necessary and sufficient conditions for the existence of such a transformation.
By elimination of b the Riccati equation

(2.13) ep = 2ipp + Y — eXyp?
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for p is obtained. The diagonalization of the differential equation (2.1)—and hence
its solution—has thus been reduced to the study of the Riccati equation (2.13).

3. Asymptotic solution of the Riccati equation.

LeEMMA 3.1. The differential equation (2.13) can be formally satisfied by a series
of the form Z 2 o DAt)e" with gentle coefficients.

Proof. Substitution of the series for p into (2.13), termwise differentiation and
rearrangement according to powers of ¢ yields the recursion formulas

21¢pr = pr—-l - '// Z DsPr—2-s> r> 0’
s=0

where p_,,p_, are defined as zero. As y is gentle, all the p, so defined are in-
ductively seen to be gentle.

We next prove an adaptation of the so-called Borel-Ritt theorem (see [7,
Thm. 9.3]). The theorem below is somewhat stronger than what is needed in the
sequel.

THEOREM 3.1. Let a,(t),r = 0, 1,2,---, be gentle functions. Then there exists a
Sfunction f(t, €) defined for 0 < ¢ < 1, —00 < t < 00, such that

d’l o]
dt,.f(t &)~ Y at)e", ase— +0, forn=0,1,---
r=0

(i)
uniformly on — o0 <t < 0.

(i) fis a gentle function for all¢in0 < ¢ < 1.(See [7, Chap. III] for the defini-
tion of the symbol “~ "))

Proof. Let
k, = max {sup |a)(t)], f |al)(t)| dt}
0sjs
ale) =1 —exp(—e k).
Then the series ) ;2 a e)at(t)e’,n = 0,1,2, -- -, converge uniformly in — oo < ¢

< oo, for0<e <1, smce lo (&) < &7k, ‘, and therefore,
loc,()a(1)e"] < &1

for r = n. Thus, the function

©

flt,e) = ¥ afe)alt)e

r=0

isin C®(— o0, o0) with respect to ¢, for 0 < ¢ < 1, and it as well as all its derivatives
vanish at + co. The integrability of f™)t, ¢) follows from the integrability of the
right member in the inequality | f®] < Z o, (€)|a™(¢)le". The latter function is
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integrable as a consequence of the definition of k,, which implies that

o]

S laEan)e de = la,(s|f a(0) dis”
- r=n+1 r=n+1
0
é Z 8r—l
r=n+1

This proves assertion (ii).
Next, for all N > 0,

N N-1
O, 0) = Y ae)aWe” = — ) exp(—& 'k NaP(@)e + & Z (e)a(t)e ",
r=0 r=0 r=N
The right side is O(e"), uniformly in —c0 < t < o0, i.e., part (i) of the theorem is
also proved.
By Lemma 3.1 and Theorem 3.1 there exists a gentle function j(t, ¢) with the
asymptotic representation

0

(3.1 plt,e) ~ Y pt)e” ase— 0+,

uniformly valid in — o0 < t < o0, such that the function g = ¢(t, ¢), defined by

(3.2 q=—¢&p + V¥ + 2ipp — 2Yp,
is uniformly asymptotic to zero:
(3.3) qt,e) ~0, ¢—->0+.

Clearly, q is also gentle.
To show that p is asymptotically equal to an actual solution of equation (2.13)
we set

(3.4 p=p+w
and obtain the differential equation
(3.5) ew = 2ipw — e2Y(RQwp + w?) + q forw.
We now have to construct a solution w of (3.5) that is asymptotic to zero.
Set
(3.6) D(t) = ft o(s) ds
0

and observe that, by the variation of parameters formula, any continuous solution
of the integral equation

3.7 w(t,e) = Jt exp (?[d)(t) — d)(s)])F(w(s, g),s,¢e)ds

where
F(w,s, &) = —ep(s)[2wh(s, &) + w?] + ¢~ q(s, ¢),

also solves the differential equation (3.5).
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The existence of such a solution is a simple consequence of the contraction
mapping theorem in the Banach space of bounded continuous functions on the
real line with the maximum modulus norm. The operator in this application is
defined by

(3.8) Ty = — ft exp (%[(D(t) - (I)(s)]) eyr(s) [2v(s)p(s, €) + v2(s)] ds.

It is readily verified that this is a contraction operator in the ball |[v|| < 1, provided
0 <& <egy, with g, < 4 and

The integral equation can also be written

-1

Zr) W (s)l dS) “(_sup B+, e)ll + 1)}
-0 0<e<1/2

3.9 w=Tw+ o,

where

o= ft exp (-if[cb(t) - G)(s)])q(s,e) ds.

The function w is in the Banach space. Thus, the integral equation has a unique
solution. Also w is uniformly asymptotic to zero. It follows from the contraction
property of T'that wis also asymptotic to zero. Returning to (3.7), we see, moreover,
that w(— 00, ¢) = 0, and that the function

(3.10) W(t,e) = wit, &) exp ( -~ %d)(t))

has a limit as t - + oo. However, w(co, ¢) need not be zero. Thus, W is generally
not gentle, nor is p.

Now that the differential equation (2.1) has been diagonalized it is readily
solved. The result is formulated in the theorem below.

THEOREM 3.2. The differential equation (2.1) possesses a fundamental matrix
solution Z(t, &) with the following properties:

(i) Z = SPV
with

k]

1 ep(t, 8))

- |
S=1. , P=Pt,e)=| _
i eplt, €) 1

i —i
(i)

éd)(t) +¢ f Y(s)p(s, ¢) ds 0

V="Vt,e = exp * ;

0 — é(l)(t) + & J_ Y(s)p(s, €) ds
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(iii) plt,e) ~ Y p()e ase— 0+ (p1) gentle),
r=0
uniformly in —oo <t < oo, and this relation may be indefinitely termwise dif-
ferentiated ;
(iv) p(—c0,¢) =0;

(v) the function
”
p(t.e) = pit, ) exp ( - ;‘cbm)

has a limit, as t - + oo, and this limit, as a function of ¢, is asymptotic to zero as
£—0+4.

4. Proof of Littlewood’s theorem. Let z = z(¢, ¢) be the solution of (2.1) with
initial values

@.1) 2(0,¢) = zo = [ Yo,
Yo

independent of ¢, and set

4.2) ¢ = c(e) = (Z20,¢e) " 'z,.

The vector c(¢) has an asymptotic expansion in powers of ¢ as ¢ — 0+. We
then have

4.3) z=Zc

and

(4.4 1?2 =zT7 = cTZ7Zec.
The matrix

(4.5) M=2"Z

can be calculated in terms of ¢, y and p, by means of Theorem 3.2. Straightforward
manipulations lead to

(4.6) M(t,e) =

2ep exp {21-; JI WP ds} (1 + &2pp) exp {8 JI Yp + p) ds}

t t
(1 + &2pp) exp {z;f W(p + p) ds} 2ep exp {2sj Wp ds}
(Observe that pp = pp.) It follows that, in particular,

4.7 M —(0 2)
4.7 (—0,¢) = 5 o

For the asymptotic calculation of M(o0, ¢) the following lemma is decisive.
LemMA 4.1

(4.8) exp {af Yp + p) ds} =1 —¢&’pp)~t.
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Proof. Multiply equation (2.13) by p and add the resulting equation to its
conjugate. This yields

epp + pp) = (1 — &’pp)(p + p)
or

1d

- ZZ_tIOg(l — &2pp) = Y(p + D).

Integrating and forming the exponential function of both sides, we obtain (4.8).
Returning to (4.6) we see that

2¢ep(c0, &) exp {2afw Up ds} 1
M(c0,¢) = 2 e

1 2¢ep(00, &) exXp {23 on Yp ds}

4.9)
+ O0(*p(0, &)).

Littlewood’s theorem is now an immediate consequence of (4.4), (4.5), (4.7) and
(4.9). Thus we have proved the following theorem.
THEOREM 4.1.

r}(0,e) — r’(—00,e) ~0 ase— 0+.

Actually, we can obtain more precise information.
THEOREM 4.2.

(4.10) r}(c0, &) — r’(— oo, &) = 2e Re {(xo + iyo)*p(c0, &)} (1 + O(e)).

Proof. By Theorem 3.2,
Z0,8) = S + O(e).

Insert this into (4.2) and (4.4). The expressions (4.7) and (4.9) for M(— o0, ¢) and
M(o0, ¢) when substituted into (4.4) lead to (4.10), after a short calculation.

5. The asymptotic form of r%(¢, £). With the help of the results of § 4 the uniform
asymptotic expansion for r?(t, ¢) itself, as ¢ — 0+, can be explicitly calculated to
any number of terms, by means of rational operations, differentiations and quadra-
tures. The computations are tedious and probably of little interest beyond terms
of order O(¢). The approximation to this order is given in the next theorem.

THEOREM 5.1. Let (r(t, &), O(t, €)) be the polar coordinates in the (x, y)-plane of the
point (x(t, €), y(t, €)), where (x(t, £), ¥(t, €))7 = z(t, ¢) is the solution of the differential
equation (2.1) with initial values z(0,&) = zo = (xo,y,)" independent of e Set
r0,¢) = ry, 00,6) = 0,. Then

(o) . 2 (0) .
(5.1) r’(t,e)=r3 {1 - %I:ZZ)T(% sm( 20, — E(I)(t)) - %sm 200] + 0(62)}.
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Proof. Let the symbol *“°” over a letter indicate that the quantity is to be taken
at t = 0. From the proof of Lemma 3.1 one sees that, in particular,

b = pol0) + ) = {HO/#0) + 00).

Formula (4.2) and Theorem 3.2 imply that
ce) =V IPTIST 1z,
Hence,

r(t, ) = zbK(t, &)z,

where K = K(t, ¢) is the matrix
K="Y@ - Hyv-imy-1p-1st,

If this matrix is calculated to within terms of order O(¢), and Lemma 4.1 as well
as part (v) of Theorem 3.2 are used to simplify the expressions, one is led to formula
(5.1) after some calculations, the details of which are omitted.

6. Remarks on the asymptotically leading term of r?(co, &) — r’*(— oo, ¢).
Theorem 4.2 reduces the asymptotic calculation of r?(co, &) — r’*(— 0, ¢) to the
determination of p(co, ¢). This quantity satisfies the relation

(6.1) p(oo,8) = ¢! fw exp [— ?‘D(S)] Y(s)(1 — &2p*(s, ¢)) ds,

which follows from the differential (2.13) by the variation of parameters formula.
The asymptotic information on p(s, ¢) given in Theorem 3.2 (iii) is probably not
sufficient to evaluate that integral asymptotically. For the case that ¢2(f) is an
analytic function satisfying certain additional conditions I have obtained more
precise results, the details of which will be published elsewhere. A brief account
of these methods is given below.

The function

(6.2) ¢ =@

maps a neighborhood of the real axis of the t-plane conformally onto a strip
containing the real axis of the ¢-plane. The function p(t, ), as a solution of an
analytic differential equation, is analytic, and under suitable assumptions on the
smallness of Y(t) at infinity—at least near the real axis—the validity of the expan-
sion in Theorem 3.2 (iii) extends to a complex neighborhood of the real t-axis. Let

t = x(&)

be the inverse of the function (6.2). The integral in (6.1) can then be transformed
into the integral

0

63 o0 =30 [ enp| = Ze)uersu@n - 2. 4z
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along the real ¢-axis. The path of integration may now be replaced by a path
= —ia+n, a>0,a constant, —c0 < n < 00, as long as this path lies in the
strip where the integrand in (6.3) is holomorphic and falls off sufficiently fast at
infinity. In this way one proves that in such cases

(6.4) p(oo,€) = o(e™2%®) ase — 0+.

Let us now make the stronger assumption that the path can be shifted in
this manner until the image in the &-plane of a simple turning point for the dif-
ferential equation is met, i.e., a point £ = &, = ®(t,), with

d
(63 $1) =0, S, #O.

More precisely, the path is replaced by a curve I" consisting of the lineIm ¢ = Im &,
except that the singularity at ¢ = &, is avoided by a semicircle described in clock-
wise direction. The radius of this semicircle can then be shrunk to zero.

Near such a point a short calculation shows that

(6.6) FOU(END 2(1(Q) = HE — &)L + O(E — &,)*P)].

Formula (6.3) becomes, for the new path of integration,

6.7) B0, &) = &1 exp (— %él)k(sx

where

_ d(x(9) 22

69 k0= [ ew| = 2 - 0| S0 - g, o

With the help of the theory of simple turning points one can calculate
p*(x(£), £) asymptotically and show that k(¢) remains bounded, as ¢ - 0+ . In fact,
an explicit expression for lim, _, , k(¢) as an integral can be derived from that theory.
The integral contains Bessel functions and is somewhat involved.

Formula (4.10) for the adiabatic invariant can now be replaced by the more
informative result that

r¥(o0) — r¥(—o0) =13 CXPE Im (I)(tl):|(c(8) + o(1),

as ¢ —» 0+, with a function ¢(¢) which can be calculated explicitly.
A simple example in which all assumptions of the foregoing argument are
satisfied is

Q) =1+ (1 +2H 1.
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CONNECTION FORMULAS FOR ASYMPTOTIC SOLUTIONS OF
SECOND ORDER TURNING POINTS IN UNBOUNDED DOMAINS*

ANTHONY WING-KWOK LEUNGt

Abstract. Asymptotic expansions, as ¢ = 0" or x — oo, for fundamental systems of solutions for
e2u"(x) — p(x)u(x) = 0 are obtainable by Evgrafov and Fedoryuk’s method on unbounded canonical
domains with neighborhoods deleted around turning points. When p(x) is a polynomial, they also
found a ““lateral connection’ formula for two fundamental systems of solutions with known asymptotic
expansions which are valid in the interior of two different unbounded overlapping canonical regions
with a common first order turning point at their boundaries. However, their connecting methods are
not applicable to second order turning points. This paper employs techniques of Wasow and of R. Lee
to find central connection formulas with a solution having a known asymptotic expansion in a bounded
full neighborhood of a second order turning point. With the help of this result, lateral connection
formulas are also established.

1. Introduction. In the paper by Evgrafov and Fedoryuk [1], a careful study

of the turning point problem is given for the differential equation
2
Ezd’x; — p(x)u = 0.

Under certain conditions on p(x), asymptotic expansions for u(x) and u'(x) are
given that are valid as x — oo and also as ¢ — 0*. These expansions are valid for
the functions only in parts of the x-plane. Evgrafov and Fedoryuk also find con-
nection formulas for different solutions with known expansions on different parts
of the x-plane around a simple turning point x,, i.e., a point where

p(xo) = 0, p(xo) # 0.

In the case when p(x) has higher order zero, their connection formulas are not
complete.

This paper finds such connection formulas for the case when p(x) has a
second order zero. It utilizes first the techniques and results of Wasow [2], R. Lee
(5], and Hanson and Russell [3] to find connection formulas between solutions
that have expansions in the sense of Evgrafov and Fedoryuk and solutions that
have uniform expansions with respect to ¢ in a full bounded neighborhood of x,
when p(x) is a polynomial with a second order zero at x,. Subsequently, connection
formulas are found between solutions which have asymptotic expansions of
Evgrafov and Fedoryuk’s type on different unbounded domains of the x-plane.
Such formulas are expressed as asymptotic series in terms of ¢ by making use of
Weber (parabolic cylinder) functions. The principal result of the paper is Theorem
2.2 and Corollary 2.2.

2. Connection formulas between different solutions. Consider the differential
equation
(2.1) eu'(x) — p(x)u(x) = 0,

* Received by the editors August 30, 1971, and in revised form February 1, 1972.

1 Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221.
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where p(x) is a polynomial with p(x,) = p'(x,) = 0 and p”(x,) # 0. A Stokes curve
for the equation is a curve on the x-plane proceeding from x,, along which
Re [ \/p(z)dz = 0. A canonical domain on the x-plane is a domain which is
bounded by Stokes curves containing no turning points, i.e., zeros of p(x), in its
interior, and which is mapped by the function

E(x) = Jw /p2) dz

onto the whole £-plane cut by a finite number of vertical rays each of which is
unbounded. If all these vertical cuts start from the images of some turning points
and extend to infinity in the same direction, then the canonical domain is called
consistent ; otherwise, it is called inconsistent. (Such terminology was introduced
by Wasow [2].)

The purpose of this paper is to find the transition matrix from one funda-
mental system with known asymptotic expansion on one canonical domain to
another such fundamental system on another canonical domain with a common
second order zero x, for p(x) at the boundary.

Let the four Stokes curves at x, be I, I,, I3, l,, counting in the counter-
clockwise direction. By making a suitable choice of roots, the transformation

X 1/2
t(x) = [Zf A /p(z)dz]

is uniquely defined near x = x, and takes the curves I, l,, I3, I, respectively into
the four rays argt = n/4, 3n/4, Sr/4, Tr/4. The function #(x) is holomorphic and
univalent in a neighborhood of x = x,. It maps four subregions of the domains
between [, I,; I, l3; I3, l,; 1., |, holomorphically and univalently to simply-
connected regions in the t-plane bounded by the image rays of the corresponding
Stokes curves. Furthermore, the image of these regions and Stokes curves in the
t-plane consists of the entire plane, except for a finite number of cuts which are
analytic curves tending to infinity and starting at the images of turning points
other than x,. However, there may be choices of unbounded domains in the
x-plane, bounded by curves starting at turning points other than x, and along
which Re &(x) = const.,, for the domain of definition of #(x). After making a
particular choice of four open regions: D, between I, l,; D, between [,,15; D,
between I, [,; and D, between [,, [,, together with the curves I, I,, I3, I, in the
x-plane for the domain of t(x), the inverse function x(¢) would be holomorphic
and univalent on the entire t-plane, except on the cuts.

In matrix form the equation (2.1) is equivalent to

dy 0 1]
(2.2) e = [p(x) 0 Y,

where

o]
Y = .
&(du/dx) ]
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o ans
Y= Y*,
0 dt/dx

equation (2.2) is transformed into

By the transformation

0 0

dY* 1
(23) 87= [?2 O:I + & 0 dzt dt -2 Y*
dx*\dx

whose coefficient matrix has a simpler leading part than in (2.2).

Let g(tf) = (dx/dt)'”? be an arbitrary but fixed root, for ¢ in the image t(x) of
the domain formed by our chosen regions D, D,, D5, D, together with the curves
11, 1,, 15, 1,. Let us employ the convention:

argt* = aargt,

whenever we take roots in the t-plane.
TueoreMm 2.1 (Evgrafov and Fedoryuk). There exist solutions u*(x,¢) for
(2.1) in D, U D, such that for 0 < ¢ < d, ,x€ D, , where

k c
D, = (D, UD,N ( U {x]|x — x| < so})
i=0
(Xg> X1, X, are all the turning points on the boundary of D, U D,, and 6, is a
constant depending on &), the functions u*(x, €) are expressible as follows:

(2.9 ut(x,e) = p(x)” 4% (x, e) exp {-I_-%é"(x)}.

The functions fi*(x, ) have asymptotic expansions

(2.5) 0t (x,e) ~ Y 0F(x)ef,  aFf(x)=1 ase—>0"
r=0
or

x> oo inD, with Red(x)—> —o for 07(x,e)

€0

or
x> oo inD, with Reé(x)—> o for 47 (x,e).
In a more precise sense, (2.5) means
N
(26) it (x,e) — Y 850 | < Ry(oe™ !
r=0

for xe D, . The function Ry(x) is bounded in compact subsets of D, , and is of
the order O(/x|~ ™+ 22N+ 1y yniformly in 0 < & < §,, as x = 00 in D, in such a
manner that Re &(x) - F oo. The functions 1% (x) are holomorphic in D; U D,
andaf(x) = O(|x|”™*??")as x - o0 in D, insuch a manner that Re &(x) - F co.
These asymptotic formulas may be formally differentiated. (Here m is the degree
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of p(x). Each formula above combines two : take the upper or lower sign through-
out.) In formula (2.4) we define u*(x, ) uniquely by specifying

7
Q27) p~YA(x) = qep 12, %gmygifmmanJgumugUDg

(We shall make this choice for all subsequent formulas in this paper.)

Suppose D, U I, U D, is a consistent canonical domain. From &(D, U [, U D,)
delete circular neighborhoods of radius é about the endpoints of the cuts, as well
as sectors of central angle 0 that have their vertices at the endpoints of the cuts
and are bisected by the cuts. The resulting domain in the &-plane may be denoted
by &(D; U I, U D,);; the corresponding domains in the x-plane or t-plane may
be denoted by (D, U I, U D,);or t(D, U I, U D,),, respectively. For a consistent
canonical domain, Theorem 2.1 can be improved so that then the asymptotic
relations, as x — o0, are valid in D, and in D, for u* and for u~.

CoRrROLLARY 2.1 (Evgrafov and Fedoryuk). Suppose D, U I, U D, is a con-
sistent canonical domain. Then the solutions u*(x, &) for (2.1) of Theorem 2.1 are
expressible in the form (2.4), where

0
0t(x,e) ~ Y 2F(x)e,  AF(x)=1 ase—>0" or x—> o
r=0

(2.7a)
in(D, U1, UD,),

in the sense that
N
(2.7b) 0% (x,8) — Y 87 (x)e"| = C(N, d)(|x| =+ 22gV 1
r=0
for xe(D; Ul, UD,);. Here C(N,d) is a constant. The functions 21*(x) are
holomorphic in Dy U I, U D, and

(2.7¢) fr(x) = O(x]~™*272) asx —» oo in(D, Ul, U D,);.

These asymptotic formulas may be formally differentiated.

First, let us not require that D; U I, U D, be consistent. We then have u™, u™
as stated in Theorem 2.1. When we put (u*,u”) in the first row and (e(du*/dt),
&(du” /dt)) in the second row and express everything as functions of ¢, we obtain a
fundamental matrix solution for (2.3). It has the form

exp {itz} 0
28)  Yi(te) = p(x(t»“”“[(l) 0] Pre|

t 1
——¢?
0 exp { % }

for tet(D,,), 0 < & < J,,. The matrix Y¥(t, &) has the properties:

o ® N 1 1
(2.9) Yt o)~ Y Ve, Y0 = [ ]
r=0 1 — 1
in the sense that, for 0 < ¢ < J,,, te t(D,,),
N

(2.10) Yt e)— Y T(t)e
0

r=

< Cp(t)eN+ 1.
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Cn(?) is a 2 x 2 matrix function of ¢, and is bounded in compact subsets of
t(D,,); the Y(t) are holomorphic in #(D,,). The absolute value sign and inequality
relation apply to each matrix element. The first columns of ¥(t) and Cy(t) are of
the order O(|t|"?) and O(t|">*™* V) respectively as t — co in #(D,) with
Re &(x(t)) » — oo, uniformly for 0 < ¢ < J,, (for example, t - co at an angle 6,
n/4 < 0 < 3n/4). The second columns of Y,(t) and Cy(t) are of the order O(|t|~2")
and O(|t] 2™ * 1Y) respectively as t — oo in t(D,) with Re &(x(t)) = + oo, uniformly
for 0 <e¢< 520 (for example, t > o0 at an angle 0, 3n/4 < 0 < 5Sn/4). In case
D; U1, U D, is a consistent canonical domain, then we have Y4(, ¢) expressible
in the form (2.8), where the matrix Y¥(t, ¢) has an asymptotic expansion of the form
(2.9) in the sense that. for ¢ > 0 sufficiently small, te (D, U I, U D,);,

N
PH(t,e) = Y. T(0e"|< Co(N, 0) (1] ~2e)¥ + 1.
r=0

Here the C,(N, d) are constants and Y,(¢) are holomorphic in t(D; U I, U D,);.

Define )
k C
580= (D2 UD3) ﬂ (U {xllx— fll <80}
i=0
where X, = x4, X, -- -, Xz are all the other turning points on the boundary of

D, U D;. Assume J,, has been chosen sufficiently small. Evgrafov and Fedoryuk s
theorem still apphes inD, U D, [1]. Analogously, there exist solutions #*(x, ¢) for
(2.1) in D, U D5 such that for0 < e < 680, x€ DEO, *(x, &) have representations
(2.4), (2.5), (2.6). We only have to replace u*, 4*, R, 2%, D,, and D; U D, respec-
tively by a*, @i, RE, 4F, D,, and D, U D3 in the corresponding formulas and
statements. However é"( )m (2.4) and p(x)~ **in (2.7) are continued from D, U D,.
Put (i, a") into the first row and (e(dii—/dt), &(dii* /dt)) into the second row of a
matrix Y5(t, ¢). Then we see that it is a fundamental matrix solution of (2.3) of the
form

1
exp {—~t2} 0
(2.11) Yi(t, &) = p(x(t)~ 1/4[(1) _?] 77, ) %

1
0 exp {Eﬁ}

forte t(llo), 0 < & < 4,,. The matrix ¥ satisfies (2.9) with ““ = ” replacing “~”.
In analogy to (2.10), we have, for t € t(ﬁeo), 0<e<o

?F(t,e) - i ?,(t)a
r=0

€0

(2.12) "1 Cy T,

where the first columns of ?, and Cy are of the corresponding orders as t — oo in
t(D,) with Re &(x(t)) » + oo and second columns similarly as ¢t — oo in (D) with
Re &(x(t)) > — oo. To see that we should have —t at the lower right corner of the
first matrix in (2.11) we check that & = 312, —d&/dt = —t. Recall from (2.9) that

N 1 1
o) = Yolt) = [1 _1].

We shall now find the connection between Y¥ and Y% by first finding their
relationship with solutions having known expansions in a full neighborhood of
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the turning point ¢t = 0. This is done by a technique similar to that of Wasow [2].

LEMMA 2.1. There exists a holomorphic transformation in a neighborhood of
zero in the t-plane Y* = PX(t, ¢)Z where P(t, ¢) has a uniform asymptotic expansion
Jor |t| = t,, to sufficiently small, that takes the differential equation (2.3) into the
Sform

dz 0 1
213 — =
213) St [tz + u(ee O]Z

where u(e) ~ ce for some constant ¢, as ¢ — 0.

Proof. Put
o= el )i
E9=0\ax] T Tad\a

Direct calculation shows that

dg L
i = —lg0q(o).
If we let
(2.14) Y* = [ a 0 ]Y**,
—2¢8q  q(t)
then
1
—1 0
sd_Yf =& ;gq 2 y** 4 SI: (1) 0 ]dY**
dt ~deq| B &) —igq —egq q(] dt -
a2
Using the original equation (2.3), we obtain
dy** 1 0 0 1 oo
2.15 =q!
(215) s qu%I]Lz_AW)%gI
g
-5 0
—egq(t) y**
_Lldg &) g
2 \dt 2 2
0 1
= &2 dg g2 Y **,
2 5% 8
4+ VT + 5 0

Suppose dg/dt + g2/2 = a, + a;t + a,t*> + ---in a neighborhood of 0. Then
Hanson and Russell [3] show that (2.15) can be formally transformed into

0 1
dz N 7

2.16 e— =
(216) dt t2+%a0 0
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by the transformation

q4(t, €) q,(t, €)
Y** =1 dq, dq, | %
ad—+q2(t+ 2) q1+87t—

where q,(t, &), q,(t, ¢) are formal power series of the forms

gt ) =1+ Y qu)e,
k=1

2t €) = Z 2"

with gy, g5, holomorphic for all k for |f] < ¢, t, sufficiently small. The functions
q1x-> 92 satisfy some recursive formulas given in [3]. Furthermore, if y > 0 is any
positive small number, then, by Sibuya [4], there actually exists, in each of the
sectors

4 nT+ySargt =<

—34+2(—1) 1+2(—1)
S;= {t||t|§to,— — -y

j=1,2,34,
a holomorphic transformation
Y** = Pft,e)Z
that takes (2.15) into (2-16), where
q. q2

Pj(ts 8) ~ gidc—li + @ (t + a08) dql

ase — 07,in S}, and P;is holomorphic for 1| < .
A theorem by Lee [5] shows that the existence of such a P; in each of these

sectors §;, j = 1, 2, 3, 4, suffices to guarantee the existence of a holomorphic
transformation

2.17) Y** = Q(t, e)Z

on a disc with center ¢t = 0 that takes (2.15) into (2.13), with u(e) ~ (ao/2)e as
¢— 0", and

Q(ts €) ~ dql (

as ¢ = 0%, uniformly for |t| £ ¢,. On combining transformations (2.14) and
(2.17) the transformation Y* = PX{(t, £)Z is obtained, where

e oo 0]
P = [—%sq(t) a0
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It transforms (2.3) into (2.13) with u(e) ~ (ao/2)e. Therefore, PX(t, ¢) has, for
|t| < t,, the uniform asymptotic expansion

(2.18) Pit,e) = q()] + Y. PHu)e
r=1
with PL(t) holomorphic for each r. This completes the proof of the lemma.
Next we proceed to investigate the solutions of (2.13). Consider the equation

4%z 2
(2.19) € i (t* + eu(e))z = 0.
By the stretching s = ﬁt, (2.19) is transformed into
d’z (s u(e)
2.2 22 21 -0
(2.20) Sdsz (4+822 0

From the properties of the parabolic functions (see [5], [6]), it follows that (2.13)
has the four vector solutions

Z; U(ge_Zi“’f, g™ 12 e‘i"’f)
(2.21) iz, | = o et
3_d..s_ 81/2 e—uij/ _ée—Zupj’ B—I/ZSe—t(p,-

where @; = [n(j — 1)]/2, j = 1, 2, 3, 4. U(a, x) is the standard parabolic cylinder
function with the expansion:

3 3 5 7
(2.22) U(a, x)~ e X4y ma=1/2)q _ (a +%)(?+7) (a+ %)(a‘i'i)(a:'“z')(a +3) .
2x 2.4x
for |arg x| < m/2 as x — oo, |x| > |d|.

Furthermore, the functions z; satisfy the relation (see [5])

1
B2 28 = G s — axob PS5 00 F (02050 ).

where
2
a,(p) = —exp [-27izu — )], a,(pw) = W%CXP lin(ze — 9],
2
bi(p) = /2m exp [inGzu + )], by(u) = —exp [2in(Gu + 3)].

TG — 1/2)
Expressing z,, z5, z, as functions of t and ¢, we use (2.21), (2.22) to find:
z,(t, &) = (29 grildglldy=1122=1/4(1 4 O(eloge)} for 0 < argt < m,
(224)  zj(t,8) = e” V129 gnil2gli4 = U2 140 4 O(eloge)} for m/2 < argt < 3m,
z24(t, &) = €129 @3nildglidp= 1231401 4 O(gloge)} form < argt < 2n

for t bounded away from zero and ¢ — 0. The restrictions of the arguments of
t in (2.24) arise from the restriction |arg x| < m/2 for the asymptotic formula
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(2.22). The function O(e¢ log ¢) arises from the factor x~*~ /2 in (2.22), where in
this case a is a function of u(e) ~ (ay/2)e (@ = pe 2%/2) and x = ¢~ 2se™ ™%
=g V2 J2te"i j=23,4
We are now ready to investigate the structure of a fundamental matrix
solution of (2.13) whose first row is a solution of (2.19):
e"l4z,(te)  z5

L -

(2.25) Vit e) = i dz, . dzy| -
dt dt

It has the asymptotic form

Vit &) = emi2gli4p= 4112

(2.26) exp{ziatz} (1 + O(eloge)) exp {—%Stz}(l + O(gloge))

exp {%&tz} t(1 + O(e loge)) exp {—%Stz} t(—1+O(eloge))

for n/2 < argt < m, |t| > J,¢ — 0%,
In order to calculate the expansion for n < argt < 3m/2 of VX we have to
use formula (2.23) and expand z;, z, to calculate z,. We find that

T()2el/4 gl/4 omil2 p=mild [on
z,(t,€) = F(%)— o 21/4t1/2|:( 1"(%)

+ Ofelog 3))(e_’2/‘2‘))

- (e31ri/4 e~ T2 + 0(8 log 8)) 812/(26)]

for n < argt < 3m/2. Thus V* has the form
vt e) vt 8):|
vy1(t,6) vyt e) ]’

where for 1 < argt < 3n/2,|t| > 6, - 07,

(2.27) Vit,e) = [

vy(t,6) = — gl 42T WA T 12[m 2/ emil2 4 Ofg log )
+e*129(emI2 1+ O(e log e))],
015(t, &) = em2gl 4™ 4= 112 p=12/28 (| 4 O(e log ¢)),
Uyq(t,8) = — /427 VA= 12y~ 2 emi/2 /2 + O(elog ¢))
+ €722 1 O(e log ¢))],
V,,(t, &) = eM2gH42 ™ 1A= 12 o= 22128 _ 1 4 O(elog ¢)).
LEMMA 2.2. YX(t, &) = (PEVE)(t, £)Cle) for |t| < toand Y5(t, &) = (PEVY)(t, £)Cle)

Sor |t| £ ty, where

228) o) = 2‘/4e"‘i/28“/4[1 + O(cloge) ay(e) ]

o5(8) 1 + O(eloge)
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with o,(g) ~ 0, a,(e) ~ 0ase — 0" and

2.29) C(e) = 21/48—1/4|:ﬂ B1(e)O(elog e) —i+ O(eloge) :|
‘ 2(e)0(eloge) + (—i + O(eloge)) —ﬁi + O(elog &)

with B(e) ~ 0, B,(e) ~0ase— 0",

Proof. Recall the transformation Y* = PLZ in Lemma 2.1. We have an
expansion for PL at |t| < t,. As long as 6 > 0 is small, PLV'L is a solution to (2.3)
with known expansions in sectors: n/2 < argt <7, 0 < [t| < ty; and & < argt
<3m/2,8 < |t] £ t,.

We have C(e) = [VE]7[PX]7!'YY. For the calculations of C(¢) from that
formula we can choose any t with /2 < argt < =. Using (2.18), (2.26) and (2.8)
we conclude that

Cle) = 21/Ze—ni/28—1/4|:1 + O(cloge) e "0(c log a)]

e’O(eloge) 1 + O(eloge)
Taket = t, ™% ; then e /¢ ~ Oase — 0. If we take t = t, ¢*™7, then &2 ~ 0
ase — 0", Similarly, we use (2.18), (2.27) and (2.11) to evaluate
Cle) = [V '[P Y5,
For this calculation we can choose some t with © < argt < 3n/2. We arrive at

_ljag—1/4
C(E) = /2 —12/e
2e¢™* + O(eloge) + e”"*0(e log &)
[ e~ "0(e log ) —2 + O(eloge) ]
—e "?O(eloge) — 2 + O(elogs) —2./2 + O(cloge) — ¢”*O(eloge) )

To evaluate the first row and the term at the first column and second row, take
t =t,e"™", then e = exp { —(1/e)t3 "™} ~ 0 as ¢ > 0*. To evaluate the
term at the second row and second column, take t = t,e>™/*. Then e **"
= ¢~ (MeMi and TP/ = (1948 poth of which have absolute value 1. Thus we
have

Cle) = e 14214

2
exp { ——;2 e7"i/3} (O(elogg)) —i+ O(eloge)

exp {% e7"”3}(0(8 loge)) + (—i + Oleloge) —./2i + O(eloge)

which is of the form stated.
THEOREM 2.2. Yi(t,¢) = YX(t, e)N(¢), where

cq11(8) 1 + ¢y5(e) + O(eloge)
N() = .
1+ ¢3y(8) + Ocloge) /2 + ¢y5(e) + O(e log )
The functions ¢,(€), ¢1,(€), ¢31(€), cz,(e) are all ~0 ase— 0",
Proof. Use Lemma 2.2. We see that Y5(t,¢) = YX(t, e)C ™~ (¢)C(e). Then com-

pute N(g) directly from the formula N(e) = C~'(¢)C(e) together with (2.28) and
(2.29).
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In order to find series expansions for the functions of order O(¢loge) as
¢ — 07 in the matrix N(¢) we have to make use of the series expansions of PX(t, ¢),
VL, ¢), Yi(t,¢) and YE(t, ¢). The asymptotic series for PL(t, ¢) is given by Hanson
and Russell [3]. We can use (2.21), (2.22), (2.23) to find series expansions for
VL, ¢), as we have done for the first term. For the expansion of Y{(¢, &) and
Y%(t, &) we can use Evgrafov and Fedoryuk’s paper [1].

COROLLARY 2.2. Suppose D, U l, U D, is a consistent canonical domain.
Then doubly asymptotic series for i* and i~ as ¢ » 0% or x — oo in all of
(D, U 1, U D,); can be obtained from the formula

[ (x,e), % (x,8)] = [u*(x,¢), u (x,)]N(e).

Proof. Apply Corollary 2.1 and Theorem 2.2.

The last corollary enables us to find the behavior, in the consistent canonical
domain D, U [, UD,, of the solutions & *(x, ¢)and # ~ (x, ¢) which are subdominant
in D5 and D,, respectively.

3. An example. Let p(x) = x*(x — 1)? in (2.1). Careful analysis reveals that
the patterns of Stokes curves are as illustrated in Fig. 1. The turning points are at
O0and 1 and both are of second order. Thelines [;,s;,i = 1, 2, 3, 4, are Stokes curves;;
D;, R;,i = 2,3,4, and Q are open connected unbounded regions with the Stokes
curves as boundaries.

To fix the ideas, we choose the turning point x, = 0. Let D, = R, U s; U Q.
Consider the region D; U I, U D,. We choose

E(x) =fxz(z — 1)dz = i; - %2

0

L, st

L' s,

FIG. 1. Stokes curves and regions in the x-plane for p(x) = x*(x — 1)?



100 ANTHONY WING-KWOK LEUNG

A A 1A

) = e e o e e e
] —— e ——— ———— o — —— —

~
~

D,=RuUs5uQ

FI1G. 2. The image of D, U 1, U D, on the &-plane

The image of D; U I, U D, and its boundaries in the £-plane is shown in Fig. 2.
The corresponding parts in the x-plane and £-plane are designated by the same
letters, with a tilde over the images on the &-plane. The solid lines in the é-plane
are cuts. We see that D; U I, U D, is a consistent canonical domain. The cor-
responding diagram of Fig. 1 (with R, U s3 U Rj; deleted) on the (t = [2&(x)]/?)-
plane is shown in Fig, 3.

We apply Corollary 2.1 on the region D; U I, U D,. There are two in-
dependent solutions of (2.1),

u*(x, &) = [p(x))” *a*(x, ) exp { i%é(X)},

with properties given by formulas (2.7 a, b,c)for xe (D, U I, U D,);,0 < ¢ < J,,.
If we choose the root g(0) = [(dx/dt)(0)]'/? = €3"/*, the root [p(x)]” /* for small
x > 0 should be chosen to be |p(x)~ /4|i, by convention (2.7). Referring to Fig. 2
we see that u™(x, €). u™(x, &) are subdominant in D, and D, respectively.
Consider the region D, U I3 U D;. The image of this region in the é-plane is
shown in Fig. 4. Again, applying Corollary 2.1 on the consistent canonical domain,
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FIG. 3. The image of Fig. 1 (with R, U s; U R, deleted) on the t-plane. (The corresponding parts
are designated with the same letters, with a hat over the images.)

we have two independent solutions

7,0 = [pbo)] 4 (0 exp {i%é(x)}

with properties described for x € (D, U I3 UD;)s,0 < ¢ < J,,. From Fig. 4 we see
that #*(x, ¢) and @~ (x, &) are subdominant in Dy and D, respectively.

To find the behavior of #i* and &~ in the region (D; U I, U D,),, we apply
Corollary 2.2. Thus

it (x,e) = [1 + c;,(€) + O(elog &)Ju* (x, &)
+ [ﬁ + ¢,5(8) + O(elog e)ju™(x, ¢),
17 (x, &) = [cq1(e)]u’(x,8) + [1 + c34(e) + Oleloge)Ju™(x, &),
where ¢;(e) ~0, 1 <i, j <2, and the terms of order O(¢loge) have series
expansions which can be computed if desired. The inverse relationship can of
course be easily found, too.
Further, by the method of Evgrafov and Fedoryuk, we can express u™(x, €),

u~(x,¢) in terms of two other independent solutions of (2.1), v*(x, ), v™(x, €),
with formulas in (D, U I, U D,),. The formulas for v*(x,¢) are analogous to
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FIG. 4. The image of D, U I3 U D; on the £-plane

(2.4), (2.7 a, b, ¢), but with &(x) replaced by

&1, x) =J‘1x(z2 — 2)dz.

We can subsequently find the behavior of v*(x,e) in R, U s, U R;, etc., by
Corollary 2.2, and “‘solve” the differential equation ““globally.”

Acknowledgment. The author wishes to express his gratitude to Professor W.
Wasow for his introduction to and advice on the subject matter.
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GENERALIZED GREEN’S MATRICES FOR
LINEAR DIFFERENTIAL SYSTEMS*

HOWARD CHITWOODY

Abstract. This paper investigates the n x n matrix differential equation Y’ = AY together with
boundary conditions of the form j"; dF(t)Y(t) = 0, where F is an n x n matrix whose elements are of
bounded variation.

It is known that if the above boundary problem is incompatible then the nonhomogeneous
boundary problem Y’ = AY + R, IZ dF(t)Y(f) = 0 has a unique solution; here it is shown that if the
homogeneous problem is compatible, then the Moore-Penrose generalized inverse of a matrix can be
employed to obtain conditions which ensure the existence of a solution to the nonhomogeneous
problem.

A generalized Green’s matrix is constructed and its properties studied. An adjoint system is
defined and properties relating it to the given system and the generalized Green’s matrix are explored.
A principal generalized Green’s matrix is defined and properties analogous to those for the classical
case are developed.

1. Introduction. This paper investigates the n x n matrix differential equation
Y’ = AY together with boundary conditions of the form [ dF(t)Y(t) = 0, where F
is an n x n matrix function whose elements are of bounded variation.

In the special case of the two-point homogeneous boundary condition
MY(a) + NY(b) = 0, where M and N are constant matrices such that the rank
of the n x 2n matrix [M N] equals n and where @ is any fundamental matrix
for Y/ = AY, it is well known that the index of compatibility of the boundary
problem is n — rank [M®(a) + N®(b)]. If this boundary problem is incompatible,
then the nonhomogeneous boundary problem Y’ = AY + R,MY(a) + NY(b) = 0
has a unique solution given by

Y(t) = Jb G(t, s)R(s) ds,

where G(t, s) is the Green’s matrix for the homogeneous boundary problem. The
detailed development of these results can be found in Cole’s text [5, Chap. 6] or
in the recent book [12, Chap. III] by Reid.

Bradley [2] has generalized the above results to the case where the differential
system Y' = AY, MY(a) + NY(b) = 0 is compatible. His development employs
the Moore—Penrose generalized inverse of a matrix ; properties of this generalized
inverse may be found in Penrose [8] or Reid [12, Appendix B]. Reid, in his 1931
paper [9], discussed such a compatible system and determined a generalized
Green’s matrix ; however, his development did not make use of the Moore—Penrose
matrix which allows for considerable simplification in the construction of a
generalized Green’s matrix. Bradley gives conditions for the nonhomeogeneous
system Y' = AY + R, MY(a) + NY(b) = O to possess a solution and shows that

* Received by the editors August 31, 1971, and in revised form February 25, 1972.

+ Department of Mathematics, Carson-Newman College, Jefferson City, Tennessee 37760. This
paper is part of a doctoral thesis written under the direction of Dr. John S. Bradley, University of
Tennessee, Knoxville.
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a generalized Green’s matrix for the homogeneous system exists. While this matrix
is not unique, a formula is developed which gives the most general generalized
Green’s matrix in terms of any particular generalized Green’s matrix. Further-
more, the concept of a principal generalized Green’s matrix is introduced, and it
is shown that with respect to certain orthogonality conditions there exists a unique
generalized Green’s matrix.

The more general problem with boundary operator jz dF(t)Y(t) has been
studied by Bryan [3] for the incompatible case, and Tucker [13] has dealt with
certain aspects of the compatible problem. In the present paper the construction
leading to a generalized Green’s matrix is more direct than Tucker’s and the
theory is extended to parallel Bradley’s development for the more special classical
case.

The boundary operator [> dF(t)Y(t) arises as a representation of a bounded
linear transformation U from the space € of n x n matrices whose elements are
continuous functions on [a, b] into the space # of n x n matrices whose elements
are constants. A norm for Ke & is defined by |K| = max {|k;;|}, and [|Y]|
= max {|Y(x)| : x € [a, b]} defines a norm for Y € . We shall write

b
UDj:de@ﬂ&

The development of the theory will depend, to a large extent, on the Moore—
Penrose generalized inverse of a matrix. Penrose [8] defines such an inverse of a
matrix D to be a matrix D' with the properties D'DD' = D', DD'D = D, and DD'
and DD Hermitian. Such a matrix exists and it is unique. Penrose also shows that
a necessary and sufficient condition for AXB = C to have a solution is A4'CB'B
= C, in which case the general solution is X = A'CB' + Y —A'AYBB" for
arbitrary Y.

We now proceed to a description of the results in which most of the proofs
are omitted.

2. Existence of solutions. The systems to be considered are

1) Y = AY + R, U[Y]=K,
(1a) Y = AY + R, U[Y] =0,
) Y = A, UlY] =0,

where A, Re ¥, K € #,and U is a bounded linear transformation from % into #.

Since U has the representation U[Y] = | YdF(1)Y(t), it is easily seen that
ULYC] = U[Y]C for arbitrary C e #. Furthermore, we note that if (2) is in-
compatible and @ is any fundamental matrix for Y’ = AY, then U[®] is non-
singular, and if ®, and ®, are fundamental matrices, then rank U[D,]
= rank U[®,].

THEOREM 2.1. If m is the index of compatibility for (2) and ® is any fundamental
matrix for Y' = AY, then m = n — rank U[®].

The following theorem was first proved by Bryan [3].

THEOREM 2.2. If the system (2) is incompatible, then the system (1a) has a unique
solution given by

b
Y(t) = J G(t, s)R(s) ds,
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where

O(H)U[D] ! fs dF(u)®u)® (s) fort > s,
G(t,s) = i
—O()U[D]” IJ dF(u)®u)® (s) fort <s,

and @ is a fundamental matrix for Y' = AY.(The matrix G(t, s) is called the Green’s
matrix.)

The natural question which arises now concerns the possibility of the existence
of solutions of systems (1) or (1a) in the event that system (2) is compatible. Since
U[®]~! no longer exists, the Moore-Penrose generalized inverse of a matrix is
utilized.

The following theorem is of basic importance to the theory.

THEOREM 2.3. If D is an n x n matrix withrankn — m,m > 0, Sisann x m
matrix such that DS = 0 and S*S = I, and Tis an n x m matrix such that T*D = 0
and T*T = I, then the (n + m) x (n + m) matrix

D T
L S* 0]
is nonsingular and its inverse is
Dt S
| T* 0J

where D' is the Moore-Penrose generalized inverse of D.

We now give an important application of this theorem, in which the matrix
D is taken to be U[®].

THEOREM 2.4. If the system (2) is compatible with index of compatibility m,
then the system (1a) has a solution if and only if

T* J;b |:J;s dF(t)q)(t) — f; dF(l)d)([):lq)—-l(S)R(S) ds = 0’

where @ is a fundamental matrix for Y' = AY and T is the matrix appearing in the
preceding theorem.

The proof of this theorem employs the variation of parameters formula for
solutions of Y’ = AY + R; the operator U is applied to such solutions and then
Theorem 2.3 leads to the condition of the theorem.

3. The generalized Green’s matrix and an adjoint system.
DEFINITION 3.1. A generalized Green’s matrix for system (2) is an essentially
bounded, measurable n x n matrix function G defined on the set

Q={ts)ast<bas<ssbh

such that if system (1a) has a solution, then Y() = | ’;G(t, $)R(s) ds is also a solution.
THEOREM 3.1. A generalized Green’s matrix for system (2) exists.
Indeed, we construct the following matrix and show that the conditions of



GENERALIZED GREEN’S MATRICES 107

Definition 3.1 are satisfied :

FO(1)SS*® ™ !(s) + D(1)U[D]' JS dF)®wd™(s) ift>s,
Golt,s) = “,,
—30(1)SS*® ™ !(s) — O()U[®]* f dF(u)®wd~'(s) ift <s.

The following theorem displays some properties of G(t, s).

THEOREM 3.2. The generalized Green’s matrix Gy(t,s) has the following
properties:

(1) Gol(t, s) is continuous in t except at t = s and is continuous in s except at

s = t and the discontinuities of F;

(i1) Go(s + 0,5) — Go(s — 0,s) = I;

(iil) for each fixed s, Gy(t, s) satisfies Y' = AY int except at t = s;

(iv) Golt,t + 0) — Gg(t,t — 0) = —1I except at the discontinuities of F.

In conjunction with property (iii), it should be noted that G(t,s) fails to
satisfy the boundary condition

U[Gy(t,s)] = 0 for fixed s;

indeed, it turns out that

UlGy(t,s)) = TT* f ’ dF(u)®w)®~ '(s),

where T is the matrix introduced in Theorem 2.3.

Continuing our development of the generalized Green’s matrix we discuss
uniqueness.

THEOREM 3.3. The generalized Green’s matrix for system (2) is not unique.

In particular, let G(t, s) be the generalized Green’s matrix constructed above
and let W(s) be any essentially bounded measurable n x n matrix function.
Define G(t, s) by

G(t,s) = Go(t, s) + (1) [W(s) — U[@)'U[@IW(5)];

then G(t, s) is also a generalized Green’s matrix.

We can obtain a more precise result relative to the uniqueness and general
form of generalized Green’s matrices; to do so we must introduce an adjoint
system for system (2). The following adjoint system was defined by Bryan [3]
and also by Tucker [13].

DEerFINITION 3.2. For a parameter matrix M € &, the system

(3a) Z = —A*Z + F'*M* on the set where F’ exists,
(3b) Z — F*M* is absolutely continuous on [a, b],
(3¢) Z(a) = 0,

(3d) Zb)=0

is defined as an adjoint system to system (2).

DEFINITION 3.3. A matrix Z is a solution of system (3) if there exists a matrix
M e # such that (3a, b, ¢, d) hold.

We now present a theorem proved first by Bryan [3] and later, in a more
general setting, by Tucker [13].
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THEOREM 3.4. For M € %, the system (3a, b, ¢) has the unique solution

*
5

Z(t) = |:M Jt dF(u)Du)d~ l(t)j|

this Z satisfies (3d) if and only if MU[®] = 0.

We now give an application of the adjoint system in proving a theorem which
generalizes a classical relation that exists between a differential operator and its
adjoint.

THEOREM 3.5. The system Y' = AY + R, U[Y] = 0 has a solution if and only
if [*Z*(t)R(t)dt = O for each solution Z of the adjoint system (3).

We now present a necessary and sufficient condition for a matrix to be a
generalized Green’s matrix. This generalizes a result of Bradley [2] dealing with
the boundary condition MY(a) + NY(b) = 0. The proof follows the general
procedure of Bradley, and makes use of the fact that system (2) and the adjoint
system (3) have the same index of compatibility.

THEOREM 3.6. Let V| be an n x n matrix of rank m which is a solution of system
(2) and let V, be an n x n matrix of rank m which is a solution of the adjoint system
(3). If Gy is one generalized Green’s matrix for (2), then G is also a generalized
Green’s matrix for (2) if and only if there exist bounded measurable matrix functions
I’y and T, such that

G(t,5) = Go(t, 5) + Vi(OT(s) + T()V3(s).

4. A principal generalized Green’s matrix. In [9] Reid introduced the concept
of a principal generalized Green’s matrix and showed that with respect to certain
orthogonality conditions there is a unique generalized Green’s matrix. Bradley [2]
proved a similar theorem when the number of boundary conditions is different
from n. Later, Reid [11] discussed this problem in quite general settings, and we
have the following two theorems as specific realizations of Reid’s results.

THEOREM 4.1. Let V, and V, be as in Theorem 3.6 and suppose that ® and Q
are matrices in € such that {* ®@*V, and [° V3Q are nonsingular. Then there exists a
unique generalized Green’s matrix Ggq for (2) satisfying

Jb Goolt, 5)QAs)ds =0, te(a,b],

b
f O*(1)Geult,s)dt =0, sela,b].

THEOREM 4.2. If Ggq is the unique generalized Green’s matrix of Theorem 4.1,
then
(i) Gegqis continuousint except att = s and is continuous in s except ats =t
and the discontinuities of F ;
(i) Geqls + 0,5) — Geg(s — 0,5) = I;
(ii1) for each s, Geglt, S) satisfies

Y'(t) = AD)Y () — Q)V3(s)

except at t = s and the discontinuities of F;
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(iv) for almost all s, Ggo(t, s) satisfies the boundary condition U[Ggg(t, s)] = 0
as a function of t;

(V) [2O*(1)Geglt, s) dt = 0.

COROLLARY. If Re % and Y is defined by Y(t) = [*Geq(t, S)R(s) ds, then

(i) Y'(t) = A()Y(1) + R(t) — Q(t)f YV %(s)R(s) ds except at t = s and the dis-
continuities of F

(i) U[Y] = 0;

(i) [*P@*(1)Y(t)dt = 0.

Remark. This corollary has some interesting implications. Let us suppose that
system

(1a) Y =AY+ R, U[Y]=0

has no solution and let G(t, s) be any generalized Green’s matrix. Then G has the
form

G(t,5) = Golt,s) + Vi(Oi(s) + Ta()V3(s)
as found in Theorem 3.6. Now if Y is defined by

b
Y(t) = f G(t, s)R(s) ds,
then
b b b
Y(t) = f Go(t, S)R(s) ds + Vy(¢) J ' (s)R(s) ds + T,(¢) f V%(s)R(s) ds.

If G(t, s) = Gyt s), then looking back to Theorems 2.4 and 3.1 we see that Y(¢)
satisfies the system

Y'(t) = A()Y(t) + R(1), U[Y(t)] = —TT*B,

where — T*B is the left member of the condition in Theorem 2.4. On the other
hand, if G(t, s) = Gggl(t, s), the corollary shows that Y(t) satisfies, almost every-
where, the system

b
Y'(t) = A(D)Y(t) + R(t) — Q) f Vi(s)R(s)ds,  U[Y(1)] = O.

Thus, we have the choice of satisfying the differential equation or the boundary
condition of system 1(a).
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NONNEGATIVE AND ALTERNATING EXPANSIONS OF ONE SET
OF ORTHOGONAL POLYNOMIALS IN TERMS OF ANOTHER*

WILLIAM F. TRENCHY

Abstract. Let {p,(x)} and {g,(x)} be monic polynomials orthogonal with respect to the distributions
du(x) and duv(x) = w(x) du(x). Conditions are given on w(x) which imply that, for all », the coefficients
in the expansion of p,(x) in terms of go(x), - - - , ¢,(X) are nonnegative, and those in the expansion of
q,(x) in terms of py(x), - - -, p,(x) alternate in sign.

1. Introduction. Several recent papers have been concerned with finding
conditions under which the constants cg,, C1,, -+ , Cny i the expansion

(1) 0 = 3 cnplo), n= 01,
r=0

are all nonnegative, where {p,(x)} and {qg,(x)} are suitably normalized polynomials
orthogonal with respect to different distributions. Askey [1], [2], [3], Askey and
Gasper [4], and Wilson [7] have obtained results on this question. Askey [3] gives
references to areas in which this problem arises.

We shall say that the expansion (1) is nonnegative if ¢,, = 0 for 0 < r < n, or

alternating if (—1)""'c,, 2 0 for 0 £ r < n. An alternating expansion can be
transformed into a nonnegative expansion (and vice versa) by the renormalization

@ P(x) = (=1)pax),  Qux) = (=1)¢qx), n=01,2---.

2. Formulation of the problem. Throughout this paper we assume that u(x)
is nondecreasing and w(x) nonnegative on an interval (a, b), that the distributions
du(x) and dv(x) = w(x) du(x) have finite moments

J;b x"du(x) and f ab x" dv(x)

for all nonnegative integers r, and that {p,(x)} and {g,(x)} are the monic poly-
nomials orthogonal over (a, b) with respect to du(x) and dv(x), respectively ; i.e.,

(3) pn(x)zx"+---’ qn(x)=xn+“"
and
b b
[ pomna i) = [ g0 dotx =0, wmmzo
We shall give conditions under whi?:h the expansions

n—1

) 4u(%) = paX) + Y dupi(X)
r=0

and
n—1

(5) PalX) = qu(X¥) + Y. g, (%)
r=0

* Received by the editors January 6, 1972, and in revised form March 15, 1972.
+ Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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are, respectively, alternating and nonnegative for all n. (If u(x) has only finitely
many, say N, points of increase, the phrase “for all n”” should be interpreted as
“forn=0,1,---, N — 1)

3. Results. The following is a known result [6, Thm. 3.1.4, § 3.1].
LEMMA 1. Suppose x, is not in (a,b) and w(x) = |x — xo|. Then (4) and (5)
reduce to

© 4 = pi) + 5, D
and
™ Pu(X) = q,(x) — p"p_(i:)(’)q..- 1(%).

LEMMA 2. If —o0 < Xy < a, then (6) is alternating and (7) is nonnegative for
all n. If b £ x4 < 00, then (6) is nonnegative and (7) is alternating for all n.

Proof. The roots of p/(x) are all in (a, b). Because of the normalization (3),
(—1Ypj(xo) > 0if x4 < a, and p{(x,) > 0 if x, = b. This yields the conclusion.

Suppose {p,(x)}, {gu(x)} and {r,(x)} are sequences of polynomials such that,

for all n, the expansion of p,(x) in terms of ¢(x), g,(x), - -+, ¢,(x) and the expan-
sion of g,(x) in terms of ry(x),r (x), - - -, r,(x) are both alternating (nonnegative);
then the expansion of p,(x) in terms of ry(x),r,(x), - -+, r,(x) is also alternating

(nonnegative) for all n. This and repeated application of Lemma 2 yield the
following theorem.

THEOREM 1. Let R(a, b) be the set of rational functions with only real zeros and
poles, which are positive on (a, b), with finite zeros, if any, confined to (— oo, a], and
finite poles, if any, confined to [b, ). If w(x) is in R(a, b), then (4) is alternating
and (5) is nonnegative for all n.

Example 1. The Jacobi polynomials, defined by

(—1y[d\" . »
g 271 (E) [(1 - X) (1 + X) ], (x,ﬁ > —1,

P0(x) = (1 = )71 + x)~

are orthogonal with respect to the distribution
du(x) = (1 — x)*(1 + x)* dx, —-l<x<l,

and have positive leading coefficients. From Theorem 1, the expansion

®) PYOW) = 3 ol i OPEP)

is alternating forallnify =« — r > —1and 6 = f + s, with r and s nonnegative
integers, and nonnegative forallnify = o + randd = f — s > —1, withrand s
nonnegative integers.

For other cases in which (8) is known to be nonnegative for all n, and for a
conjecture on this point, see Askey and Gasper [4].

Example 2. Askey [1] has shown that (4) is alternating for all n if a = 0 and
w(x) = x* where « is a positive integer, and has conjectured that the result remains
valid if o is an arbitrary positive number. (Actually, Askey speaks of nonnegative
expansions, but his normalization differs from ours as in (2).) Theorem 1 contains
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Askey’s result for positive integral a, and also implies that in this case (5) is non-
negative for all n. For this reason it is tempting to extend Askey’s conjecture:
namely, to conjecture that (4) is alternating and (5) is nonnegative for all n if
a = 0 and w(x) = x* with a an arbitrary positive number. However, this extended
conjecture is false, as can be seen by taking
ux)y=1, wx)=x% a=0, b=1;
then straightforward computations yield
‘Io(x) = 13

oa+1
o+ 2

() = x* — 20 + 2)x (@ + D+ 2)
1 a4 @+ 3ot 4y

qi(x) = x —

Polx) = 1,

pi(x) = x — 3,

pa(x) = x* — x + &
Therefore,

pa(x) = 4a(x) + 0+ =D ().

o
2+ 41" T 6+ 2@+ 3
which is not nonnegative if 0 < o < 1.

The coeflicients of p,(x) and g,(x), as well as the coefficients a,, and b,, in (4)
and (5), are continuous functions of the moments of du(x) and dv(x). The next
lemma follows easily from this.

LemMaA 3. Suppose du,(x) and dv,(x) are sequences of distributions on (a, b)
such that

b b

) lim | x"du,(x) = J x" du(x), r=0,1,---,
b b

(10 lim | x"dv,(x) = J X" dv(x), r=0,1,--

Let {Puu(X)}i% 0 and {qu.(x)}>-o be the sequences of monic polynomials orthogonal
over (a,b) with respect to du,(x) and dv,(x), respectively. For each m, let the
expansions
n—1
Gun(X) = Pun(¥) + Y QpumPom(X)
r=0
and
n—1
Pom(*) = Qun(X) + Y, Drpm@pm(X)
r=0
be, respectively, alternating and nonnegative for all n. Then (4) is alternating and (5)
is nonnegative for all n.
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THEOREM 2. If y > 0 and the distribution dv(x) = e du(x) has moments of all
orders on (a, b), then (4) is alternating and (5) is nonnegative for all n.
Proof. If a > — o0, let du,(x) = du(x) and dv,(x) = w,(x) du(x), where

>a.
m

w,(x) = e”“(l + M)m, x >

Then (9) is obvious and, since w,(x) < e’ and lim,,_, ,w,(x) = e’*, Lebesgue’s

bounded convergence theorem implies (10). Moreover, w,(x) is in R(a, b) for

every m. Thus, if a is finite, the conclusion follows from Theorem 1 and Lemma 3.
If a = — oo, we again apply Lemma 3, this time with

{u(x), X = —m,
Up(X) =
u(—m), x < —m,

and dv,(x) = e"*du,(x). From the result just proved for finite g, the hypotheses
of Lemma 3 are satisfied, and therefore the conclusion follows.
Example 3. Suppose o« > —1 and

du(x) = x*e *dx, x> 0;
then
(11) pulx) = (= 1)"¢,LP(x),

where L{”(x) is the Laguerre polynomialand ¢, > 0[6,§ 5.1]. If p > 0, the change of
variable x = py transforms the orthogonality condition

f e X (pu) dx = 0, n#m,

0
into

f e Py ppy)pnlpy) dy =0,  n#m;
0
hence, the monic polynomials g,(x) = p~"p,(px), n = 0,1, ---, are orthogonal
over (0, co) with respect to the distribution

dv(x) = e~ V% dy(x).
Bearing in mind the difference in normalization indicated in (11), we conclude
from Theorem 2 that the expansion

L(a) px Z A(a)(p L(a) )

is nonnegative for all n if 0 < p < 1, and alternating for all n if p > 1. This is a
known result; see [5,§ 119].
Example 4. If

du(x) = e ¥ dx, —o0 < x< o0,
then
Pu(x) = d,H (x),
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where H,(x) is the nth Hermite polynomial and d, > 0 [6, § 5.5]. The change of
variable x = y — x, transforms the orthogonality condition

f e D ()pu(x)dx =0, m#n,

into
f e py — Xy — Xo)dy,  m # n;
hence, the monic polynomials ¢,(x) = pJx — xo), n = 0,1, - -, are orthogonal

over (— 0o, c0) with respect to the distribution
dv(x) = e**** du(x).

It follows from Theorem 2 that the expansion
Hn(x - Xo) = Z Krn(xO)Hr(x)
r=0

is alternating for all n if x, > 0, and nonnegative for all n if x, < 0. This is also a
known result; see [6, Prob. 68, p. 385].

We conclude with the following theorem, which can be obtained from
Theorem 1, Lemma 3 and Theorem 2.

THEOREM 3. Suppose —o0 < a < b < o0, and let

—a" [l + clx — a)]
=X T[22l = dy(x = b
where m and n are nonnegative integers, y 2 0, ¢, 2 0, d; 20, Y.7¢, < 00, and
Y Tds < co. If the distribution dv(x) = w(x)du(x) has moments of all orders on
(a, b), then (4) is alternating and (5) is nonnegative for all n.
Remark. If —c0 = a < b < o0, a similar result holds with (12) replaced by

(12) w(x) = e”‘

w(x) = e™(b — x)~ Z [1 — dy(x — b)] -

s=1

If —o0 < a < b = o0, the appropriate form for w(x) is

w(x) = e”™(x — a)" i 1+ ¢x — a)].

r=1
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ASYMPTOTIC EIGENFUNCTIONS OF A SINGULAR
INTEGRO-DIFFERENTIAL EQUATION*

S. E. SHAMMATf anDp S. N. KARP}

Abstract. Asymptotic representations are obtained for the high order eigenfunctions and eigen-
values of the singular integro-differential equation [py'l + [g + A%rly = A2[K(x, s)y(s) ds, where p is
positive in the open interval and has a simple zero at the endpoints, while ¢ may have a pole there.
Bounded eigenfunctions are shown to be asymptotic to the corresponding solutions of the differential
equation resulting from the absence of the integral term. The basic tool is the use of a generalized
Green’s function, I'; (x, 5), for which it is shown that _[l"fln(x, s)r(s) ds tends to zero for large 4,.

1. Introduction. In a recent paper [1], B. I. Aleksendriskii studied the
asymptotic solutions of an integro-differential equation whose differential part is
a regular Sturm—Liouville operator.

In the present article, we consider the integro-differential equation

d %
(L.1) a[p(x)%] + [9(x) + 2?r(x)ly = izj K (x, 5)y(s) ds, Xy £ X = X

The coefficients p(x), r(x), and g(x) have the following properties:
(i) p(x) is twice differentiable, positive on x; < x < x,, and has a simple
zero at the endpoints.
(i1) r(x) is twice differentiable and positive on x; < x < x,.
(iii) g(x) £ 0 for x; < x < x,, continuous on x; < x < X,, and may have a
simple pole at the endpoints. Let

q; = limq(x)(x — x;) asx—-x;, j=1,2.

For convenience, we introduce the two differentiable operators L and A
defined by

d d 1
1.2) L,= [E {P(x)a} + q(x)], A= _Xx_)L"'

Then (1.1) becomes

X

(1.3) A] - 2y = 2 f TKeooye)ds, xS x =

X1
Since the function p(x) vanishes at the endpoints, the proper set of boundary
conditions to impose is the boundedness of y(x) at the endpoints.

In ¢2, we study the asymptotic behavior of the eigenvalues and the corre-
sponding eigenfunctions of A ; that is, solutions of A[u,] = a2u,. It is shown that

* Received by the editors April 19, 1971, and in final revised form March 10, 1972.

+ The University of West Florida, Pensacola, Florida 32504. The paper was written while the
first author was a Visiting Member of the Courant Institute of Mathematical Sciences, New York
University. It is based on a part of the doctoral thesis [6].

1 Courant Institute of Mathematical Sciences, New York University, New York, New York 10012.
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o, = O(m) and |u,(x) = 0(\/07,:). Then we investigate the asymptotic properties of
a generalized Green’s function which will be used in 3 to show that the bounded
eigenfunctions of (1.3) are asymptotic to the corresponding solutions of the
differential equation resulting from the absence of the integral term. Namely, they
are asymptotic to u,. The results of this paper, apart from their interest as a
generalization of [1] and [3], are also expected to prove useful in extending the
study in [7] to three-dimensional problems.

2. Asymptotic eigenvalues and eigenfunctions of 4. From the above properties
of the operator A it follows, using the first criterion in [2, p. 443], that its spectrum
is totally discrete.

LEMMA 2.1. Let o2 and u,(x) be the eigenvalues and the corresponding bounded
orthonormal eigenfunctions, with respect to the weight function f(x), of the operator
A. If the a2’s are arranged in a monotonic sequence, then

@1) 4 = {[(n 4 2+ )] f %dr} + o(%)
and

(2.2) (0l = OG/2%,)

uniformly in x as n — oo, where

2.3) 1 = —4q;/p(x).

Proof. It is shown in the Appendix that the uniform asymptotic solutions of
the differential equation

(2.4) Alt(x, 1)] = A*t(x, 4),

for large positive values of the parameter 4, are

—Zl_wl(zl)a xl é x < ﬂs
2.5) (%, 4) = g(x) 1‘

—wy(2y), X, > X > a,
Z2

Swaz), x<x<h
26) T2, 2) = gx)

—wq(zy), x>x>a,
22

where o < f8, g(x) = [p(x)r(x)]~ /4,

2.7) z(x) = ﬁlz)j_l f x‘ /%)dt, j=1,2,

z

: , . 1
28) wi(z) = szu,.(%zf)[Ao + 0(72)] * i"ﬂf“‘wf’[B" * iﬁo(z‘f)]’
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dw,(z; 1
WTZ(,.ZQ = Juj(2lzj)[co F(1+ |z,.|)o(PH

2.9)
+2Az3, 4 1(2/12j)|:D0 + O(ﬂ):l

1 : 1
(210) wiy(z) = ijuj(zxzj)[Ao + 0(22)] 2/1Yuj+1(2/12)|: Tfﬁo(ﬁ)]

2.11) Elvzzz(f,) Y, (2 /12,-)|:C0 +(1+ |z,~|)0(%)] — 2z quj+1(2le)|:Do + 0(112)]

and A,, By, C,, D, are constants.
The above results are derived in a similar way to Olver’s work on the asymp-
totic solutions of linear differential equations [4], as obtained in the Appendix.
The asymptotic behavior of the eigenvalues a? could be found from the
Wronskian of the two solutions 7,(x, 4) and 7,(x, A). The Wronskian vanishes at
A = a,. Hence the eigenvalues are roots of the equation

(212) p(X)W[Tl(X, an)s 1:Z(Xa an)] = 0
Using the second part of 7, and the first part of 7, given in (2.5) and (2.6), we get

dz, , d
Wity 1] = g(Zl)Q(ZZ)I:WZ(Zz)W’z(Zl)% - Wz(Zl)Wz(Zz)gjl

(2.13)
+ walz)w,(21)[8(21)8(22) — 8(22)8'(z1)],

where w'(z) = dw/dz, §(z) = g(x)/\/z, and g’ = dg/dx. From (2.7), we have
dz;  —dz; 1 |r(x)

dx  dx 2\ p(Xx)

(2.14)
and

_L
(2.15) zZ;+ 2z, = 2L p(x)dt

Using (2.14), (2.15), and the asymptotic values of w,(z;) and wj(z;) given by (2.10)
and (2.11), we obtain

202,z 1
Wiey, e = S0 (G,02)Yy, 12220 + Yoy (202 Y,,0220] + 0(1).
From the asymptotic behavior of Y, (x), namely,
sin [x — 2 — — e
- -3 i
we obtain

4 1
Wlt,,1,] = n—p(;c—){sin (2122 - E;— — Z) sin (2/1 zZy — (_H_%j - %)

1
+ sin (2,121 - E—é— - %) sin (2/122 - (_,uz + Un E)} + 0(1)

2 4 A
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Hence,
Wlt,,1,] = sin | 22(z, + z,) — Pt Hm L o)
12 ( ) ! 2 2 A
Therefore, neglecting the terms of O(1/x), (2.12) gives

sin |:20c,,(z1 + z,) — (—#izﬂZ)n - g] = 0.

Hence,

- |:(n + b+ M]/[z(zl +2,)] + o(;l;),

since the neglected terms are of order 1/a. Since the corresponding eigenfunctions
are bounded at both ends, their asymptotic behavior is given by

1
cl\/z_l (Ro,zy) + O( 3/2), xS x<p,
(2.16)  u,(x) = t(x,a,) = glx)
2,J,,(20,2,) + 0(3—/2), o< Xx =X,

Normalizing these eigenfunctions, we find that ¢, , = O(f ), hence |u,(x)|
= 0(\/,), since J,(t) is bounded for all t = 0 and p 2 0.
LEMMA 2.2. Let A be the differential operator in § 1, and let T'; (x, s) be the
bounded solution of
(2.17) AT, )] — J2T (x, 5) = 2 =)
n n r(x)

where o is a given eigenvalue and u,(x) is the corresponding normalized eigen-
function of A. Also let A2 be a given real number such that

- un(x)un(s) 5

@.18) =02 e, g =0,

and

(2.19) [t oy ds = o

Then

(220) [ [ (x, 9r(s) ds = 0(5}«) (0, = 00).

Proof. Expressing the solution of (2.17) in terms of the eigenfunction of the
operator A, we find that

_y m(x)um(s)

I
A"(x, S) m#n 2'2 - OC

Hence

X2 2
2.21) f 2 (e g9 ds = 5 o)

IV
m#n (A'r% - O(,%,)
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In the remainder of the proof we show that the right-hand side of (2.21) equals
O(1/w,). The method to be used is to break the series into partial sums and show
that each partial sum is equal to O(1/x,). Hence we have

2 2
(2.22) Z(iz_u_im)z={;+ X+ Z + Z +Z}(/12 27

m#*n k+1 m'+1 n+1

For the first sum in (2.22), we choose k = n/2 if n is even and (n + 1)/2 if n
is odd. And from the asymptotic estimate of u,(x), it is seen that there exists a
constant ¢ such that u2(x) < ca,,. Hence

2
(229 Z s le S G O(al)
For the second sum in (2.22), we choose m’ such that
A2 — o2 = 3l(an + b + AJa)* — (am + b)*]
for all m < m' (m sufficiently large), where q, b are fixed constants such that
oy =am+b+ f, (f,=0(1/m),
hi=o; + An+ g, (g, =O0®m), p<1).

The last two formulas are clear from (2.1) and (2.18). It is sufficient to take
m =n— 1+ ky, where k;, = 0if 4 = 0 and the integral part of 4/a* if 4 < 0.
Hence

n—1+k u? n—1+ky am + b
2.24 < t. .
@2k G ap SOt X Tt b Aja — (am + b7

To estimate the sum on the right of (2.24), we compare it with the integral
of the function

ax + b

(2229) JOV= Han + b + AJaP = (ax + PP

It is clear that f(x) is increasing for k + 1 < x < n — 1 + k,. Hence

n—1+k n—1+k;
(2.26) _Z 1f(m) §j fX)dx + f(n — 1 + k).

From (2.24) to (2.26), we find that the second sum on the right of (2.22) is equal to
o(1/a,).
For the third sum on the right of (2.22), we have

n—1 n—1
Oy —klan—l

u
___m <L — .
m=;i-kl (ir% - ar%u)z = cm=;+k1 (1'2’ - a'Z")Z = Mz)'ﬁ O(an)’

where M = min |4, —o,|,n + k; <n — 1.
For the last sum on the right of (2.22), we choose m” such that

wZ — A2 = 4[(am + b)? — (an + b + A/a)*], m>m"
It is sufficient to take m” = n + 1 + k,, where k, = 0 if A < 0 and the integral
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part of 1 + (A4/a?) if A > 0. Comparing the sum with the integral of the function
in (2.25), we find that it is equal to O(1/a,).
For the fourth sum, we have

"+1ik2 u, < cn+§k; - < (ky + D)oty 144, _ 0(i)
m=n+1 (ii - arzn)z - m=n+1 (li - arzn)z - lei Oy ’

where M = min|A, —a,|,n+ 1 <m=n+1+k,.

3. Asymptotic solutions of the integro-differential equation.

THEOREM. (a) Let L and A be the two differential operators defined in §1, and
let o2 and U,(x) be the eigenvalues and the corresponding bounded orthonormal
eigenfunctions of the differential operator A.

(b) Let K(x,s) be a given continuous kernel on x; < x, s £ x, which has con-
tinuous partial derivatives of the first order on x| < X, s < X, , except possibly at
x = s, where K(x, s) satisfies

(3.1) L[ﬁ] = a(x)0(x —s) + K{x,s) (z=x,i=1,0orz=s,i=2),
r(x)

where a(x) is bounded and K(x,s) is square integrable on x; £ s < x,.
If the integro-differential equation

(3.2 Ayl =22 [y(x) + sz K(x, s)y(s) dS], X; =X =X,

has an infinite set of solutions, then the normalized bounded solutions for which
(3.3) RZ=or+e, &=O0(@,)

are given by

(3.4) YulX¥) = d,Uy(x) + r,(x),

where d, > 1 as n —> oo and r,(x) = 0 uniformly in x, as n - co.

Proof. It is clear that if K(x,s) = 0, then the integro-differential equation
reduces to A[y,] = A2y,. Hence A2 = «2, and y,(x) = U,(x) and r,(x) = 0. There-
fore we assume that K(x, s) # 0. Let

(3.5) D,(x) = A2A(x),
where

(36) ) = K 9,00 ds.
Then (3.2) becomes

Let I'; (x, s) be the bounded generalized Green’s function studied in Lemma 2.2;
that is, let I'; (x, s) be the bounded solution of

(3.8) AT, (x, 5)] — 42T, (x, ) = ?0;(;) 5)

— Ux)U,(s).
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We now apply Green’s identity,

=X

fxz {uL,[v] — vL,[u)} dx = p(x)W(u, v)

x
X1 X =

=x

where L, = —r(x)[A — 2] and W(u,v) is the Wronskian of u, v. Taking
u(x) = I'; (x, s) and v = y,(x), we obtain

(3.9) ya(X) = b,U,(x) + fxz I, (x, $)®,(s)r(s) ds,
since p(x) vanishes at the endpoints, wherlc
(3.10) b, = f (U (s)r(s) ds.

Using the definition of ®,(x) in (3.5), the last equation becomes
(311) 7d) = UL + 2 [T 905000 ds.
From the symmetry of I'; (x, s) and (3.8) we have
O =5) | U)Us) — \=L T (x, 5)].

r(s) r(s)

Using the last equation in the integral on the right of (3.11), we obtain

A’ﬁrln(x, S) = -

32 [T 98009 ds

(3.12) _ fxz {5(3;(5—) s) + U (x)U,(s) — ;:?)Ls[rln(x, s)]} H,(s)r(s) ds
= ) + QU — [ LI A d,

where

(3.13) Cp = JWZ U (s)#,(s)r(s) ds.

Applying Green’s identity to the integral on the right of (3.12), we get

(3.14) f " LI, (x. 9)1#(s) ds = j L (%, L) d,

since p(s) vanishes at the endpoints. Applying the operator L, to J#,(x) in (3.6) and
using (3.1), we obtain

(3.15) L [#x)] = a,(x)r(x)ya(x) + f "R IS ds.
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From (3.12), (3.14), and (3.15) we have
A2 JWZ L, (x, $)H(s)r(s) ds
= — ) + U, — | L5, ) Srs) ds

[ R s 5l s dsds.
Substituting the above result in (3.11), we obtain

1) = dyU,(x) — Hx) — f " L ar((s)r(s) ds

(3.16) o

- f f T, (%, R (5, 8)ya(s)r(s) ds ds,
where
(3.17) d, = b, + c,.

Using Schwarz’ inequality and (2.20), we get

(3.18) = 0(a, '?);

f L, s (yr(s) ds

X1
also

2

J ZJ ’ I, (x, S)K 1(s, )yu(s)r(s) ds’ ds
X2 X2 X2 2
= ["rieds | U R.(5, S )ls)(s) ds] ds

< J ' I3 (x,s)ds- f ’ l:f ’ K3(s, s)(s) ds f Y2(s)r(s") ds’:l ds.

X1

Hence

(3.19) J ' f zrln(x, $)K (s, 8"y (s)r(s’) ds’ ds = O(a */?).
From (3.16) to (3.19), we obtain

(320) yn(x) = dnUn(x) - %,(X) + I,,(X),

where

(3.21) I(x) = O(a; Y/?).

From the definition of J,(x) in (3.6),

(322) l£(x) = O(1).

From (3.10), (3.13), (3.17), (3.22) and the use of Schwarz’ inequality we find that
(323 ld,| = O(1).
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From (3.6) and (3.20), we get the following integral equation for J£,(x):

(3.24) n%m=ﬁM—f”mxam®m
where 1
(3.25) 100 = d, f ¥ K(x U (5)ds + f " K(x, 9)L.(s) ds.

Again using Schwarz’ inequality and (3.21), we see that the last integral in
(3.25) is O(a, /?). The first integral is O(a, ?), because

X2 1 x2 K ,
Ll KOs YU ds = ~ 5 f 2‘8)5) LU, (s)) ds

_ —1 (> K(x, s)
= f U"(s)Ls[—r(S) ]ds

me@mmw—w+mwmw

o
- 1‘%’9 - aiz f " R x, )U.(s) ds.
Hence
(3.26) £x) = 0o '12).

If k(x, s) denotes the resolvent kernel corresponding to the kernel K(x, s) in
the integral equation (3.24), and if ¢, ¢,, - - -, ¢, are the nontrivial orthonormal
solutions of the homogeneous part of (3.24), then we get

r

(3.27) H(x) = Zl AunP(X) + SulX) + sz k(x, 5) fi(s) ds.

m=

It is clear that if —1 is not an eigenvalue of the kernel K(x, s), ¢,,(x) = 0 and

mm=mw+fw&mww

Hence #,(x) = O(x, '/?). If —1 is an eigenvalue of the kernel K(x, s), then J#,(x)
is given by (3.27). In a similar way to the method used in [2, p. 120], we obtain

(3.28) lim a,, = 0,

and consequently from (3.27),

(3.29) lim #,(x) = 0.

oAp = 00

From (3.20), (3.21), and (3.29), we have
yux) = d,U(x) + 1),

where r,(x) —» 0 uniformly in x as n — c0. From the normalization of y,(x) and
U/(x),d,— 1asn— oo.
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Appendix. In this Appendix we obtain the uniform asymptotic solutions of
the differential equation (2.4). Let

(A.1) 1(x, A) = v// p(x).
Then (2.4) reduces to

d*v ”a R
(A2 22 = W) + 4L,

where p(x) = —r(x)/p(x) and

2 d2
4(x) = — [4q(X)P(X) + (dp) - 2P(x)—p] / {4p*(x)}.

dx dx?

From the properties of the functions r(x), p(x), and ¢g(x), we obtain the behavior
of the functions p(x) and §(x) near x, and x,, namely,

r(xj) -1 .
X)= —— X — X; 1+ O(x — x)}, =1,2,
p(x) p(xj)( )N ( )} J
and
4(x) = —gjx — x)7 {1 + O(x — x))}, ji=12
where
N qj 1
L= + -, =1,2
qj p/(xj) 4 .]

Hence the differential equation (A.2) is similar to the differential equation in
Case D in Olver’s work on the asymptotic solutions of linear differential equations
[4]. We follow the same procedure to find the asymptotic solutions. We take new
dependent and independent variables w and ¢ related by

w v . dx
= N X = -,

Jx dé¢
where x and ¢ are related by
(A3) —%2p(x) = 1/&.
Then w satisfies

d*w 22
(A.4) e = l:“’? + f(f)] w,
where
dz

(A.5) &) = X*4(x) + 56”2@[56"”2]-

On integrating (A.3), we obtain

L (e, ]? )
$ix) = [E‘Lj\/%dl:l R j=12.
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From the properties of r(x) and p(x), we find that
r(xj)
pl(x j)
Hence £ (x) is regular at x = x;; it is also positive and continuouson x; < x = X,.

Also, f(&;) has a double pole at £; = 0 since x = x; corresponds to ¢; = 0 and
4(x) has a double pole at x = x;.

Let
(Y
= TJ Voo™

and u? = 1 — 44;, where j = 1,2. Then &; = z} and (A.4) reduces to

d?w 1dw u =1 :|
=T a2+ B+ ) |
(A7) 2= d " [ o /(z)

(A.6) Efx) = (x — x){1 + (x — x)O(1)} asx — x;.

where
(A.8) fz) =4nz}), W) = ELfE) + 4;/830, ji=12
Using (A.3), (A.5), (A.6), and (A.8), we obtain
d2
fz) = ’:—((;C—))[@(x) + X‘3’2@(x—1’2)] + q,.%, j=1,2

From the properties of p(x), r(x), and §(x), there exist constants «, 8, and y such
that:

(1) For x; £ x < B, B < x,, z;(x) ranges over 0 < z,(x) <y = z(f), and
f(zy)isregularon 0 < z; < .

(i) For x, = x > a, & > X, z,(x) ranges over 0 < z,(x) <y = z,(a), and
f(z,)isregularon 0 < z, < .

(iii) There is a common domain 0 £ z; <y, j = 1,2, which corresponds to
o < x < B, for which f(z)) is regular.

The two equations in (A.7) are in the standard form of the differential equation
treated in [4, p. 78], except that the basic equation is now the Bessel equation
rather than the modified Bessel equation. Appropriate basic solutions are
z;J,(22z)) and z;Y, (24z)). And, in a similar way to Theorem D in Olver’s paper
[4], we obtain (2.8) to (2.11). Retracing the transformations, we obtain (2.5) and
(2.6).
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COMPLEX ZEROS OF LINEAR COMBINATIONS OF SPHERICAL
BESSEL FUNCTIONS AND THEIR DERIVATIVES*

B. DAVIESt

Abstract. We investigate the zeros of the functions [cos (ms) j,(x) + sin (ns)y,(x)] and [cos (ms)
- (xj(x)) + sin (ns) (xy(x))] for arbitrary real values of s and integer ¢. In particular, we find the
number of complex zeros for each value of s, and give qualitative information about the loci of the
complex zeros as s varies. The method depends on elementary considerations from the theory of
first order nonlinear differential equations.

1. Introduction. In the course of an investigation which involves the normal
modes of electromagnetic radiation in a spherical cavity [4], we have found it
necessary to have certain information about the complex zeros of the functions

" 245, X) = €08 (1) j(x) + sin (ms)y,(x),

Z/s, x) = cos (ns)(xjx)) + sin (ms)(xy,(x)),
where j,(x) and y,(x) are spherical Bessel and Neumann functions [1], and 7 is an
integer. In particular, we have needed to know not only the number of complex
zeros of these functions for real values of s, but also the qualitative nature of the
curves in the complex plane determined by the functional equations

(2a) z/(s, x(s)) = 0,
(2b) Z s, x(s)) =0
and their relation to the zeros of spherical Hankel functions. This information does
not seem to be available among the considerable literature on the zeros of Bessel
functions [1],[5], [6] and so we investigate the problem in the remainder of this

paper, using an extremely simple method which depends on an analysis of the
qualitative behavior of the solutions of a first order nonlinear differential equation.

2. Zeros of z,(s, x). In this section we investigate the zeros of the function
z,(s, x) for arbitrary real s. In order to simplify some of the discussions, we restrict
¢ to positive values, neglecting the trivial case of #/ = 0. We begin by considering the
differential equation

(3) d%z,(s, x) = 0.
Explicitly, (3) may be written as

dx/ds = N /s, x)/D s, x),
4) N,(s,x) = —0z,/0s,

D s, x) = 0z,/0x.

Suppose we solve (3), choosing as initial condition any pair x,, s, which satisfy
2[S9, Xo) = 0; then define s; and s, by the condition that the open interval s,

* Received by the editors March 2, 1971, and in final revised form January 28, 1972.
+ Department of Applied Mathematics, Australian National University, Canberra, Australia.
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< s < s, is the largest open interval containing s, such that D (s, x(s)) # 0 for
§; < s < s,. Then the curve defined by x(s) is unique and smooth for s; < s < s,
(see [2]), and is a locus in the complex plane of zeros of z,(s, x).

It is well known [1] that the function z,(s, x) has an infinite set of real simple
zeros for each value of s, and that for two different values of s these zeros interleave.
Therefore, N (s, x) = z,(s — 1, x) and D(s, x) are real and alternate in sign at the
zeros of z,(s, x), and dx/ds is always of the same sign at each real zero. By examining
asymptotic forms it is easy to conclude that dx/ds is real and positive for real x,
and that the real axis is a locus of zeros, which move in a positive direction as s
increases.’

To investigate other solutions of (3), we need to know what values s, and s,
may assume, and the corresponding values of the limits
x; = lim x(s),

(5) o
x, = lim x(s)
S8y
if they exist. There are several possibilities ; for s; they are as follows:
(a) s, is finite, x, is finite. This gives the conditions

©) 281, X1) = €os (msy)jx,) + sin (s )yx;) = 0,
D(sy, x1) = cos (msy) jy(x,) + sin (ms;)yy(x,) = 0.

The determinant of these equations is the Wronskian x; 2 and since it is never zero,
the only solution is

sin (ns;) = 0,
(7) Sy =n, n=0’i1’i_2,"',
X1 209

(b) s, is finite, | x| is infinite. Then we must have z,(s, x) = 0 and D (s, x) - 0
as s — s, and using the asymptotic forms for the Bessel functions of large argu-
ment, we get the conditions

@ sin (s =+ x — ¢n/2) + O(x~ 1) — 0,
cos(ns + x — ¢m/2) + O(x~ ') >0

as s - s;, which are impossible to satisfy simultaneously.

(c) s; = —co. In this case the solution x(s) is unique for all s < 54, and in
particular, must be one of the real roots of j,(x) whenever s is an integer. But the
uniqueness of the solution implies that the locus is the negative real x-axis.

Similar considerations apply to s,, so that we find that the only singular
point of solutions of (3) subject to given initial conditions is x = 0 when s = 0,
+1,42,---.

To find the loci of the complex zeros we first note that for s = n there are no
complex zeros, since j,(x) has only real zeros. Hence when s is close to an integer,
the complex zeros are close to zero, since this is the only singular point of (3).

! This result is shown in [3], where the real zeros of z, and 2, are investigated.
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Using the asymptotic forms for j,(x) and y,(x) in the neighborhood of x = 0,
we find that if s = n + ¢, then?

) x ~ [m(2/ + D2/ — D]+,

For ¢ > 0, we have one real positive root and 2/ complex roots with arguments

2nj
10 = 4 j=1,2,---,2/.
(10) arg (x) = +5, . j

When ¢ < 0, we have one real negative root and 2¢ complex roots with arguments

2mj

(11) arg(x) = —m + VAl

j=1,2,-, 2.

Assincreases fromn + eton + 1 — ¢, each of the complex roots must return to the
origin. Furthermore, no two loci can intersect (since this would imply a singular
point) so that the complex roots travel in 2/ closed loops, half in the upper half-
plane and half in the lower half-plane.> We have therefore proved that the function
z,(s, x) has exactly 2¢ complex roots for every nonintegral value of s. A sketch of the
loci for £ = 2 is shown in Fig. 1, with arrows indicating the direction of motion of
the zeros for increasing s. We shall show in § 3 that no loop may contain another
loop in its interior, so that the arrangement shown in Fig. 1 is the only possible one.

Im(x)

FiG. 1. Zeros of z,(s, x)

3. Relation to the zeros of spherical Hankel functions. We shall now show
that each closed loop of z,(s, x) = 0 circles exactly one complex zero of one of the

two spherical Hankel functions defined by [1]
hMO(x) = j (x) + iy Ax),
(12) (42)( ) ]a( ) ',VJ( )
he?(x) = jAx) — iyAx).

26+ DN =20 + 1) = 1) --- 3)(1).
3 It is trivial to show that the complex zeros occur in complex conjugate pairs.
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We first note that the function z,(s, x) may be expressed as

(13) z/(s, x) = 3{e”"h{D(x) + e™hP(x)]

so that if z(s, x) = 0 we have

(14a) IRV = [hP(x),

(14b) arg [hyV(x)] — arg [AP(x)] = 2n(s — 7 + n),

where n is an arbitrary integer. Conversely, if |h!(x)| = |h$*(x)|, equation (14b)
shows that there exist values of s such that z,(s, x) = 0. Consequently the curves
defined by (2a) are equivalent to those defined by the condition |h!(x) = |h*(x)|.
In fact, the curves along which z,(s, x) = Oseparate regions where |h{)(x) S |h{(x)],
and we have marked the regions in Fig. 1 with the numbers 1 or 2 as |h{"| or [h?)|
is the smaller. We shall prove this last assertion. In the upper half-plane, using the
asymptotic forms of the spherical Hankel functions, we find |h!(x) < |h$(x)|
outside the closed loops. From the facts which are proved below about the loops,
particularly that each loop contains one zero of h{?(x), we have |h!(x) > |h$(x)|
in the interior of each loop. A similar argument applied in the lower half-plane
completes the proof.
Now we consider the integral*

1 (%) hfP(x)
15 N = — _.*_—{ —_ 4 d
(1 i H W)~ W |
taken in a positive (anti-clockwise) direction around one of the closed loops. By the

principle of argument, its value is equal to the difference between the number of
zeros of h{!) and h{?) inside the loop. Using (14), we can write (15) as

1 d
— (1) (2)
N i L . In {AP(x)/hN(x)} dx

=fds:i1.
c

We get + 1 if the zeros of z ,(x, s) move in a positive (anti-clockwise) direction as s
increases, — 1 if they move in a negative direction. Now it is well known that
hM has ¢ zeros in the lower half-plane and h{?’ has £ zeros in the upper half-plane,
and since there are / loops in each half-plane, which cannot intersect each other,
each loop circles one zero of a spherical Hankel function and no loop contains
another. This justifies our statements made at the end of § 2 and following (14).

(16)

4. The function Z,(s, x). The investigation of the zeros of Z,(s, x) proceeds in
exactly the same manner as for z,(s, x). The differential equation (3) is the analogue
of (4), with
1 N(s, x) = sin (zs)(xj/(x)) — cos (ns)(xy X)),

D(s, x) = [£(¢ + 1)/x* — 1][cos (n5)(xj(x)) + sin (7s)(xyAx))],

4 Although the origin is on the contour, the integrand does not have a pole there, on account of
cancellations.
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and the solutions of this equation with initial conditions Z,(sy, xo,) = 0 give a set
of smooth curves in the complex plane, except for points where we can simultane-
ously satisfy the conditions Z,(s, x) = 0 and Dj(s, x) = 0. One solution of these
equations is again s = n, x = 0, but we now have two additional singular points
(xZ, s%), given by

s) xE =+ /1 + 1),
tan (ms;) = — (/%)) /(xy ) 1z -

We shall investigate the nature of the loci of zeros in the neighborhood of these
critical points below.

Similar arguments to those presented in § 2 show that the real axis is a locus
of zeros. Now, however, the presence of the factor [£(¢ + 1)/x? — 1] in Ds, x)
gives a slightly different result for the sign of dx/ds : it is

>0, |x > x},
(19) _d_x I
ds (<0, |x| < x/.

Hence the zeros travel in the direction of increasing x if |x| > x}, and the opposite
way if |x| < x}. Let us choose s = 0 at x = 0, and follow the change in s as x
varies along the real axis to x;. We have just noted that s is monotonic decreasing
as x increases in this range; we now want to show that s} > —1/2. Inspection
shows that if s7 < —1/2, then the function (xy,(x)) has a real zero for some
x < x}. But the first positive real zero of (xy,(x)) is larger than the first zero
of y,(x), whichin turnislarger than/ + 1/2(see[1]). Hence we seethat st > —1/2;
and by a similar argument that s, < +1/2.

Now we shall investigate the nature of the complex curves in the neighborhood
of the points x = 0 and x = xF. For x close to zero, we again put s = n + &,
and find that if ¢ > O we have a real negative root and 2/ complex roots with
arguments

2mj
20+ 1

(20 arg(x) = —m + j=12,---,2¢.

If ¢ < 0, we have a real positive root and 2/ complex roots with arguments

_ 2m
T2+ 1

(21) arg (x) j=1,2,---,2¢/.

We must also determine the nature of the curves when x is close to x; and s
tos). Wewrite x = x + dand s = s/ + ¢and expand Z,(s, x) in a Taylor series
about the critical point, keeping only the first nonvanishing terms in ¢ and J, to get

0. 1,[0%.
(22) £ %z,(s,x) + 55 Wz,(s,x) ~ 0

which gives 6% ~ Ae for some constant A. We have seen that as s increases from
s, two real roots move away from x.", hence A4 is a positive constant and for
negative values of ¢ we get the approximation

(23) x~ x] +iJAG — ).
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Hence as s approaches s;” from below, two complex roots move in toward the point
x.;, and then move off along the real axis as s exceeds s." . The behavior near x_ is
similar ; in this case there are two real roots for s < s, , and as s increases through
this critical value they coalesce, and then move off into the complex plane.

We now have sufficient information to sketch the closed loops in the complex
plane, and we have done this for # = 2 in Fig. 2. From our considerations, we may
also say how many complex zeros are possessed by the function Z(s, x) for any
particular value of s. When s is an integer, there are no complex zeros. If s lies in the
rangen + s, < s < n + s, there are 2¢ complex zeros, half of them in the upper
half-plane and half of them in the lower half-plane. For s in the range n + s
<s<n+ 1+ s, there are 2/ + 2 complex zeros, and it is interesting to note
that this case includes the complex zeros of the function (xy,(x))".

Im(x)

F1G. 2. Zeros of Z,(s, x)

Finally we remark that the method of § 3 shows that Fig. 2 is the only possible
arrangement, and that each closed loop in the upper half-plane encloses exactly
one zero of the function (xh{?)(x))'. Since the zeros of this function are the roots of a
polynomial of degree # + 1, this exhausts all the zeros. Similarly the loops in the
lower half-plane each enclose one zero of the function (xh{!(x))'.
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STABILITY THEORY FOR MULTIPLE EQUILIBRIUM STATES OF A
NONLINEAR DIFFUSION PROCESS:
A SINGULARLY PERTURBED EIGENVALUE PROBLEM*

HERBERT B. KELLER%}

Abstract. It has been shown, previously, that the parabolic problem: Y, — eY,, — Y, + g(x, Y) = 0,
Y, (t,0) — aY(1,0) = A, f(Y(t,1), Y(t, 1)) = O has, for sufficiently small ¢ > 0, a distinct equilibrium
state y{x, ¢) for each simple root a; of F(a) = f(«, g(1,®)) = 0. Now it is shown that y(x, ¢) is stable or
unstable provided that dF(a;)/de > 0 or <0, respectively (with f(y, z) > 0). This problem leads to a
singularly perturbed eigenvalue problem of the form: ep,, + p(x)p, + [Ar(x) — q(x)]@ = 0, a,e(0)
+ a,0,(0) = 0, byp(1) + b (1) = 0.Itisshown that ase | O(¢ 1 0) the least (greatest) eigenvalueis given
by Ae) = A5 + O(©)(A; + O(e), where A5 = [q(1) + boby 'p(1)}/r(1)and A = [g(0) + aa; 'p(0)]/r(0).

1. Introduction. We consider diffusion processes for a quantity Y(¢, x) which
satisfies a nonlinear initial boundary value problem of the form:

(1.1a) Y —eY — Y, +gx,¥)=0, 0=<x=1 t>0;
(1.1b) Y(1,0) — aY(1,0) = 4, f(Y(t,1), Ydt,1) =0, t>0;
(1.1¢) Y(0, x) = Yy(x), 0<x<l

In particular, the (dimensionless) temperature in various adiabatic chemical
reactors with first order irreversible reactions can be shown to satisfy such a
system. See R. Aris [1] for a detailed formulation of these applications. The
equilibrium states y(x) of such processes are determined by nonlinear two-point
boundary value problems of the form:

(1.2a) e+ Ve =8(Xy), 0=x=1;
(1.2b) V<(0) — ay(0) = 4;
(1.2¢) F(1),y(1) = 0.

Recent experiments with chemical reactors have shown that multiple equilibrium
states can exist and be ‘“‘stable’” and with some experimental finesse it is made
rather clear that “‘unstable” equilibrium states also exist [6]. Theoretical stability
analysis for all such problems governed by (1.1) with sufficiently small ¢ > 0 will
be given here.

An existence theory for nonunique solutions of (1.2), for small ¢ > 0, has just
been given by the author [3] under relatively mild assumptions on g(x, y) and
f(y, ). In particular, it is shown that if the equation

(1.3a) Fl@) = f(a,g(1,a) = 0

* Received by the editors November 19, 1971, and in revised form March 15, 1972.

t Applied Mathematics, Firestone Laboratory, California Institute of Technology, Pasadena,
California 91109. This work was supported by the U.S. Army Research Office, Durham, under Contract
DAHC 04-68-0007.
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has J simple roots «; in an appropriate interval :
(1.3b) M<oa, <o, <---<a; <N,

then (1.2) has at least J distinct solutions, y = y(x, ¢), provided ¢ > 0 is sufficiently
small. Under slightly stronger smoothness conditions on g(x,y) and with
£y, z) > 0, we shall show that

stable " dF(a) >0,
unstable ! do | <O.

(1.4 yix,¢€) is{

Thus the entire existence and stability theory for equilibrium states of (1.1) with
small ¢ > 0 is reduced to a study of some simple properties of the given function
F(a).

The stability problem indicated above is formulaed in § 2 and leads to a
singularly perturbed eigenvalue problem which is a special case of

(1.5a) eQxx + PX)Q, + [Ar(X) — q(x)]@ = 0,
(1.5b) a,9,(0) + aqe(0) = 0,
(1.5¢) bip (1) + boo(1) = 0.

For stability we need only examine the sign of the least eigenvalue of (1.5) for
small ¢ > 0. However, in § 3 and §4 we find the limit of A(¢), the least (greatest)
eigenvalue of (1.5) as ¢/ 0 (¢10). More precisely with

(163) P(x),‘I(x)ar(x) € C 1[0a 1] B
(1.6b) p(x) Z po >0, rx)zro>0,
we show that
L|:q(1) + %p(l):l + 0(e) ife>0,b, #0,
~ (1) b,
(1.7) Me) =

i[qm) + @p(())] +0() ife<0,a, #0.
r(0) a,

The leading term in (1.7) is just the eigenvalue of the reduced eigenvalue
problem obtained by setting ¢ = 0 in (1.5a) and retaining (1.5b) if £10 or (1.5c) if
¢l0(see § 3). A variety of results on the convergence of the eigenvalues of singularly
perturbed eigenvalue problems to those of the corresponding reduced problems
are known [7], [8], [9]. These results are generally of the form that each eigen-
value of the reduced problem is the limit as ¢|0, say, of some eigenvalue of the full
problem. Thus no particular information is obtained on the principal eigenvalue
of the unreduced problem. More complete information is given by Moser [9] (in
the self-adjoint case) where it is shown that each eigenvalue of the full problem
converges to some eigenvalue of the reduced problem. However, this result requires
the eigenfunctions of the reduced problem to be complete. This is clearly not the
case in our problem as at most one reduced eigenvalue exists. Thus it appears
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that none of these rather thorough studies has quite the result we require. The
simple proof of (1.7) given in § 4 uses techniques that are completely different
from those in [7], [8], [9].

2. The stability problem. An equilibrium state y(x, ¢) is asymptotically stable

(in the small) if the solution ¥{(z, x) of (1.1) with the initial data
Yo(x) = yjx, &) + oY(x)
satisfies, for all sufficiently small |¢| and smooth bounded perturbations y(x),
(2.1) lim | Y (¢, x) — y{x,¢)| = 0.
1= o0
The standard (heuristic) examination of stability is to seek a solution of (1.1),
with Y(x) as above, in the form
Y(t,x) = yfx, &) + 5 e M(x),

and to retain only lowest order terms in §. This yields

(223) EQyx + Px + ['1 - gy(x’ yj(x, 8))](/) = Oa
(2.2b) ¢(0) — ap(0) = 0,
(2.2¢) FAviL,€), yiL, e (1) + £y (1, e), yi1,€)ep(1) = 0.

Here we have assumed that g(x, y) and f(y, z) have the appropriate continuous
derivatives. If the least eigenvalue of (2.2) is positive, then we expect that y(x, &)
is stable in the sense (2.1). That this holds can be shown in many cases [5] and we
assume it to be the case here. Thus we say that an equilibriuAm state y(x,t) is
stable, unstable or neutral, respectively, if the least eigenvalue A(e) of (2.2) is >0,
<0 or =0.

We shall examine the least eigenvalue of (2.2) for small ¢ > 0. In this case we
can eliminate the dependence of the “coefficients” g, f, and f, on ¢ by evaluating
them at ¢ = 0. Indeed, in [3] it is shown that, uniformly on [0, 1] and for all ¢ in
0<eZeg,

2.3) yx.6) — vfx)| < Ce.
Here v/(x) is the solution of the reduced problem
(2.4) v(x) = glx,v), o(l)=a,

and a; is the jth root in (1.3). Thus in place of (2.2) we consider

(258) EQyx T @y + [)' - gy(x, Uj(x))]§0 =0,
(2.5b) ¢(0) — ag(0) = 0,
(2.5¢) S D), vi{(De 1) + fivi1), vi(1)e(1) = 0.

Now if, as we shall assume, f,(v{1), v(1)) # 0, it is easy to show that the least
eigenvalues of (2.2) and (2.5) differ by O(¢). Hence the stability or instability (but
not neutral stability) for sufficiently small ¢ > 0 can be determined by examination
of the least eigenvalue of (2.5).
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Obviously (2.5)is a special case of (1.5), where p(x) = r(x) = 1,4(x) = g,(x,v/x)),
a; =1,ay= —a, by = f(v{l),v}(1)) and by = f(v1), v(1)). So when (1.7) has
been established it follows that the least eigenvalue of (2. 5) or indeed of (2.2) for
¢ > 01is given by

J01), vi(1)g,(1, v,(1)) + f(v(1), v,(l))
f(v(1), vi(1))
Recalling (1.3a) and using (2.4), this can be written as
- dF(o)/do
2.6 Me) = ——L—
(2 ©= foel,2)

Thus (1.4) clearly follows if f,(y, z) > 0 and ¢ > 0 is sufficiently small.
We now turn to the demonstration of (1.7).

Ae) =

O(e).

+ O(e).

3. Reduced eigenvalue problems. The correct limiting values of the least and
greatest eigenvalues A(g) of (1.5) are suggested by an elementary application of
singular perturbation theory. That is, if we simply set ¢ = 0 in (1.5), the problem
becomes

(3.1a) PO (%) + [Ar(x) — g()(x) = 0,
(3.1b) app0) + agy(0) = 0,
(3.1¢) by (1) + boy(1) = 0.

Clearly a solution of the first order equation (3.1a) cannot, in general, satisfy two
boundary conditions as in (3.1b, ¢). Singular perturbation theory (see [2]) usually
tells us, or rather suggests, which if either of the boundary conditions is to be
retained. Indeed, since p(x) > 0 is assumed here, for ¢ > 0 the theory suggests
that (3.1c) is to be imposed and for ¢ < 0 that (3.1b) is applicable. However, it is
a simple matter to consider both possibilities, avoiding any real knowledge of
singular perturbation theory, and to show that the indicated behavior is correct.
Thus we define the two reduced problems: RP_ = (3.1a, b) and RP, = (3.1a,¢).
The general solution of (3.1a) is

X l _
(3.2) W(x) = cexp [—fo %d&],

with the constant c arbitrary. If ¢ = 0, then y/(x) = 0 and both conditions (3.1b, ¢)
are satisfied for all 1. We seek values of A for which nontrivial solutions of RP exist;
such values are eigenvalues of the corresponding reduced problems. Using (3.2) in
(3.1b) or (3.1¢) we find that the only possible eigenvalues of the reduced problems
are

1 .
i = r—(o—)[q(O) + Z—‘:p(O)] ifa, # 0 for RP_,
(3.3) L=
i = (11)[ (1) + b—p(l):l if b, # 0 for RP,.

Ifa, = 0 (b, = 0), then RP_ (RP,) has no eigenvalue.
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4. The limit results. It is of course by no means clear that the eigenvalues
(3.3) of the reduced problems are related to any of the eigenvalues of (1.5)as ¢ T 0
or ¢} 0. To show the relationship we first transform (1.5a) into the standard
Sturmian form:

(4.1) (P&, t; X)), + [AR(e, 15 %) — Qle, ;X))o = 0,

by introducing the quantities:

42 E(e, t; x) = exp (%th p(&) d{), P(e,t;x) = eE(e, t; x);

Qe t; x) = q(x)E(e, t; x), R(e, t; x) = r(x)E(e, t; x).

Note from (1.6b) that R(e,t;x) > 0 and P(g,t;x) >0 or <Oon 0= x=1 if
¢ > 0 or <0. The variational characterization of the least eigenvalue can be used
in (4.1), (1.5b, c) taking account of this sign change with ¢ to get:

1

[P(e,t; x)p(x) + Qe,t; x)@*(x)]dx — Ple,t; 0)— %0) + P(b‘,t;l)?wz(l)
1

(4.3) +A(e) = min +
o<t f R(z, 3 X)p?(x) dx
0

Here A(e) is the least (greatest) eigenvalue of (1.5) for ¢ > 0 (¢ < 0). Also we have
assumed that a,;b, # 0and for the admissible functions we can take .o = C,[0, 1].
If a, = 0 (or b, = 0), we must drop the corresponding boundary term in (4.3)
and take o7 = C,[0, 1] N {p(x)|©(0) = 0} (or {e(x)|e(1) = 0}). The sign () is
that of ¢ # 0.

Now we note some basic properties of the integrating factor E(g, t; x). First,
by partial integration, it follows that

fl f(X)E(S, t; X)i—x = E(g’t; l)f( f(O)

o) - e g

J(x) o dx
— gfo :l; p(—x)“)E(S,t,X):;—,

for all f(x) e C,[0, 1]. Further by (1.6b), we get

(4.4)

(4.5a) 0 < E(,0; x) < ePoxle ife<0, 0sx<1,
(4.5b) 0 < E(e,1;x) S er="bl jfe>0, 0<x=<1,
(4.5¢) E(,0;0) = E(e,1;1)=1 ife #0.
Using (4.2) and (4.4) in (4.3) now yields
(4.6a) +(e) = min + %{p; ¢},
oesd
where

(1) (0 €
Hloie) = 1) (0 '

U d [rg?
2 2 .
E(e,t; 1)— (1) @*(1) — E(e,t; O)p( 0) @*(0) — fo dx( ’ )E(a,t,x) .
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Our basic results follow by obtaining upper and lower bounds on A(¢) from (4.6).
In particular, we use the trial functions

(4.7a) ox) =1 ifa;by # 0,
(4.7p) o(x) = x ifa, =0,b, #0,
4.7¢) ox)=1—-x ifa; #0,b, =0.
Then for ¢ > 0 take t = 1 in (4.6) and recall (4.5b, ¢) to obtain
q(1
[ ((1)) + ]+ O(e)
(4.82)  Ae) < oD =13 +0() ifb, #0ande > 0.
—=+ 0
TR
Similarly for ¢ < 0 take t = 0 in (4.6) to obtain
0
[qzoz + a"} + O(e)
(4.8b)  A(e) = 0 =15 +0(s) ifa, #0ande < 0.
———+ 0O(e
oy O

Bounds on the other side are more subtle. We use the fact that the eigen-
functions @(e, x) can be normalized uniformly in ¢ by

(4.9) 0=de,x)=1; 0=x=1, 0<le| = e.

Further, without loss in generality we can assume that ¢(c, x) € C,[0, 1]. These
eigenfunctions in (4.6) give A(¢) = #{®;¢}. Then we use the fact that

1 =0 ife>0,
sf Q2E(e, t; x) dx <0 ife<0

to drop this term and get

(4.10)

@ 0| A2 ﬂ Ao | .y _ (
i(s){>}E(st 1)[ (l)+ ] (e, 1) — E(s, t; 0)[ (0)+ ] (&,0) sf
<

>0
", "o . ( ) ’ 8{<o'
E(e,t;1) (l)q)( ,1) — E(e,t;0) (O)q)( ,0) — f E(e,t; x)——

)E(e,t:x)d—)f

To proceed as above and get the opposite inequalities from those in (4.8) we must
first show that |@ (e, x)| can be bounded independent of ¢ on 0 < |¢| < g, SAY.

From (4.1) with 4 = A(e), ¢ = @(e, x) and ¢ > 0 we integrate over [0, x] and
use (1.5b) to get, setting t = 0:

Pyle, x) = a —¢(e, 0)E™ (g, 0; x) f [4(8) — A1 Pe, E)E(e, &3 x)—= é.
If |A(e)) < pufor 0 < & < &, then, recalling (4.5) and (4.9),

N a, _ 1
(4.11a) P60 < =2 e + —(llqll, + plrl,), &> 0.
a; Do
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If a; = 0, then the corresponding term does not enter. For ¢ < 0 we proceed in
an analogous fashion, integrating (4.1) over [x,1] and setting t = 1 to get if
A = p:

1

. b _ 1
(4.11b)  §.(e,x) = b_° eroll=xle | p—(llqllo0 +ulrlle),  e<O.
0

It only remainsto show that|i(e)] £ ufor0 < |¢| < ¢oandsome pindependent
of &. For 0 < ¢ £ ¢, we have from (4.8a) that for some constant K,

Me) £ A + Koeo.
A lower bound is obtained by means of Theorem 15 in Protter and Weinberger
[4, p. 38]. In particular, with w(x) = (x — 1/2)*™ + ¢ for sufficiently large integer
m = 1 and sufficiently small é in 0 < § < 1/2, this result implies that
gl + 2mlipll, + 4m?eq
ro0
Similarly, |A(¢)| is bounded for 0 > & > —¢, and so |@,(&, x)| is uniformly bounded
for 0 < || £ ¢, as follows from (4.11).
Using (4.5) in (4.10) now implies with (4.8) that:
; Ay + 0@ ife>0, b, #0,
&) =
Ao +0() ife <0, a; #0.

if0 < ¢ =g

Ae) = —(

4.12)

We have thus proven under conditions (1.4) that: when b; # 0 (a, # 0) the least
(greatest) eigenvalue A(e) of (1.3) converges as ¢ | 0 (¢ 1 0) to the eigenvalue AJ (1)
of the reduced problem RP , (RP_). We stress that this phenomenon occurs only if
the boundary condition that is “retained’’ by singular perturbation theory is not
of the Dirichlet type. In the case of constant coefficients it is not difficult to show
that all of the other eigenvalues (including the principal one if b; = 0, ¢ < 0 and
a, = 0,¢ < 0) diverge to + oo (—oo) like |e| "' ase | 0(e10).
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A STEFAN PROBLEM INVOLVING THE
APPEARANCE OF A PHASE*

J. R. CANNONt anp MARIO PRIMICERIOf

Abstract. The maximum principle is utilized in the demonstration of existence and uniqueness
results for the free boundary problem associated with the creation of an additional phase at the
boundary; ie., the free boundary has its point of origin on the boundary of the region under con-
sideration.

1. Introduction. The physical setting of the problem discussed in this paper
is a slab of ice of unit thickness which at an initial point in time is uniformly
heated at one face while uniformly cooled at the other. This induces the creation
of the water phase at one face and a water-ice interface plane which moves into the
slab. The mathematical setting of the problem is the determination of u = u(x, t),
v = v(x,t) and s = s(t) which satisfy

L=k, —u =0, 0 < x < (1), 0<t=T,
(L.1) u(0,1) = f(1), u(s(t), t) = 0, 0<t=T,

s(0) = 0,

L,v = k0, — v, =0, s(t) < x < 1, 0<t=T,
(1.2) v(l,t) = g(t), v(s(t), t) = 0, 0<t=T,

u(x, 0) = ¥(x), 0=x=1,
(1.3) §(t) = — K u(s(t),t) + Kyv(s(r), 1), 0<t=T,

where k; = k;p; ‘¢, i = 1,2, represent the diffusivities; k;, i = 1,2, the

conductivities; p;, i = 1,2, the densities; ¢;, i = 1,2, the heat capacities;
K; = kp; L™ i =1,2; L is the latent heat of fusion; and all of the preceding
constants are positive. T is an arbitrary but fixed positive number, and the
functions f = 0, g < 0 and ¢ < 0 are the boundary and initial data for (1.1),
(1.2) and (1.3).

In this paper we demonstrate the global existence and uniqueness of the
solution of (1.1), (1.2) and (1.3). The results are based upon the maximum principle
and the results of our paper [11] in which (1.1), (1.2) and (1.3) was considered for
the case s(0) > 0. The analysis given in [11] depended heavily upon the fact that
s(0) > 0. The situation here is analogous to the papers of Cannon and Hill [4],
[6] in which a substantially different analysis was required for the two cases. As
in [11], we shall by necessity restrict ourselves to small data. The major point in
our existence argument here is the derivation of a nontrivial lower bound on the
free boundary s = s(t). The analysis is similar to that in [4] and [6]. The paper is
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concluded with comments on results that can be achieved for the specification of
flux on the boundaries.

2. Definitions and hypotheses. We begin with a list of the assumptions needed
for the existence theorem.

(A) Let f = f(t) be a bounded piecewise continuous function such that there
exist positive constants «,, f;, 4, A and y < 0 such that

2.1) min (o;, At'*7) < f() < min (B,, At'*?)

for0<t<T

(B) Let g = g(t) be a bounded piecewise continuous function such that there
exist two positive constants «, and f, such that
2.2) —p, <glt) < —a, <0, 0Zt<T

(C) Let = Y(x) be a piecewise continuous function such that there exist two
positive constants a and # such that

(2:3) 0= Y(x) = —a(l — exp {—x; 'nx}).
(D) With respect to the constants f§;, i = 1,2, and a, we assume that
(2.9 max 2K, B,k1 %, 2K,k; * max (8,,a)) < 1.

By a solution (u, v, s) of the Stefan problem (1.1), (1.2) and (1.3), we mean that :

1°. s = s(¢) is a continuously differentiable function for 0 < ¢t £ T and con-
tinuous for 0 <t < T, s(0) = 0,and 0 < s(t) < 1.

2°. u and v are such that:

(a) the derivatives appearing in the equations exist and are continuous
in their respective domain of definition;;

(b) u and v are continuous in the closure of their respective domain of
definition except at points of discontinuity of the data ;

(c) for such points of discontinuity, 0 < lim infu < limsupu < oo and
—oo < liminfv < limsupv < 0 as each such point is approached
from the interior of the region in question;

(d) u and v satisfy (1.1) and (1.2) respectively.

3°. u, v and s satisfy (1.3).

3. Existence. For all » > 0 and sufficiently small, let (u, v*, s®), where
u’ = ub(x, 1), v® = v®(x,t), and s® = s’(t), denote the solution of (1.1), (1.2) and
(1.3), with the alterations s(0) = b, u’(x,0) = 0,0 < x < b, fis replaced by f + b,
and  is replaced by /b, where

YP(x) = max (Y(x), —a(l — exp {—x; 'n(x — b)}))

for b < x < 1. The existence and uniqueness of (u®, v°, s®) are discussed in [11] and
the assumptions (A), (B), (C) and (D) guarantee the results derived in [11]. Con-
sequently, we have a family of functions s® for b > 0 and sufficiently small. In
order to guarantee the existence of a solution of (1.1), (1.2) and (1.3) it suffices to
demonstrate that the family s® is uniformly bounded and equicontinuous. The
uniform boundedness of the family is obvious; ie., 0 < s® < 1. The question of
equicontinuity of the family is a more complex matter which will occupy most of
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the remaining paragraphs.
Since

(3.1) $P(t) = — K ul(s"(t), 1) + K, vb(s"(1), 1)

for 0 < t < T, we begin an estimate of s* by estimating u? and v%. Since v? has
already been estimated in [11] we can state the following lemma.

LemMMA 1. For 0 < b < by, where b, is sufficiently small and fixed, there
exists a Ty = Ty(A), 0 < A < 1 — 2b,, such that

(3.2) sty <1 — A
for 0 <t £ T, and that

vi(s°(1), 1) = —max (a, f,)K; !
(3.3)
1 —exp{—x; 1(||5.b||(0,91 + ”I)A}]_ 1(||~§b||(0,9] +1), 0<t=0= Ty,

where for any function h = h(t) defined ona < t < b,
(34) hllass = sup, [AO).

Remark. The proof of Lemma 1 follows from the argument given in [11] and
the fact that s%(t) < s*°(t) which follows from the fact that f + b < f + by,
¥, £ ¥,,,and b < by ; i.e., the monotone dependence of the free boundary upon
the data. Note that ||$° (0,07 < o0 since it is shown in [11] that s® is the uniform
limit of a sequence of equi-Lipschitz-continuous functions.

In order to derive an estimate of u% we must first derive a lower estimate for
s?. Consider the problem

L,z=0, 0 < x <o), 0<t=0,
(3.5) 2(0,1) = fy(t), 2(a(t),t) = 0, 0<t=0,
6(t) = —K,z(0(t), 1) — K, [0zl a(0) =0,
where f1(t) < f(¢), 0 < T, and via (3.3) and the remark above,
(3.6) o3l = Sup, los(®), £)] < 0.
Suppose that a solution of (3.5) exists in the sense of a definition analogous to the

one given in §2. Then, we can demonstrate the following lemma.
LEMMA 2. For0 <t £ 6,

3.7) a(t) < s(1),

Proof. Suppose (3.7) is false. Then since b > 0, there exists a first time ¢, > 0
such that sb(ty) = o(t,) and §%(to) < 6(t,). Since u* —z =0 in 0 £ x < o(t),
0 <t < t,,the parabolic version of Hopf’s lemma yields u%(s%(t,), to) < z,(a(to), to)-
But,

— K ul(s”(to), to) + K vh(s%(to), to) > — Kz, (a(to), to) — K, |10l

Hence, s%(to) > 6(t,), which is a contradiction. Consequently, solutions of (3.5) are
of interest to us. However, such problems are generally difficult to solve for
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specified f; . Hence, we consider the inverse problem of defining simple boundaries
a(t) and investigate the corresponding z(0, t) which arises from the solution of the
Cauchy problem

L,z=0, 0<x<al(t), 0<t=0,

(3.8) 2(a(t), 1) = 0, 0<t=0,
z0(t), 1) = —K7'6(t) — Ky 'K, [l

For smooth data, Hill [18] has shown that the solution of (3.8) may be represented
as

© 9 (1 (x — a(t)?*!
3.9 ,[ == R U . 0 —
(39 w60 = 2 6t’{x’1 2 + 1!

j=0

z,(0(1), t)} :

From (3.8) we see that

© o (1 (x — 2j+1
Z(x’t)=_~goa_ﬂ{;§%— Kfld(t)}
31 - 2j+1

{E%Kf‘&nvm}

= z,(x, 1) + z,(x,t).

(3.10) 0

2 a0

Recalling the hypothesis (A) concerning the asymptotic behavior of f as t — 0 and
the analysis in [4, p. 13], we consider o(t) = ut®, where u >0, « = 1 + 7 and
B =1+ 2y. Then for x = 0, the first series z, in (3.10) satisfies

(3.11) kK (exp {oapi 't} — 1) £ 24(0,1) < kK7 M(exp {BuPxy 'tf} — 1)

which can be verified by an argument and analysis similar to that of Cannon and
Hill [4, p. 18]. Turning to z,(x, f) which is the second series in (3.10), we see that
0 2t 1 12 + Do — k]t(2j+1)a—j

_ -1 b .
2,(0,t) = K7 'K,|[v] j;) G+ 1) ,Eo [2j + 1) — k]

(3.12) " 17 4 D K]
_ P g j o —
=1, K7 'K, |lofl|u~ 12 # . WPy iy T =
KKl e 3 e v n-7
Hence,
.13 a 'k KT K, |08l u tem Plexp {apPky HP) — 1) £ 2,(0, 1)
‘ < BNk, KT UK ot e Pexp {Butky 1P} — 1)
since
2j + 1o —
(3.14) cWH ek

=ik =

for k=0,---,j— 1. Combining the respective upper estimates of the z,(0, t),
i = 1, 2, we obtain an upper estimate for z(0, t) which is

20,1) < [, K7 ' + B KT K | 0b ™ 1]

(3.15)
-(exp {Bu’ky 1"} — 1), 0<t<o
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Let y, be the solution of

(3.16) exp{y} —1=2y

and let

(3.17) T, = (yok, B~ i),

From the convexity of exp {y} — 1, it follows thatfor 0 <t < 0 < T,,
(3.18) 2(0,1) < 2BpPKT P + 2uK ('K, |||~

In order to apply Lemma 2, we must have z(0, t) < At*. This is accomplished by
selecting u > 0 such that

2K+ 2uK T K ||0h)| e < Art.
Fort £ 1, set

(3.19) p= 2K 2K, I%] + 2/24BK )7,

where this value for yu was derived from the best possible choice of u > 0. From
Lemma 2, we see that

(3.20) () = ur®
for0 <t <0< min(1, T, Ty, (¢; A~ ")""®). We can now estimate |u’(s’(1), t)| via

the maximum pr1n01p1e by considering the function

Y(x’ I) = _Z_AKI‘

. 1 - exp’c 1”S” x_S ) _ux’ B
(3.21) M”Sb”(o,e]{ e 8 o 03}

0<x<s(t), O0<t=Z0.
Observe that
L, Y0, 0 < x < sbp), 0<t<0,
(3.22) Y(x,00=0, 0<x<b,
Y(sb(t),t) =0, O0<t=0,

and that
2Ak — 1.
Y(©0,1) = M{l —exp { =7 I8l 005"} — f(1)
(3.23) ©1
ZAKI -1 b a a
= m{l —exp { —«x1 ISl 0. qut*}} — At* 2 0

provided that § £ min (1, T,, T, (¢; A~ *)***) and

< (K110g2)1/“
= \ulls"ll 0,0

Remark. Note that the limitation on 6 involves ||5|| , 4, as explicitly shown in
(3.24) and implicitly contained in |[¢v®| in (3.17) using the definition in (3.19).
Consequently, the range of ¢ (i.e., 8) depends upon b. If for each b and all admis-
sible 6 associated with it we can derive an upper estimate of ||s®|o.¢ Which is

s fus

(3.24)
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independent of b, then (3.24), (3.17) and (3.19) will define a positive 8 over which
the $° can be estimated independent of b.
Considering Y(s(t), t), we see that

(3.25) lub(sb(t), 1)) < 2A/u for0 <t < 0.
Recalling (3.1), (3.3) and (3.25) we can write
I°1 0.0 < 2K 1A/n + max (a, Br)x; 'K,
[1 —exp {—x3 '(15°10.00 + WA} (8"l (0,00 + 1)-

From (3.19) we see that (3.26) can be written in the form

(3.26)

(3.27) 150,01 = T(1 — exp { =5 'Alls* [ 0.000) " - (8"l 0,0 + 111)s
where

(3.28) I = 8K,AA™! + max (a, B,)k; 'K,

and

(3.29) n =1+ 4AJK, A6

Employing the argument of Lemma 2 in [11], we can state the following lemma.
LEMMA 3. If T < 1, then

) K 1 -1 2I'y
(3.30) 0.0 = max ( Lo { 2 } o 11“)'

Consequently, ||$*[| ., is bounded uniformly with respect to b in each ad-
missible interval and thus from (3.24), (3.17) and (3.19) we see that there exists
a0, > Osuch that (3.30) holds for each b > 0 and sufficiently small with 6 replaced
by 6, which is independent of b. Utilizing the Ascoli-Arzela theorem, the maximum
principle, and arguments similar to those used in [4], [5], [6], [9], [10], [11],
[12], we can state the following theorem.

THEOREM 1. Under the assumptions (A), (B), (C), (D) and

8K,AA™ ! + max (a, B,)k; 'K, < 1,

there exists a solution to (1.1), (1.2) and (1.3) for each T > 0 in the sense defined in
§2.

4. Stability, monotone dependence and uniqueness. The results of this section
require the additional assumption that the initial data ¥ be continuously differ-
entiable in a neighborhood of x = 1. Specifically we assume that

(E) there exists a 6 > 0 such that y is continuously differentiable in 1 — o
<x <1
Using the arguments, techniques and analysis of [3], [4], [6], [10], [11], [12] we
can state Theorem 2.

THEOREM 2. Let (u;,v;, s;) denote the solution of the Stefan problem (1.1), (1.2)

and (1.3) for the respective data f;, g; and \;, i = 1, 2, which satisfy the assumptions
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(A), (B), (C), (D) and (E). Then there exists a constant C which depends upon T, k;,
K;,a,a;, 8,(i=1,2),n,4, A and y such that for 0 <t < T,

s1(t) = s,(8) = C{IIf; — fallpo,g + g1 — &2lli0.n
+ Wy = Y2l + W) — '//,2"(1—6,1)}’

where the various norms used in (4.1) are the obvious modification of the definition
given in (3.4).

Proof. The proof is omitted. See [3], [4], [6], [11], [12] for the necessary
arguments and techniques. From Theorem 2 we have the following theorem.

THEOREM 3. Using the notation and assumptions of Theorem 2, if f, < f,,
g1 = gy, and y; S Y,, then s,(t) < s,(t) forallt > 0.

Proof. The proof is omitted.

As a corollary of Theorem 2 and Theorem 3 we have the following theorem.

THEOREM 4. Under the assumptions (A), (B), (C), (D) and (E), on the data f,
g and \, there exists at most one solution to the Stefan problem (1.1), (1.2) and (1.3).

4.1)

5. Case of prescribed boundary flux. The specification of temperature at the
boundaries can be replaced by the specification of the heat flux. The existence,
uniqueness, stability and monotone dependence results hold for restrictions on
the size of the fluxes analogous to those for the temperatures stated above; i.e.,
for small data classical solutions exist, are unique, and depend continuously upon
the data. The technique involves the maximum principle and the right choice of
barrier function. The details and exact hypotheses are left to the reader.
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A GENERAL ADDITION THEOREM FOR
SPHEROIDAL WAVE FUNCTIONS*

B. J. KING anp A. L. VAN BURENTY

Abstract. A general addition theorem has been obtained for the spheroidal wave functions
RY)(h, &)SE(h, n) exp (img), j = 1, 2, 3, 4. This theorem gives the expansion of a spheroidal wave
function with reference to one coordinate frame in terms of spheroidal wave functions with reference
to a second coordinate frame with arbitrary relative position and orientation. The expressions are
applicable whether the two spheroidal coordinate frames are both prolate, both oblate, or one prolate
and one oblate.

Introduction. The Helmholtz scalar wave equation
(1) (V2 + k=0

is separable in both prolate and oblate spheroidal coordinates &,#, ¢. Thus,
solutions to boundary value problems in radiation and scattering from spheroid-
shaped objects can be constructed from the eigenfunctions Y)(h; & n, @)
= RY)(h, &)SL)(h, n) exp (imp). Here RY) is the spheroidal radial wave function of
the jth kind, j = 1, 3,4, S\) is the spheroidal angle wave function of the first kind,
and h is equal to kd/2, where d is the interfocal distance of the elliptical cross
section of the spheroid, and k is the wave number. The radial functions R and
R are given by R{} + iR?) and R{}) — iR?), respectively, where R{}) and R?
are the two independent solutions to the separated ordinary differential equation
in &.

The spheroidal wave functions ¥/}, ¥{3) and ¢ play the same role in de-
scribing spheroidal waves as the spherical wave functions j(kr)PJ'(cos 0) exp (img),
h{V(kr) P} (cos 0) exp (imp), and h{>(kr)P["(cos 0) exp (img), respectively, do in
describing spherical waves. Therefore, standing spheroidal waves, outgoing
spheroidal waves, and incoming spheroidal waves are represented by /'Y, ¥
and Y%, respectively.

When a single spheroidal surface is involved in the radiation and scattering
process, every contribution to the resultant field can be expressed as a series of
spheroidal wave functions referenced to the coordinate frame in which the spheroid
is a natural surface. The unknown expansion coefficients can then be obtained by
application of the boundary conditions on the spheroid. When two or more
spheroidal surfaces are involved, the resultant field includes contributions from
each spheroid. The contributions from a given spheroid are expressed as a series
of spheroidal wave functions with reference to the coordinate frame in which
that spheroid is a natural surface. In order to apply the boundary conditions in
this case, one must be able to express spheroidal wave functions with reference
to one coordinate frame in terms of spheroidal wave functions with reference to
a second coordinate frame. Analogous transformations or addition theorems are

* Received by the editors September 21, 1971, and in revised form February 3, 1972.
+ Naval Research Laboratory, Washington, D.C. 20390.
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150 B. J. KING AND A. L. VAN BUREN

well known for both cylindrical wave functions [17] and spherical wave functions
[4]. Meixner [9] develops an addition theorem for spheroidal wave functions for
the limited case where the two spheroids overlap and share a common axis of
symmetry. In this paper an addition theorem is developed for the spheroidal
wave functions Y}, Y& and ¥ for two spheroidal coordinate frames with com-
pletely arbitrary relative positions and orientations. The addition theorem is also
valid for y?), although these wave functions do not correspond to spheroidal
waves and therefore are not normally used. The expressions are applicable
whether the two spheroidal coordinate frames are both prolate, both oblate, or
one prolate and one oblate.

A brief introduction to spheroidal wave functions is given in § 1. The develop-
ment of the addition theorem follows in § 2. The relation between coefficients
appearing in the expansions developed in this report and both the Wigner 3-j

symbols [18] and the Clebsch—Gordon coefficients [2] is described in the Appendix.
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1. Spheroidal geometry and wave functions. The prolate spheroidal co-
ordinates &, #, ¢ are related to rectangular coordinates by the transformation

x = (d2)1 - )& — 1) cos o,
2 y = (d2)(1 — n»)"*(& — 1)!?sin g.
z = (d/2)¢n,

where —1 <9 =1, 1 £¢< w0, 0Z ¢ <2rn, and where d is the interfocal
distance. This geometry is shown in Fig. 1. The corresponding transformation for
the oblate spheroidal coordinates is

x = (d/2)(1 — n*)*2(E% + 1)'2 cos @,
3) y = (d2)(1 — yH)'2(E2 4 1) sin @,
z = (d/2)¢n,

wherenow —1 <9 <1,0 < ¢ < 0,0 £ ¢ < 2n. The oblate geometry is shown
in Fig. 2. The oblate spheroidal coordinate system can be obtained from the
prolate spheroidal coordinate system by use of the interchange ¢ — ifandd — —id.
Expressions developed for prolate spheroidal geometry can be converted into
analogous expressions for oblate spheroidal geometry by use of the same inter-
change. Consequently, although the following discussion of spheroidal wave
functions is restricted to the prolate system, the corresponding oblate expressions
are also valid.

The spheroidal angle wave function of the first kind can be expanded in
terms of the corresponding spherical functions :

(4) (1) h T’]) Z() . dn(h|ml)Pm+n(”)a

where the Pj, (1) are associated Legendre functions of the first kind, and where
the prime indicates that n = 0,2,4,--- if | — m is even, and n=1,3,5, --- if
| — mis odd. A recursion relation for the expansion coefficients d,(h|ml) is obtained
by substitution of this expression into the separated ordinary differential equation
for S(}(h, ) and by use of known recursion relations for P™(n):

Cm+n+2)Cm+n+1)
2m + 2n + 3)2m + 2n + 95)

5+ [(m+n)(m+n+1)—Am,(h)+2(m+n)(m+n+1)_2"’ —1hz]d

2m+2n+3)2m+2n—1)
nin—1)
(2m +2n—-3)2m+2n—-1)

hzd”_.z = O.

Here A4,,(h) is one of the two separation constants. The other separation constant
is m, required to be an integer for single-valuedness and chosen, without loss of
generality, to be nonnegative. For fixed m and h, the allowable values for A4,,(h)
are ordered numerically in an ascending sequence and labeled with the integers
l=m,l=m+ 1, etc. Unnormalized values for d,(h|ml) are obtained by use of
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n = const.

r @ = const.

F1G. 2. The oblate spheroidal coordinate system

the recursion relation and the boundary condition

(6) (dn + 2/dn) — (.

n—oo

The normalization of d,(h|ml) is determined by imposing restrictions on the

behavior of S{))(h, ). For example, Meixner [9] requires that

1
() f_ (St (h,m))? dn = 201 + m)!/[2] + 1)(I — m)1],

while Flammer [3] requires that
S{(h,0) = P}(0), | — meven,

8
® (S}, (h, n)/dn, = o = [dP{(n)/dn],=o, | — m odd.
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Because of this arbitrariness, all subsequent equations will be written in a form
that is independent of the normalization of the spheroidal angle wave functions,
i.e., the equations will be valid for any d,(h|ml) which satisfy (5) and (6).

The spheroidal radial wave functions are also expanded in terms of the
corresponding spherical functions:

R, &) = {[(€* = D/E1"* My} 3 7°"dy(hlm)

)

[0 + 2m)! O, (hE), j=1,2,3,4,
where
(10) M,, = Y dfhlm)(n + 2m)!/n!,

n=0,1

and where the ®Y) | (h¢) are the spherical Bessel functions of the first and second
kind and the Hankel functions of the first and second kind when j = 1,2, 3 and 4,
respectively. Since RZ(h, §) > — oo as & > 1 in prolate geometry, the following
discussion will be limited to & > 1 for prolate geometry when j # 1. Extensive
tables of both prolate and oblate spheroidal radial wave functions and their first
derivatives have recently been published [5], [6]. The FORTRAN computer programs
used to generate these tables and a FORTRAN computer program used to calculate
both prolate and oblate spheroidal angle wave functions and their first and
second derivatives are described in [7], [16] and [8]. The availability of the tables
and computer programs should greatly increase the usage of spheroidal wave
functions.

2. A general addition theorem. Consider two rectangular coordinate
systems A, and 4, with completely arbitrary relative positions and orientations,
as shown in Fig. 3. The corresponding spheroidal coordinates are given by (2)
or (3). The relative positions of A, and A4, are defined by the vector r,, extending
from the origin O, to the origin O, . The relative orientations are defined by the
three Eulerian rotations with angles «, f and y which when applied to 4, will
make this system parallel to 4,. An arbitrary point P has spheroidal coordinates
(&1,1.,®,) with respect to 4, and (&,,7,, ¢,) with respect to A,.

The expansion of a spheroidal wave function in A4, in terms of spheroidal
wave functions in 4, will be obtained using the following four-step procedure.
First, a spheroidal wave function in 4, will be expanded in terms of spherical
wave functions in A,. Second, the spherical wave functions in 4, will be expanded
in terms of spherical wave functions relative to a rectangular coordinate frame A4,
with origin O, and with coordinate axes parallel to those of 4, . Third, the spherical
wave functions in A5 will be expanded in terms of spherical wave functions in 4,.
Finally, the spherical wave functions in 4, will be expanded in terms of spheroidal
wave functions in 4, .

The expansion of a spheroidal wave function in 4, in terms of spherical wave
functions in A4, is given by

l/’ir{;(hZ 382,12, 9,) = Riﬂ(hz > ﬁz)Sf,,l,)(hz »112) €xp (im@,)

1 2 .
. = Y (b m®D(kry)(0,, ¢,),

r=mm+1
j=1’2’3’4’ mgo’
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FIG. 3. Two coordinate frames with arbitrary relative positions and orientations

where the prime indicates that the sum includes terms forr = m,m + 2,m + 4, - - -
ifl—misevenand r=m+ 1,m+3,m+ 5,---if | — m is odd. The angular
dependence of the spherical wave functions is given by the unnormalized spherical
harmonics Q(8,, ¢,) = PJ(cos 6,) exp (imp,). Here (r,, 0,, ¢,) are the spherical
coordinates of the point P with respect to A, . The spheroidal wave function and
its corresponding expansion coefficients d,_,(h,|ml) may be either prolate or
oblate. This formula can be obtained as a special case of the addition theorem
given by Meixner [9]. Flammer [3] also derives this formula, except for the un-
fortunate omission of the factor i" ~, for the single case j = 1, although his method
can be used to obtain the analogous expressions for j = 2, 3,4.

Spherical wave functions in A, can be expanded in terms of spherical wave
functions in A by use of the spherical addition theorem first derived by Friedman
and Russek [4]. An alternative formulation of the expansion coefficients was ob-
tained by New [10] using a procedure outlined by Sack [14]. This latter form will
be used below because it requires considerably less numerical evaluation. Let
(r3,03, @3) be the spherical coordinates of the point P with respect to A5. Let
(ri2, 612, ¢,,) be the spherical coordinates of the origin O, with respect to A4,.
Then

0 s r+s
(Dij)(k" 0, 0,) = Z Z Z, als, t, r, u, m)
(12) SO s

O (kr Q0 <, @ )PP (kr )05, 95,
j:1’2a3a4a mgoy
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where

. )= i s+ D)2t +D(s—w)!t—m+u)r+m'(s+t+r)2) !}
als, &1 u,m) =i (1= 9210 +s— 021G+t =25+t +r+1)!

(13)
wmax " SH+t—r t4+r—s
w=§min(-1) ((s+t—r)/2+w)((t+r—s)/2+m_u+w)
( S+r—t )
(s+r——t)/2—u+w’

with

(14) (Z) — albla — b1,

(15) 2wmin =max(r —s—t,s—r—t —2m+ 2u, t — s — r + 2u),

(16) 2wmax =min(s +t —r,r +t — s — 2m + 2u,r + s — t + 2u),

and where
(0.0 )__{("3,93,‘/’3), ifry <ryy,
< <> < - .
17) (r12,012,912), ifry>ry,,
(s, 0..0.) = {(7’3,03,(?3), ifry > ry,,
> > >) .
(r12,012,912), ifry <ry,.

The prime on the summation over ¢ indicates that ¢ is incremented in steps of two.
Terms involving negative values for u or m — u can be evaluated with the use of
the definition

(18) P "(x) = (= 1)"P"(x)(n — m)!/(n + m)!.

The relation between the coefficients a(s, ¢, r, u, m) and both the Wigner 3-j symbols
[18] and the Clebsch—Gordon coeflicients [2] is discussed in the Appendix.

Spherical wave functions in 45 can be expanded in terms of spherical wave
functions in 4, by use of a rotation formula. Since A; and A4, are parallel, «, 8
and vy are the angles for the Eulerian rotations which transform A4, into A;. Let
(ry, 0y, @) be the spherical coordinates of the point P with respect to A,. The
radial dependence of the spherical wave functions is unaffected by a rotation, i.e.,
ry = r3. The required transformation for the angular dependence is given by
Rose [13]:

v

(19) 95(03’ (P3) = Nﬁ Z 93(91,(/’1)1-);,,(0‘,3,7)/1\/3,

q=-v

where

(20 N™ = {Q2v + 1)(v — m)Y/[4n(v + m)!1]}'/?
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and
(1) Dy,(2, B,y) = exp (—iqa)dy,(B) exp (—ipy).

The matrix elements d;,(f) are defined by

o _ [0 =P+ gt]"? otpoar amp
dy,(B) = [m] [cos (5/2)] [—sin (8/2)]

,Flg—v,—p—v;q9—p+1;—tan*(B/2)1/(q — p)!, 9> p,

22)

where ,F,(a, b; c; z) is the hypergeometric function. Values for g < p are obtained
from the relation

(23) dg,(B) = (= 1)""Pd,(B).

The transformation is completed by expanding the spherical wave functions
in A, in terms of spheroidal wave functions in A,. This can be accomplished
using the formula

0

24) OP(kr )01, 1) = [C, /20 + D] 3 ("7"/B,g)

' dl}—‘lql(hlhql ")Rl({,?n(m ’ él)Sl(;l)n(hl > ’71) exp (’q(P1), j= 1, 2,3,4,

where
(25) w+lv—-2q!, g0,
Cl,q = {
(26) (=14, q <0,
(27) B, = i di(hygin) (I + 219)V/{1'2( + 1q) + 1]},

1=0,1

and where the sum includes terms for n = Iql, Igl + 2, --- if v — Iq| is even and
n=1q + 1,igg + 3,--- if v — Iql is odd. This formula is a special case of the
addition theorem given by Meixner [9]. Flammer [3] also derives this formula for
the case j = 1. Note that the interfocal length d, = 2h,/k for the spheroidal co-
ordinate frame in A4, is not necessarily equal to the interfocal length d, = 2h,/k
for the spheroidal coordinate frame in 4,. The spheroidal wave functions appear-
ing in (24) and their corresponding expansion coeflicients d,,_,q,(h1|lqln) may be
either prolate or oblate.

The general addition theorem for spheroidal functions is obtained by com-
bining the four transformations given by (11), (12), (19) and (24).

© s r+s

DhysEsuny, @r) = Z( ir_ldr—m(h2|ml) Z Z ZI als, t,r, u, m)
s=0

r=mm+1 u=-—s t=ir—s
tZim—uw

((28) cont. on following page)
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[NP=*/(2t + DIOD(Kkr )01z, 012) Y [Clt DD, B, V)N

q=-t
Z/ [it_ndt—uqu(hlllql n)/quln]Rl(Qn(hl ’ Cl)Sl(;l)n(hl > 1 1) exp (lCI(P 1) >
n=igi,iq +1 rl > rlz,

(28) - <or
[N3/(2s + IO (kr)Q" (015, ¢12) Y, [C(s, Dy (a, B, y)/NY]

q=-s
Z/ (=" s—lql(hlllqln)/qum]Rl(;l)n(hl > fl)Sl(qlu)n(hl »11) exp (iqp,),

n=1qaq +1 r < iz,
j=1,234 m20,

where r; = d,(£2 + n} — 1)V?/2 or d (3 — n? + 1)'/2/2 depending on whether
the spheroidal coordinates (¢,,#;,¢,) are prolate or oblate, respectively. Here
(&1,71,,@,) are the spheroidal coordinates of the point P with respect to A4,,
(&,,1,, @,) are the spheroidal coordinates of the point P with respect to 4,, and
(r12,0:2,®1,) are the spherical coordinates of the origin O, with respect to A4,.
Note that in order to use (28) it may be necessary to obtain the spheroidal co-
ordinates (&, , %y, @,)in A, corresponding to the spheroidal coordinates(¢,, 7, , ;)
in A,. This can be accomplished by transforming (¢,,#,, ¢,) to rectangular co-
ordinates in 4,, performing the required translation and rotation in rectangular
coordinates to obtain the corresponding rectangular coordinates in A,, and then
transforming back to spheroidal coordinates to obtain (¢,,%,, ®,).

Equation (28) is valid only for nonnegative values of m. However, expansions
in spheroidal wave functions usually contain terms for negative values of m.
Consider the spheroidal wave functions RY)h, £)S{)(h, n) exp (imp), m < 0. Since
the spheroidal radial and angle wave functions for m negative and those for m
positive are not linearly independent but are related through the definitions

(29) SOuh,m) = (= 1y = m)ISL(h, m)/(L + m)!,
(30) RY,(h, &) = RGh, ¢),

spheroidal wave functions with m negative can be replaced with the equally
suitable wave functions RY)(h, &)S2)(h, ) exp (—imp), m > 0. An addition theorem
for these functions can be obtained by taking the complex conjugate of (28).
Note that RG(h, &), RE)(h, &) and @ (kr), ®{*)(kr) are complex conjugate pairs,
and that the complex conjugate of Q}(6, @) is Pj(cos ) exp (— ime).

When the two coordinate frames A, and A4, are parallel,« = =y = 0, and
the rotation given by (19) becomes the identity transformation. In this case the

addition theorem is simplified by setting

(31 D ,,-,0,0,0) = 6, ,,_,
and
(32) D;,(0,0,0) = 6,,,

where J,, is the Kronecker delta.
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When the two coordinate frames A and A4, are parallel and share a common
z-axis, the axis of symmetry for spheroids, such that 6,, = 0 or =, the addition
theorem reduces to the form,

0

'//g;(hz 582,12, 03) = ZI i’_’d,_m(h2|ml) Z
s=0

r=mm+1
r+s
Y A{als, t,r,0,m)(E + m)Y[(t — m)!2t + D]} (kry,)P(cos 0, ,)
1'—;12_";&
=ZI+1 i’“”[d,_m(h1|mn)/an]¢f,{f,(hl;él,nl,(pl), Fy > T2,
(33) -qor

r+s

Y Aals, t,r,mym)(s + m)!/[(s — m)!(2s + 1)]}OP(kr,,)P(cos 0, ,)

t=ir—si

0

Y E Ay mn) B Wy €y, 90), 1y < i,

L n=mm+1
j=1,234 m==0,
where
(34 PJcos 0,,) =1, if 6,, =0,
(35) Pfcos0,,) = (—1)’, if6,, ==

For the special case where m = 0, the coefficient a(s, ¢, r, 0, 0) can be evaluated
from a single term, as shown in the Appendix.

Appendix. The coefficients a(s, ¢, r, u, m) defined in (13) can be related to
the Wigner 3-j symbols [18] and the Clebsch-Gordon coefficients [2]. Equation
(13) can be written as

_ppemea[ @5 £ DCE+ D = 0 = m + Wl + m)IAL
QA + D)IA, 14!

a(s, t,r,u,m) = (

(A1)
(r st )
U 9
m —u u-—m
where
r S t
U( )
m —u u—m
(A.2)
_wilzax (_1)—A+w—-m 2)’ 2/1: 2/12
:=wmin ).+W 11+m——u+w Az—u+w,
and
A=@r+s+02 A=A-s,
(A.3) ( )/ 1

A=A—r, bh=A—t
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Sack [14] relates the coefficients a(s, t, r, u, m) to the Wigner 3-j symbols by use of
the expression

U(Jl J2 ]3)__:(]1 J2 ]3)

m; m, ms my m, my

(A4
-[(jl + 2 + s + DGy + Jo — ja)'0s + js — 722 + js — 11)!]”2
(1 = m)!Gy + m)G2 — m) 'z + mp) (s — m3)!(jz + my)! ’
where (h S ) is the Wigner 3-j symbol.
m; m, m,

The relation between the Wigner 3-j symbols and the Clebsch—Gordon co-
efficients is given by [18]

Jv o Ja = jam . . L
(A.5) ( o 3) = (=1 727/ 255 + D2](jjamimy|jijajs — ma),
my m; My
where (j, j,m m,|j,j,j; — my)is the Clebsch—Gordon coefficient.
Combining (A.1), (A.4) and (A.5) and simplifying, one obtains
a(s, t,r,u,m) = (—10"*2s + DA rsm — ulrstm — w)/(A!1,'4,")

(A.6) ‘ [(r + m)is — wle — m + w2 + 1)(22) !(2/11)!(2/12)!] 112

r—mls + u)lt —u+ m!2A + 1)!
For the special case u = m = 0, the Clebsch—-Gordon coefficient (rs00|rst0) has
been expressed as a single term by Racah [11],

(rs00| rst0) = (— 1) 42t + 1)!2A!
TRNANIRAN TP NQRA + 1)1
Thus the corresponding coefficient a(s, t, r, 0, 0) can also be expressed as a single
term,
(A.8) a(s, t,r,0,0)=(—D*2s+ 1)(2t+ 1)2A)124,)!2A,)(AN?/I2A + DAL 14, )]
It is interesting to note that the Clebsch-Gordon coefficients and, con-

sequently, the coefficients a(s,t,r,u, m) are related to the generalized hyper-
geometric functions ;F,(a, b, c; d, e; 1) by the expression [12]

(j1jamimaljy o jams) = (—1)2+m

(A7)

) [ (J3+J1 = J2) 1 + j2 — Ja) 1(js — m3)!(j; —m)(2j5 + 1) ]1/2
(J3—J1 + )1+ j2 +Js + Dz + m3)'(jy +my) 1z — my) (jy +my)!
.(J.a + j, +my)!

27 Fy(=js+ i = jasJi=my+1, —js—my;
(11_12—"’)!32 JaTJ1—J2: )1 1 J3 3
Ji—Ja—m3+1, —j3—j—my;1).

Many of the properties of the coefficients a(s, t, r, u, m) can thus be obtained using
the well-known properties of the generalized hypergeometric functions [1], [15].
For example, (A.7) and therefore (A.8) can be obtained from (A.9) by the use of
Dixon’s theorem [15] to evaluate ;F,(—j; + j, — jo.dy + 1, —jss 1 — jo + 1,
—Jjz = J231).
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THE BEHAVIOR AS ¢ —» 07 OF SOLUTIONS TO £Vw = (9/0y)w
ON THE RECTANGLE 0 < x </, |y| = 1*

L. PAMELA COOK anp G. S. S. LUDFORDY

Abstract. The title problem is first examined in the limit of the semi-infinite strip | = oo, for
boundary data w(x, —1) = f(x), w(x, 1) = g(x), w(0, y) = h(y). Here £, g, h are infinitely differentiable
except at the corners where one-sided derivatives of all orders exist. Previous work on the infinite
strip covers cases where h = 0 so that (by superposition) the present discussion may be narrowed to
cases where f = g = 0; for these the solution is asymptotically zero for x = x, > 0. Near x = 0 four
regions are distinguished: the parabolic boundary layer y < y, < 1, excluding ¢ 2x < X,, 1 + y
< y_,, which is determined by the singular region ¢ (1 + y) £ y,,; and the two parts of the hyper-
bolic boundary layer e !(1 — y) < Y,,, namely ¢~ !/?>x = X, > 0 and the transition zone ¢ " 'x < x,,,
both of which are determined by the parabolic layer. By means of Fourier sine transforms the method
of matched asymptotic expansions is proved valid to all orders in ¢ in each of the regions, which can
be extended to overlap. Other assumptions about h are also considered. Finally the corresponding
results for the rectangle are shown to follow from the superposition of two semi-infinite strip problems.

1. Introduction. We propose to examine the asymptotic properties as e — 0%
of the solution to the equation

(1a) £(0%/0x* + %Oy )W — (8/oy)W = 0
on the semi-infinite strip |y| =< 1, x = 0, under the boundary conditions
(1b) Wix, 1) =gx), Wk, —1)=f(x), WO,y = h(y).

Our goal is to prove that the method of matched asymptotic expansions does
give the correct approximation to W to all orders in .

The method of attack is similar to and an extension of that used in our
previous paper (Cook and Ludford [2]). In § 10 we shall show how to extend these
results to cover the asymptotics of the equation (1a) in a rectangular region, the
latter being of greater physical interest than either the infinite or semi-infinite
strip.

Before outlining the method of proof, we simplify the problem in the following
manner. The solution W, under the boundary conditions (1b), is the sum of the
solution w satisfying the boundary conditions

(1) w(x, 1) = 0,
(1d) w(0, y) = h(y),
and the solution v satisfying the boundary conditions
v(x, 1) = g(x), o(x, —1) = f(x), v(0,y) = 0.

Now consider u(x, y) which solves (1a) on the infinite strip — o0 < x < o0, with
the boundary conditions

u(x, 1) = G(X), u(x’ - 1) = F(X),

* Received by the editors June 29, 1971.
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where G, F are the odd extensions of g, f respectively. Clearly u(x, y) is an odd
function of x, so that u(0, y) = 0 and v(x, y) = u(x, y) for x = 0.

The proof that the method of matched asymptotic expansions is valid for u
is found in Cook and Ludford [2]. The results depend on the differentiability
properties of G and F. For example, if right and left derivatives of G, F exist at
zero to order kg, and if G%, F® are integrable for k < k, + 1, G and F being
infinitely differentiable except at zero, then the results of the method of matched
asymptotic expansions are valid to order ¢” where m < 2[(k, + 1)/4].

Since v is covered by the u of our previous paper, we may concentrate on w
here. As in [2] the proof depends on having an explicit representation of the exact
solution in terms of the Green’s function, the latter consisting of the fundamental
solution and its images in the (extended) boundaries. It can be seen immediately
that, of the infinity of such terms, all but the first four can be ignored because they
are a.e.s. (asymptotically exponentially small) throughout the strip. However,
manipulating the remaining terms is difficult, and instead we consider their
Fourier sine transforms. The latter are easily managed by expanding in Taylor
series in &. The basic difficulty is to prove that term-by-term inversion of the ex-
pansions in the transform plane does produce asymptotic expansions whose
terms are those obtained by the method of matched asymptotic expansions.

2. The method of matched asymptotic expansions. As in our previous paper
[2] we shall assume the reader is familiar with this method ; see, for example,

1A y d(x)=0
7 T
L.]].:_[“.j._ _ _]:EI_ _l
|
|
h(y) I %
T I
T — l
i I
L.
-1 f(x)=0
FiG. 1

Chapter 4 of Cole’s book [1] where its application to problems such as ours is
considered in some detail. In particular Cole discusses the locations of the-boundary
layers and their orders of magnitude, as well as the physical situations in which they
occur (cf. also the Introduction of [2]). In this section we are solely concerned with
collecting the results obtained by the method in a form that is suitable for our
later proofs, without reproducing Cole’s arguments for each step.

Figure 1 shows schematically the various regions of validity of the expansions
referred to in the present section.
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Assuming an expansion
2 w~ Y Ewilx,y)
k=0
of the solution to the boundary value problem (1a), (1c), (1d), we obtain the
recurrence relation
©) (0/0y)wy, = (9*/0x* + 0%/dy*)Wi -,
for the coefficient functions, by direct substitution. We must therefore take
wi(x,y) = 0

in order to satisfy the boundary conditions (1c). It is clear that the expansion can-
not be uniformly valid since it does not satisfy the boundary condition at x = 0.
Therefore, we consider the substitution

4) X =g 12x

in order to make £0%/0x% = 0?/0X? comparable to d/dy. Then with an expansion
0
(%) w~ Y dwl (X)),
k=0
we obtain the recurrence relation

(62) (0%/0X? — 0/dywil(X, y) = — (8*/0y*)wi - +(X, y),

for the coefficient functions. The appropriate boundary conditions for this in-
homogeneous parabolic equation are

hy) fork =0,
6b Wll X, —1) = 0, Wll 0, —
(6b) i ) (0, ) {0 for k > 0.
Such an expansion cannot be valid near X = 0, y = —1, as is easily seen for the

case h = 1: The functions
wh = erfc [X(y + 1)~ 1/2/2],
wi = —X3/[8n'2(y + 1)>*]exp[— X*(y + 1)” /4]

satisfy all conditions, and w' becomes unbounded in a neighborhood of X = 0,
y = —1. In fact, it is not even uniquely determined since, if singularities are ad-
mittedat X = 0,y = — 1, certain solutions of the homogeneous diffusion equation
may be added.

Such difficulties could have been anticipated since we are attempting to
represent an elliptic singularity by means of solutions of parabolic equations. To
consider the singular region we introduce the stretched coordinates

(8) X, =¢ 17X, ve=¢ 'y +1

in order to make all derivatives in (1a) of comparable order. With an expansion

(7

©) w~ Y Ewi(X vy,
k=0
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we then see that the coefficient functions must satisfy the full elliptic equation
(10a) (0%/0X % + 0*/0y: — 0/dy, Jwi* = 0

and the boundary conditions

(10b) WX, 00 =0, w0, p,) = h(=1)y4/k!.

The wi™* are unique if in addition we require that they do not grow exponentially
as y, — o0, a condition which is necessary in order to match with (5). This match-
ing then uniquely determines the coefficients of the expansion (5). More precisely,
X2/y, (=X*/(y + 1)) is fixed as ¢ — 0 (though y, — o0) and we find that only full
powers of ¢ are involved. Consequently, no half powers of ¢ are required in region
I1, as was anticipated in writing the expansion (5). In particular, we find that the
homogeneous solution 3X/[4n'/?(y + 1)"*]exp [— X*(y + 1)~ !/4] must be added
to the w! in (7).

Finally we consider the boundary layer at y = 1 which is needed to correct
the Il-expansion for the boundary condition at y = 1. With X and the stretched
variable

(11) Y=¢'(1-y)
(so that £02/0y* = ¢~ '0?/0Y? is comparable to d/dy = ¢~ '9/2Y), we assume an
expansion
(12) w o~ io: gw(X, Y).
k=0
The recurrence relation for the coefficient functions is then
(13a) (0%/0Y? + 0/oY)wit = —(0*/0XH)wi™ |
and the boundary condition
(13b) wil(X,0) = 0.

At each stage an integration constant is obtained, and is uniquely determined by
matching with the expansion (5). It is now clear that the boundary layer must
occur at y = 1, and not at y = — 1, in order to obtain exponentially decreasing
functions for the matching.

Once again this expansion cannot be uniformly valid in the boundary layer,
ascanbeseenfromwy' = Co[1 — exp (— Y)] where Cy(X)is obtained by matching;
in particular C,(0) = h(1). This violates the boundary condition on the y-axis for
a distance ¢ down from y = 1.

Finally, to consider the top corner region we introduce

(14) X, =¢ '?X
so as to make £0%/0X? = 9?/0x2 comparable to 02/0Y? + /0Y. Setting

(15) w~ Y lPwi(x,, Y),

k=0

the recurrence relation for the coefficient functions is

(162) (02/0x2 + 0*/0Y? + 8/8Y)wi* = 0,
*
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and the boundary conditions are

©1Y (= Yk
(16b) WI(e, 0) = 0, w0, Y) = {h (1)(=Y)*/k! for k even,

for k odd.

Such Dirichlet problems have unique solutions under the additional require-
ment of exponential decay as (x2 + Y?)'? > oo with x, # 0. Without such a
requirement there are solutions with algebraic growth, but these are precisely
what are needed to match the expansion in II. We may think of the solution in II
running through the region III,, which reacts to the violation of its boundary
conditions with a correction that dies out exponentially away from Y = 0. Note
that half powers of ¢ are induced in the 11 -expansion, since the II-expansion (5)
will involve powers of £!/? after the substitution of (11) and (14). Such terms did
not appear in II.

These then are the results obtained by the method of matched asymptotic
expansions. We shall now show them to be valid approximations to order m,
where m depends on the differentiability of 4. However, to begin with we assume
that

(17a) h is infinitely differentiable on (—1, 1),
(17b) h®(—1 4+ 0) and h®(+1 — 0) exist for all k,

for which the method as given above can be carried on indefinitely. The regions
of validity for the expansions are (see Fig. 2)

D Xp=x, —1=sy=s1;
II: 05X, —-1<y=<y; <1l excluding 0= X = X,,
Osy+1=y_
I,: 0= X,,
Inm: X, =X,
II,: 0=x,=<x

Y

)’.1_1

1

FI1G. 2a
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1Y
Yiowo
11,
X,
Fi1G. 2b
X
: X
Ye
v 4
FI1G. 2¢
x*m
X%
11,
Yo
v

Fi1G. 2d
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Here Xo, Y15 X0, V=15 Vo> X15 Yeo» X4o are first assumed to be fixed positive
numbers, but it is later shown that the regions of validity can be extended to

Xg = 0(81/2—6), V= 0(81—6)’ XO — 0(81/4—6)’ y_, = 0(81/2—6)’
Vyw = 0(8—1+6), Yoo = 0(8—1+6), Xl _ 0(81/2—6)’ Xy = 0(8_1/2+6).

Here 6 > 0 is arbitrarily small.

The regions 11, and 111 at the bottom and top corners both arise from dis-
continuities in the boundary data, but otherwise they are quite different: the
expansion in II is determined by that in II, whereas the opposite is true of II and
III,,. We may say that the parabolic layer on x = 0 is completely determined by
its singular origin x = 0, y = —1, and in turn determines the top singularity
x = 0,y = 1. That the structures of II, and III, are the same as in [2] can be seen
from dividing the solution into three parts. The first is an infinitely smooth solution
satisfying the data on x = 0, but not on y = + 1 where it is in general nonzero.
The second part nullifies the first on y = — 1 and is zero elsewhere on the bound-
ary, while the third does the same for y = + 1. The first part does not require the
regions II, and III, (nor for that matter III). As was shown in the Introduction,
the other two are covered by our previous paper [2], albeit extended to data
depending on ¢. They therefore involve regions II, and III,, respectively, of the
type found there.

We have been unable to exhibit these three parts explicitly, but at least the
asymptotic existence of the third is clear from our analysis. As indicated above,
the III -expansion has two components: the II-expansion written in the x,,
Y-variables, corresponding to the sum of the first two parts; and a correction for
the boundary conditions on y = 1, corresponding to the third part.

3. The exact solution. Taking the Fourier sine transform

(-’)=f°°(-)sin¢xdx

0

of the differential equation (1a), we find
(—e&? + ed?/0y* — 0/oy)w = —e&h(y),

where the boundary condition (1d) has been incorporated. The boundary con-
ditions (1c) then give

+1
WEN) = —a [ B,y ay,
-1
where the Green’s function
G =2expl(y— y)/2e)/{(1 + 4e*E*)" " sinh [(1 + 4e2E?)'2/2¢]}

(18) ' {sinh [(1 + 46283 2(y + 1)/2¢] sinh[(1 + 462E2) %(y’ — 1)/26] fory < ¥,
sinh [(1 + 462E%)'2(y" + 1)/2¢] sinh [(1 + 4e2E2)'2(y — 1)/2¢] fory <y

is actually the transform of that for the original problem. The exact solution of
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(1a) under the boundary conditions (1c), (1d) is then
2 [ .
wix,3) = = [ (e ) sin gx dx
TJo

We are not concerned with a.e.s. contributions to the solution, so that terms
which are uniformly a.e.s. for £ on the real axis may be neglected. Thus, since
exp[—(1 + 4e2£%)'2/¢] is uniformly a.e.s., we may write

G~ (1 +4e28) P exp (v — y)/2e]{exp [—(1 + 462 2(y + y' + 2)/2¢]
(18a)  —exp[—(1 + 462&)'2|p — y'|/2e] + exp [(1 + 46%E) ' 2(y + y' — 2)/2¢]
—exp[(1 + 4?8 (ly — v — 4)/2¢]},

as will be needed in regions III and III,,. But % may be further simplified for y
away from 1, so that

G ~(1+4628%)" 2 exp[(y — y)/2e]{exp [~ (1 + 42832 (v + ' + 2)/2¢]
—exp[—(1 +4e?¢%)' 2|y — y'/2¢]}

will be used in regions II and II,.

We could also write the exact solution in terms of the fundamental solution
of equation (la) and its images in y = 41 together with their images in x = 0.
The same result is obtained by expanding the denominator of # in (18), to obtain
the terms

(1 + 4628~ exp [(y — y)/2e] {exp [(1 + 462E) ' 2(y + y' — 2 — 4r)/2]
—exp [—(1 + 462E)' (ly — y'| + 4r)/2¢]
+exp[—(1 + 46?8 2(y + y' + 2 — 4r)/2¢]
—exp [(1+ 46°E%)P(ly — y'| — 4 — 4r)/2¢]}

withr = 0,1, 2, --- . The inverse sine transforms of these are the Bessel functions
obtained by the imaging process above. To uniformly a.e.s. terms then the solution
could also be written

(18'b)

llh' ")/2¢](0/0
—2 ] eety - e
ARG + 0 = P 2128] = Kol + (v + 3 + 27)12]

= Kol(® + (v + ' = 2))'2/2e] + Kol(x* + (v — y + 4)?/2e]} dy'.

4. The core region 1. Consider this last representation of the exact solution in
terms of Bessel functions. In the core region we have

w(x,y) =0

to a.e.s. terms since x = x, > 0.
Extension of the core region inward is limited by the behavior of

exp{ly —y — (x> + (y — y))'?1/2¢}
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which arises from the first Bessel function when its argument is large. With
X, = &"

the argument in the exponential is negative and at least O(¢2*~ ') for |y — y'| < 2
and x = x,. Hence w(x, y) remains a.e.s. when

(19) n<1/2.

The core-region expansion is valid for —1 < y < 1, i.e., even into the bound-
ary layer region for x restricted as above. This is to be expected since the zero
expansion does in fact agree with the given boundary condition at y = 1. In other
words, data at x = 0 has no asymptotic influence away from x = 0.

5. The side layer II. As suggested by the limitation (19) we introduce the
stretched variable (4) in order to describe the solution near x = 0. In terms of the
appropriate transform variable n = g!/2¢,

00

2
(20) WX, yie) = f sin nX Wy, y: ) o,

0

where
1
B~ ol 4 dep?) 2 f H) exp [(y — ¥)/2¢]
-1
fexp [—(1 + 4e?)2(y + ' + 2)/26]

—exp [—(1 + 4en*)'?y — y'|/2¢]} dy'.

On expanding in a Taylor series in ¢ we obtain

(20"

m—1
1) Wi, yse) ~ Y. &Wlin, y) + e"R, (1, y;58);
k=0

it is not necessary to write down Wi and R,, explicitly. We now show that under
inversion: (i) the coefficient functions wi(X, y) satisfy the recurrence relation (6a)
together with the boundary conditions (6b); and (ii) R,(X, y;¢) is bounded in-
dependently of ¢ in region II. Proof of matching with the expansion in II,, will
however be postponed until the next section. From now on, we shall also use
W(n, y;¢) to denote its asymptotic approximation (20’).

(i) It can be checked that (—#* + £0%/dy* — 8/0y)W(n, y;€) = —nh(y). Sub-
stituting the expansion (21) and equating coefficients of corresponding powers of
¢ yields
nh(y) for k = 0,

2+ 0/oywy =
(" + 0/oy)%, {aZ/ayZW,‘:_l for k > 0.

Since w(n, — 1) = 0, we also have

Wi, —1) = 0 for all k.

Hence, provided the wi(#, y) are invertible, a fact that will be proved when R,, is
discussed, the inverses wi(X, y) do satisfy the recurrence relation and boundary
conditions as desired.
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(ii) Except for a constant factor, R, (1, v; ¢) is the mth derivative of w(z, y; €)
with respect to ¢, evaluated at ef, 0 < t < 1. It is not immediately clear that the
inverse of such a derivative exists from the form (20'), since expansion of
(1 + 4en?)~ 1'% alone generates powers of #2 multiplying terms apparently bounded
as # — 00. In order to see that the inverse does exist we integrate (20') by parts m
times. Noticing that terms of the form (2e)[1 + (1 + 4en®)'?] *exp {[(y + 1)
(1 — (1 + 4en®)'?) — 2(1 + (1 + 4en*)'/?)]/2¢} can be ignored since they are
uniformly a.e.s. and those of the form
(22) Qef(1 + (1 + 4en®)®)*exp [(y — (1 + (1 + 4en®)'/?)/2€]

can be ignored since they are uniformly a.e.s. for y away from 1, we obtain

W~ n(l + den?)~1/2
[Z Q6P (1 + (1 + 4en?)V2)75 1 — (1 — (1 + den?) 2+ 2y?) 4 1)
R exp T2y + YL+ (1 + der? ] — K
— (1= oty )
exp [=2n%(y — ¥)/(1 + (1 + den®)'D)] dy’ — 2e)"(1 + (1 + 4en?)'/>)™"

1 1
{ f K™Y exp [(y — ¥)(1 + (1 + 4en®)/?)/2e] dy’ — f h™(y')
y -1

cexp[—27*(y + 1)/ + (1 +4en®)') -y + DA+ + 48112)1/2)/2£]dy’}].

Note immediately that the last two terms are invertible and O(¢™) in the
X, y-plane, and hence can be dropped. This can be seen by integrating by parts
once more to obtain

’,,(1 + 48ﬂ2)_1/2(28)m+1[1 + (1 + 48n2)1/2]—m—1
times terms which are bounded independently of #, y and e. The result then follows
on setting 1, = ¢'/?n in the inversion integral.
Thus we need only consider the expansion of the remaining terms which,
since 2¢[1 + (1 + 4en®)217 ' = [—1 + (1 + 4en®)*'*1(2n*)~ ! can be written as

1m_1 2 k[k/Z] k+1 4en?)
- E 2n°)” E 1+
n k=0( n°) = (2t 1)( en’)

) A{RO(=Dexp [—2n*(y + D/ + (1 + 4en?)'')] — h®(y)}

y

— ,1(1 + 481’]2)_ 1/2[_1 _ (1 + 48ﬂ2)1/2]m(2’12)—mf

H)
-1
-exp [=2n°(y — y)/(1 + (1 + 4en?)'*)] dy'.
Differentiating m times with respect to ¢ gives terms of the form
N~ ) T 4 den?) TR TR 4 (1 4+ 4en®)V2] T2y + D'RO(=1)

(24a)
cexp [—27°(y + /(1 + (1 + 4en*)'/?)]
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and

y
N2+ den?)Fm (L 4 (1 dgn?)l2yn ! j ™)y — y)
-1

exp [—277(y — ¥)/(1 + (1 + 4en®)'/?)] dy,
where
0!+, +a,<m, 0= lLa,a, <m, 0sj=m-1.

Integrating by parts [ + 1 times on the last term in order to absorb the powers
n* we can replace it with terms

n(nZ)l—ﬂl(l + 48n2)—(1+m+a1)/2[1 + (1 + 487,2)1/2]—1+a1+ﬁl

(24b)
o+ DR B 1 exp [~ 22 + DL+ (1 + 4o )],

(24) 1,,—1(1 + 487,2)—(1+m+a;)/2[1 + (1 + 48n2)1/2]1+u1
C
{HO0) = K= 1) exp [=207( + D/(L + (1 + der®) )]},

y
nTH L 4 den?)TATMEEORIT 4 (1 4 den?)t ]t f Rt B Dy (y — y')Ps
(24d) .

exp [—2n%(y — y)/(1 + (1 + 4en?)'?)] dy,

where0 = 3, <, — 1,0, <1+ 1,0 < B, < I The bounding of R,, is now
reduced to the bounding of the inverses of (24).

The integrand in the inversion integral of (24d) can be rounded by ¢/(1 + |5|3),
where ¢ is independent of , y and ¢. (The bound for 5 large is obtained by inte-
grating by parts once more and bounding the resulting terms.) Thus, (24d) is
invertible and the result is bounded in &. The terms in (24c) are invertible as they
stand and the inverses are bounded as X — 0. (The limit must be used to define
the inverse functions at X = 0 since sine inversions automatically give zero there
—this point is discussed further when we come to the coefficient functions.)

In dealing with (24a), (24b) we note that the same difficulty occurs as in the
case of the infinite strip [2], leading to the exclusion of a region near X = 0,
y = — 1. The inversion integrals are convergent and O(1) in ¢ for y away from —1,
since we then obtain help from the exponentials. Although each integral is diver-
gent for y = —1, we can obtain convergence for X bounded away from zero
as follows. Rewrite sin nX as (¢"* — e~ *)/2i and, in the resulting two integrals,
bend the ends of the integration line upwards into the complex n-plane in the first
and downwards in the second. They are then convergent for all y.

Thus we see that R, (X, y;¢) is O(1) in ¢ in region IL

The terms wi'(X, y) may be treated similarly. Using the expansion (23) with
m = k + 1and noting that W}, y) is the kth derivative with respect to ¢ evaluated
at ¢ = 0, we find that W}(n, y) is composed of terms

(25a) 0"t mA) Iy + Dexp [—nP(y + DIAY(-1),
(25b) Nl Py + 1) AR exp [—nP(y + 1))A%TIRI(—1),

y
(25¢) pt f (v = ¥ exp [— (v — YR+ B 0y dyy,
-1
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where 0 <1<k 08, =L0Z8,2h,—1,0=Z ;5 =1/, and for k = 0, the
additional term

(25d) n~h(y).

The inversion of these terms follows easily (when we deform the contour
again for the first two) except for n~ 'h(y). Then the inversion integral is not
uniformly convergent, so we must first take X # 0 and let X — 0. Thus the sine
transform forces a zero value at X = 0, whereas we want the limiting value as
X — 0, which is in general not zero.

Extension of region II upwards is limited to y, = ¢! 7% because we have
omitted terms of the form (22) from the expansion and ignored the last two terms
in (18'a) as being uniformly a.e.s. Extension outwards is unlimited since no such
limitation was required for the above bounding.

Extension of region II into the corner is limited by the inversion of (24a),
(24b) which for points near X, = ¢*, y_; = ¢* with x,4 > 0 involves the ex-
ponential of —2n%e*/[1 + (1 + 4en?)*?] + ine* in the integrands. After the de-
formation of the integration line both terms have negative real parts, one of which
may be prevented from vanishing in the limit ¢ —» 0 by the transformation
n=¢ “twhen i = 2korn = ¢ *?t when A < 2k. The terms (24a), (24b) are then
of order ¢ #*™ or ¢~ 2*™ at worst. Thus A can be arbitrarily large so long as

(26a) Kk < 1/4,
and x can be arbitrarily large so long as
(26b) A< 1)2
6. The Singular Region II.. The limitations (26) are misleading: we must in
fact introduce the stretched variables (8) in order to describe the solution near

X =0,y = —1. Using a hat to denote the appropriate Fourier transform (with
variable 5, = ¢'/*n) we obtain

2/e
W~ (1 + 4ni)_1/2f hey, — 1)
0

Aexp [(1 = (1 + 4n)")y,/2 — (1 + (1 + 4en®)' )y, /2]
— exp [(yy = Vo2 = |yy — Vil (1 + 4en)'2/21} dy,,.

Expanding h in a Taylor series in ¢ we find

(27)

m—1
(28) Wty V38 ~ Y WPy, vy) + €"REM ., Vi3 ©)s
k=0

where

Wi = (g, (1 + 4;11)"”2}1“‘)(— 1)/“)[ Ve
0

(28) Hexp [(1 = (1 + 459))p,/2 = (1 + (1 + 452 )y, /2]

—exp (e — ¥)/2 = |y, — il (1 + 4n)'22]} dy,,
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2/e
RE = (1,(1 + 4722 /m) f VIR ety — 1)
0

250 exp (1 — (14 422 — (14 (1 + 412) )]

—exp [(yy — Yi/2 = |y — yil (1 + 4n3)V2/2]} dy),..

The integrals in W;"* have been extended to infinity, the added pieces being uni-
formly a.es. for y, bounded. This renders the coefficient functions independent
of &

It will now be shown that : (i) the wi™* do satisfy the proper recurrence relation
and boundary conditions for region II, ; and (ii) R}, is bounded independently of
¢ there. We shall in addition complete the treatment of region I1 by showing that
its expansion matches the one here.

(i) Direct substitution shows that
(% + 90y, — 0%/Oy)W = n,hley, — 1),

where W denotes its own asymptotic expansion (27). Expanding about ¢ = 0 for
h(ey, — 1) and equating coefficients of corresponding powers of ¢ yields the
relations

(M3 + 0/0y, — *[0y Wi = n WM (=1)yi/k!.
Also it is clear that W(z,,0;¢) = 0. So in the original plane we have
(02/0X3 + 0%/0y% — 0/dy,)wi* = 0,
WX 4, 0) =0, w0, y,) = hW(=1)yi/k!,

as desired, provided W;" is invertible. The latter is covered by our treatment of

R* below.
To investigate the matching of the II- and Il -expansions we note that for
y # —1 the integral (20) can be written in the form

Ie/(y + 1), X/(y + D2 h(=1 + eyy)
m—1
= 2 (/v + DMUXAY + D2 (=1 + eyy) + O™),
k=0

where I, is a linear operator on functions of y, which depends only on X/(y + 1)*/2
and the order symbol refers to fixed X, y. This result can be obtained by setting

=1/(y + D3, y = —1 + ¢y, letting the y,-integration range to infinity
instead of 2/¢ (thereby introducing a.e.s. error), and expanding on ¢/(y + 1) as in
§ 5 (i.e., by integration by parts). Beyond 2/¢ the function h(—1 + &y, is defined
as the polynomial ) ¥_ h”)(1)(y, — 2/¢)?/p!, where N is sufficiently large to ensure
whatever continuity of derivatives at y, = 2/e is required in the following. It is
easily checked that, in operating on functions O(1) in ¢, I, produces O(1) functions.
Consequently Taylor-series remainders can be ignored in writing the m-term
II-expansion

m—1 m—1—k

Y+ DXy + DY Y fh(= 1)y

k=0 j=0
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so that its n-term Il -expansion is

m—1 min(n—1,m—k—1)
(29) X Vs > (= DL(X /v, v
k=0 j=0

On the other hand, when 7, is replaced by t/yL/* the n-term II -expansion given

by (28) is seen to be

n—1

I(l/y*7 X*/yi/Z, Z th(j)("" l)y:{{/]')

j=0
and its m-term Il-expansion is

minn—1,m—k—1)

m-—1
30) 2 (e/y + 1) > ehI(— DL(X/(y + D2,y )i,
k=0

j=0

Clearly the expressions (29) and (30) are identical under the transformation
X =¢"%X,,y + 1 = gy, so that matching is established.

(i) Integrating by parts the terms in R* which have y,(1 + (1 + 472)'/?) in
the exponential, and noticing that (2/e) exp [—(1 + (1 + 452)'/?)/¢] is uniformly
a.e.s., we obtain

miRE ~ —20,(1 + 4n3)"V2(1 4 (1 + 403"

2/e

'{y,";h"”’(ety* -1+ f [my = 'h™(etyy, — 1) + yyeth™* Dety,, — 1)]
0

~exp [y, — (1 + 4n)12)/2 — yi(1 + (1 + 4n3)"%)/2] dy,

2/e
+f [myy = "h™(ety, — 1) + yeth®™* ety — 1)]

yx

cexp (v, — ¥ + (I + 4n3)'?)/2] dy;}

yx

+ n,(1 + 4111)_”2[ Vah™(ety, — 1)
0
-exp [(yy — yi)(1 — (1 + 4n3)"/%)/2] dy,.

All but the first and last terms are clearly invertible and their inverses are O(1)
in g since, after integrating by parts once more, they behave like 5, * for n,, large,
independently of & The first term can be rewritten as h™(sty, — 1)y% times
(1 = (1 + 4n2)3)/2n (1 + 4n2)'?) = 2n,(1 + 4n2)V*)~ ' — (2n,)~ ' and hence s
invertible with inverse O(1). Note that the value for X, = 0 must again be inter-
preted as the limit for X, — 0. The last term inverts to

X, fo* Vath™(sty, — 1)exp [(v, — V21K (X2 + (v, — v)H)'?/2]

(X5 + (e — VT2 dy,
and thus is O(1) in &.
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The invertibility of wi* is also covered by the above analysis, since the same
terms, with m replaced by k and ¢ set zero, are involved.
Extension of region II,, outward is limited only by

y*oo =g~ 1 +6’

which ensures that the original asymptotic expression (27) is still valid and that
the inverse of (28'b) is small compared to ¢ ™. Nowhere was it necessary to bound
X

-

7. The boundary layer IIL. The expansion found in region II is not asymptotic
to wnear y = 1 since it does not include boundary layer terms. Such terms arise
from the parts of the exact solution which were omitted for being uniformly a.e.s.
awayfrom y = 1(see(18') and (22)). Written in the stretched variable Y = (1 — y)/e,
these parts are given by the inverse of

T = 17(1 + 481’[2)—1/2 exp [_ Y(1 + 48112)1/2/2]

1
“ h(y)exp [(1 — y)(1 = (1 + 4en®)'1?)/2e] dy’

-

(31)
—f h(y')exp [{(1 — y)(1 + (1 + 4en*)"'* — 4(1 + 4en*)"'?}/2¢] dy'
1

+ ) [2e(1 + (1 + 43172)”2)"“%""(1)}.
k=0
Thus to obtain the expansion in the boundary layer we must consider the con-
tribution from the boundary layer correction t as well as that from the asymptotic
form used previously, now applied in the boundary layer.
Expansion of these two in a Taylor series in ¢ gives
m—1
W, Yie) ~ Y eWln, Y) + e"Ruln, Yse),
k=0
where it is not necessary to write out wi' and Z#,, explicitly. The task is now to
demonstrate that (i) the wi'(X, Y) satisfy the recurrence relation (13a) together
with the boundary conditions and matching mentioned there ; and (ii) Z,(X, Y; ¢)
is O(1) in ¢ in region I1L
(i) By direct substitution we obtain

(32) (02/0Y? + 3/0Y — en?)W = —nh(l — eY),

where again W stands for its asymptotic form; furthermore w(n,0;¢) = 0. It
follows that

(@2/0Y? + 9/oY)W = — 2w, — (= Y)ph%~ V(1)/k),
Wil(n,05¢) = 0,

so that the transforms of the recurrence relation and boundary conditions are
satisfied. If the w}" are invertible, as will be proved along with #,,, only the
matching remains.
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Notice that 7(n, Y;¢) is a solution of the homogeneous differential equation
(32) with %(n, 0;¢) the negative value of (20') at y = 1; it is therefore purely the
correction for the boundary condition at y = 1. Since (3, (1 — y)/e; ¢) is a.e.s. for
fixed y # 1, we need only prove that w — 7 matches with the W of region II, that
is, we need only show that the w used in region II satisfies the matching principle
in the variables y, Y. But this follows directly from Fraenkel’s Theorem 1 [3]: the
R, (n, y) in (21) remains O(1) for all yin —1 < y < 1 and the wl(#, y), since they
have the forms (25), clearly satisfy assumption 2 of Fraenkel’s theorem. The
expansion in region III is now seen to match that in region II since inversion
preserves matching.

(ii) To consider the existence of the coefficient functions wi(X, Y) and the
bounding of #,,(X, Y;e¢), recall that the corresponding expansion is the super-
position of that for 7(X, Y; ¢) and the expansion in region II rewritten in terms of
the boundary layer variable Y.

In treating the terms from region II, i.e. omitting the boundary layer terms,
the estimate of the remainder remains valid for y near 1. In other words the
expansion (21) holds uniformly up to the top boundary. Thus for its contribution
to the expansion in region I11 we need only substitute the boundary layer variable
Y and expand to order ™. Since the w(», y) have the forms (25), the remainder
after Taylor series expansion in ¢ has terms of the form

(33a)  nTimHTITSHITPY™ T2 — etY)Y ™ Pexp (=202 + stn?Y)hU(—1),
(33b) n(n2)l—s+pym—s(2 _ ety)l—/}l +1+p2—-m+p exp (_2’72 + gmz Y)h(s+ 1 +[fz)(_ 1),
(33c)  n7'Y"h™(1 — etY),

n—anIlym—S(z _ Sy)ﬂg—yzjl (1 _ yr)ﬂ3+lly/’yl
0
cexp [—n*(1 — y)2—etY)JhC TP 410(/(2 — erY) — 1) dy),

where 0 <p=m-—-s, I{ +y, —1+ 7y, =m— s and the other parameters
satisfy the previous conditions still. The last term was obtained by replacing )’
by (y + 1)y" — 1 as the integration variable in (25c¢).

Inversion in the first two terms is valid and O(1) in ¢ for Y bounded because
of the exponential convergence. The third term is also invertible and its inverse,
defined for X = 0 again by the limit, is O(1) for Y bounded. In dealing with the
last term we must integrate by parts [, times, to obtain terms of the form

(33d) 7' WAMQ = eYYrT T Y Sexp [ P2 — et Y) A AR (),
1

,1—1(2 _ SY)Ba—)'z—lnym—SJ (1 _ y/)ﬂ3+r2+r3yry1—r2
0

(33e)
-exp [—n(2 — etY)(1 — YA (0 _ eryy — 1) dy,

where a; </, and 0 < r, + r3 < /,. Again the terms are invertible and O(1) in ¢
for Y bounded. We conclude that the contribution to the remainder is uniformly
O(e™) in region III.

Treating now the contribution to the expansion from 1(y, Y;e) we first
integrate (31) by parts m times:
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m—1 [k/21 k+1
T=exp[—Y(1+(1+4en?)V?)/214 3 0~ (=271)7" Y (1 +4en?)
k=0 t=0 2t +1

[h9(1) — h¥(=1) exp [—4n?/(1 + (1 + 4en*)'1?)]]

1
+ (1 + 4en?) =12 f [(= 1" (1 + (1 + 4en) )" Q2n?) " "h™(y)

-1

(34)
-exp [=272(1 = y)/(1 + (1 + 4en®)2)] + (2&)"(1 + (1 + den?) %)~ h"(y)

-exp [{(1 — )1 + (1 + 4en®)'?) — 4(1 + 4en?)'2}/2¢]] dy'}-

On integrating by parts once more and letting #,, = ¢'/?# in the inversion integral,
it is clear that the last term is invertible and O(¢"). Consequently we need only
consider the expansion of the first three groups of terms. By expansion in Taylor
series, their contribution to 4, is their mth derivative with respect to ¢ evaluated
at te, which produces terms of the form

(352) " Pexp [—Y(1 + (1 + 4en®)"2)/2]h(D)/In(1 + den?y" ="',
™K exp [— Y(1 + (1 + 4en®)!2)/2 — 4n?/(1 + (1 + 4en®)'/2)]
CHB(=1)/In(1 + den?y" TR 4 (1 + den?)t2)2 ],
n? P exp [— Y(1 + (1 + 4en)'V?)/2 — 4n? /(1 + (1 + 4en®)'/?)
R D/I(L + den®) T TmTAR(L (1 + den?)! )T,
{exp[—Y(1 + (1 + 4en®)"/?)/2}h")(1)
(35d) —exp[—Y(1 + (1 + 4en?)'?)/2 — 4n2/(1 + (1 + 4en?)V/3) A" (—1)}
AL+ (1 den®) 2 (1 + den?) a0,

(35b)

(35¢)

exp[—Y(1 + (1 + 4"3112)”2/2]f1 Rt Dy (1 — )P
(35¢) S

exp [—2n%(1 — y)/(1 — (1 + 4en*)'?)] dy’
(14 (1 + ) 2P n(1 + dep?)t ),
where
0o, =m 0o, +lsm 0=f,<l-1, 0By, 0=B,=ph, -1

Notice that (as in region II) it was necessary to integrate by parts, after having
differentiated, to remove the powers of #2 which emerged.

The terms (35d), (35¢) can be bounded under inversion in precisely the same
manner as (24¢), (24d) in region II. The extra factor exp [— Y(1 + (1 + 4en?)!/?)/2]
only improves convergence of the inversion integral. The terms (35b), (35¢) are
invertible and their inverses are bounded in ¢ because they provide exponential
convergence.

The first term (35a) is clearly invertible for ¢ # 0, Y # 0 but we require its
inverse for all ¢, Y. To this end bound X away from zero, so that the inversion line
can be bent upwards/downwards respectively for the exp (+inX), of which sin nX
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is composed, to provide convergent integrals O(1) in ¢ uniformly for Y = 0.
(There is no question of reaching X = 0 by bounding Y away from zero, as there
was in region I1.)

Thus we are assured that £, is O(1) in region III, as desired.

The sth coefficient function involves the same terms (33), (35) with m replaced
by s and ¢ set equal to zero. With the exception of terms corresponding to (35a),
which are now positive powers of #, the existence of the coefficient function is
therefore covered by our discussion above. The exceptional terms are also covered
if the inversion line is deformed before expanding in Taylor series.

Extension of region III downwards to Y,, = ¢ * is restricted to

A<

because we have implicitly assumed 2 — ¢tY is positive. Extension outwards in X
is unrestricted since it was nowhere necessary to bound it (e.g. terms of the form
n*?* ! exp (—2x?) invert into X? exp [— XZ/Zﬁ] which are bounded as X — o).

Extension into the corner is limited by the integrals resulting from deformation
of the inversion line. Letting nX = t shows that the terms behave at worst like
X ™2™ so that for X = &* we must have

K < 1/2.

8. The transition zone III.. Motivated by the last restriction, we introduce
the stretched variable x,, = ¢~ '/>X in order to describe the boundary layer near
X = 0. The structure of the III -expansion is similar to that of the Il1I-expansion
in that it is composed of two parts, namely the II-expansion, expanded in the
1 -variables, and the boundary layer correction. We shall show that

m—1
(36) wixy, Yie) ~ Y ePwi™(x,, Y) + &"2S,(x,, Y;¢),
k=0

where: (i) the wi™ satisfy the recurrence relation (16a), the boundary conditions
(16b), and the appropriate matching conditions, and (ii) S,, is O(1) in ¢ uniformly
in region III.

(i) Once it is known that the asymptotic expansion (36) holds in region III,,
the fact that w (as formed from (18'a)) satisfies (1a) and the boundary conditions
(1c), (1d) to within a.e.s. terms is sufficient to ensure that the wi™ satisfy (16a),
(16b). The validity of (36) is established by the boundedness of S,, and the existence
of the wi™ as proved in (ii) below.

As noted above, the III-expansion is a superposition of the II-expansion,
expanded in the IIl -variables, and the boundary layer correction terms. The
latter terms, as the name suggests, are a.e.s. out of the boundary layer ; and so the
matching of the III-expansion with the II-expansion is assured if the II-expansion
matches with itself expanded in the III,-variables. In the next section it is proved
that the wy' have asymptotic expansions in the III -variables which are poly-
nomials in ¢'/2x, and &Y. Therefore we are assured of matching by Fraenkel’s
theorem.

(i) To order [(m + 1)/2] the III-expansion of the II-expansion is

m=1)2] 5 rw
(37) o= Y 8";f Win, Y)sinnX dn + ™YL 0L
0

k=0
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where we have already shown that %}, . 1), is bounded in & not only in IIT but
also in III,. To obtain the contribution of (37) to the expansion (36) we shall
deform the inversion line near # = 0 in the complex #-plane so as to avoid later
convergence difficulties at that point. Now, in the boundary layer @' is composed
of terms of the form (33), with ¢ = 0 and m replaced by k, and hence is an odd

function of n. Thus the integrals in (37), with X = ¢~ */2x,, can be written

f ®¥(n, Y) sin (ne'/*x,) dn
0

(38)
— @i {J M, Y) exp (ine"2x,) dy — (/2)ry(Y),

where r,(Y) is the residue of @' at its simple pole n = 0 and hence is a polynomial
in Y. Instead of changing to the corresponding transform variable 7, = ¢'/n,
which would lead us to troublesome terms exp (—2#2/e), we would like to expand
exp (ine'/*x,). But this contributes powers of 7 to the integrand which apparently
destroy the convergence as n — co. Therefore we first rewrite the integral terms of
@} by integrating by parts [(m — 2k)/2] + 1 times with respect to ', to obtain

(393) ”-1”_2}’2}/)’1]1()’3)(1)’
(39b) 7~ 'y?Y7shU(1) exp (—21%),

1
(39c) n~ iy~ Rllemm 221 ”Y”f (1 — yysy7ho 02y — exp[—2n*(1 — y)]dy,
0

where

— 2k
Oéyzé[m : ]+1, 0%y,

The set of terms (39a), (39b) can be integrated explicitly in (38) to give powers of
ex2 and Y; so that they, as well as the residue terms, provide O(1) contributions
to the coefficient functions and remainder in III,. Having taken care of these
terms, we can expand the exponential in the integrand (38) for the remaining
terms without losing convergence. If @, denotes their contribution to @}, we have

m—1-2k

2! @, exp (ie'*nx,) dn = @iy~ texi(2j) ! @n dn
B % * ~ k

i=0

(2R (6 xR 2m — 2Kk 50 B exp (ine'2x,) di,

where the Taylor series has been taken to a remainder providing O(¢™?) in (38).
Two things must be proved about this last expansion, namely that the integrals
in the sum exist and that the remainder integral is O(1) uniformly in III, . But these
facts are clear since for the former the integrands behave exponentially as n — o,
while for the latter they converge at least as well as n~ 2. It was to obtain this last
convergence property that integration by parts was performed on the integral
terms of @
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The boundary layer correction terms (34) can be written as
exp[—Y(1 + (1 + 4en*)'/?)/2]
(40) m—1
-{ﬁ(n, &) + n(l + 4en®)™"2 Y [26/(1 + (1 + 4en®)' )" HO(1)
k=0
where

@ =n(l + den®)™'2 1 h(y){exp [(1 — y)(1 — (1 + 4en*)'1?)/2¢]

—exp [{(1 — y)(1 + (1 + 4en?)"/?) — 4(1 + den?)'/}/2¢]} dy

is the approximation (20') from which the II-expansion was obtained, evaluated
at y = 1. So, as proved in the preceding paragraph,

m—1
o(x,,6) = Y, &mi(x,) + €2 0(Xy, ©)
k=0

holds in III,.. But we must now incorporate the exponential factor in (40), and the
fact that w is an odd function of n enables us to do this by convolution. Changing
to the variables x, and 5, = ¢'*n, we find

2 (*® .
;f exp[—Y(1 + (1 + 4n2)'/%)/2]e” V2a(e ™20, &) sinn,x, dn,
0

1 (e o)
-1 J exp[— Y(1 + (1 + 47%)"2)/20e™ P2ax(e™ 2, , 6) exp (inyx,) di,

1 ©
= ﬂ exp(— Y/2) f_oo m(x’*,g)YKl[((x* — X;‘)Z + Y2)1/2/2]

(% = X7+ Y3712 4,
=Y #evep(- Y/2>fw DK [((x, — X7 + ¥2)1272]
k=0 -
2a((x, — x3)* + Y2)VA] 71 dx),
+ &Y exp (= Y)2) f Ty K[y — X2 + VD)2
27(xy — X, + Y2271 dx,
Since w,, S,, behave as polynomials in x, and

f XK [(x2 + YH)Y2/2)(x2 + Y2)" Y2 dx = 22 D(u + 1)Y*K _ (Y/2),

0

these integrals are bounded independently of ¢ throughout IIL, .
Finally we must deal with the contribution to the expansion (36) from the
series in (40). But, under change of transform variable to #,,, these terms become

exp[— Y(1 + (1 + 4en?)'2)/2]n,(1 + 4n2)~ '

.mil 226)h(1)/(1 + (1 + den?)V/2y+1,
k=0
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each of which is clearly invertible. Each therefore contributes to one of the co-
efficient functions of (36) or the remainder.

This completes the proof that there is indeed a valid asymptotic expansion
throughout region III,,.

Extension of region III, to

is limited to
A<, u <12

The restriction on A is a carry-over from the bounding of the remainder in region
II1. The limitation on u arises from the terms

Mex2)
which come from (39b). We obtain the worst behavior for k = 0, when they
behave like (¢! ~2#)"*—hence the restriction on p.

9. Other assumptions about A(y). It is of interest to see the effect of varying
the conditions (17) on A(y). First we strengthen them with

hO(—1+0) =0 or h¥(1—0)=0 fork< k,

and ask at what stage in the approximation of w it is necessary to introduce the
corner region II, or III,.. Secondly we weaken them to

h is infinitely differentiable on (—1, 1) except at y = q,
h®a + 0), (=1 + 0), h*¥(1 — 0) exist for all k,

when it is necessary to introduce a new region about y = a.

If W9(—=1 4 0) = 0 for k < k,, it is not necessary to introduce region II,
until m = [ko/2] + 1. Thus, the exclusion of the lower corner from II arises in
bounding the terms (24a), (24b) and these now vanish for m < [k,/2]. All re-
maining bounds extend into the corner. Similarly if Af%9(1 — 0) = 0 for k < k,, it
is not necessary to introduce the region III, until m = k, + 2, since the terms
(35a) in I are zero for m < k, + 1 and again all bounds extend into the corner.

To facilitate the discussion when h and its derivatives are allowed a dis-
continuity at y = a, we define a new function

h(y) fory < a,
_ M
ha(y) = Y (v — afh®(a — 0)/k! fory=a,
k=0
where M depends on m. The original boundary value problem (1a), (1¢), (1d) is

now written as the superposition of two semi-infinite strip problems with the
respective boundary data

wl(o’ J’) = ha(y)’ Wl(x5 il) = 09
wa(0,y) = h(y) — h(y),  wy(x, £1) = 0.

Since the function h, has continuous derivatives to order M, the proof that the
method of matched asymptotic expansions is valid for w, to order m is contained
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in the preceding portion of this paper, when M is taken sufficiently large for all
derivatives involved to be continuous.

For w, the results for region II follow as before except that we must also deal
with terms

m—1
__7,(1 + 48112)—1/2 Z (_1 _ (1 + 48112)1/2)k+1(27’[2)_k—1
(413) k=0

{h%a + 0) — h®%a — 0)} exp [ 2n*(y — @)/(1 + (1 + 4er)'?)],

for y > a, and

m—1
_7,(1 + 487[2)_1/2 (28)k+1(1 + (1 + 48112)1/2)_k_1
(41b) kgo

{h®a + 0) — h¥%a — 0)} exp [(y — a)(1 + (1 + 4en?)"?)/2],

for y < a, which arise on integrating (20') by parts due to the discontinuity at
y=a.

The terms (41a) present no problem for y = a + 6 (6 > 0) since even after m
differentiations with respect to ¢ the inversion integral retains exponential con-
vergence. As for region II,, (see § 5), if we rewrite sin #.X as exponentials and deform
the integration contour, we obtain convergence for all y = a when X = X, > 0.

The terms (41b) are uniformly a.es. if y < a — d, and analysis as in the
previous paragraph shows they have similar properties for y < a, X = X, > 0.

It is therefore necessary to introduce a ““‘corner” region near X = 0, y = a,
similar to the II-region. In terms of the stretched variables y, = ¢~ '(y — a),
x, = ¢ "?X and the corresponding transform variable n, = &'/*n, we have

(L—a)/e
o~y 4ni)—‘/2f (hey, + @) — hyey), + @)
0

~exp [{(vy — ¥0) — Iva — yil (1 + 4n9)'2}/2] dy,,

to uniformly a.e.s. terms.

Now expand h — h, in its Taylor series about a to m terms and note that, as
in region II,, the upper limit of integration can be extended to co for these terms
(but not the remainder), thereby introducing only uniformly a.e.s. terms and
making the integral independent of &. Bounding follows precisely as in region II.

The regions III and III, present no problem since the additional terms due
to the discontinuity at y = a are invertible and the corresponding remainders are
O(e™). For instance in the formula (34) we must add

n(1 + 4en?)” Y2exp [ Y(1 + (1 + 4en®3)/2 + (a — 1)272/(1 + (1 + 4en?)'?)]
(=1 =1 + 4en®HH20* T+ Y h®(a + 0) — h*¥Ya — 0)},

which always provides exponentially convergent inversion integrals.
10. The rectangle. We are now in a position to show that the method of

matched asymptotic expansions is valid for (la) on the rectangle 0 < x </,
[yl < 1 with the boundary data



THE BEHAVIOR AS ¢ = 0 OF SOLUTIONS TO £V?w = (0/dy)w 183

wx, —1) = f(x),  w(0,y) = h(y),
W(X, 1) = g(x), W(l, y) = d(y)

The proof consists in writing w as the superposition of three functions, the first
two of which are solutions on semi-infinite strips and the third a solution on the
rectangle with data which is a.e.s.

In order to formulate these problems we define new functions f7, f5, g, &2,
where

(42)

{fH for0<x=1, s {f—f1 for0<x <,
1= 2 =

0 for x > I, 0 forx < 0,
and g,, g, are similar. H is an infinitely differentiable function of x such that
1 for —oo < x < 1/4,
={0 for 3l/4 £ x < o0,

and is introduced purely as an artifice. That is, if we now let w, , w, be the solutions
satisfying the respective boundary conditions

Wl(oa y) = h(y)’

wi(x, —1) = f1(x), wi(x,1) = g,(x) for0 = x < o0,
wo(l y) = aly),
w,(x, —1) = f5(x), wy(x, 1) = g,(x) for —o0 < x £,

then the boundary data for w, is zero in a neighborhood of x = I and that for w,
is zero in a neighborhood of x = 0. It follows that w,(/, y) and w,(0, y) are a.es.,
a result on which the proof hinges. (The infinite differentiability of H ensures that
no spurious layers are introduced by w; and w,.)

On the rectangle we may write w(x, y) = w,(x, y) + w,(x, y) — w;(x, y), where
wj is the solution with the boundary values

@3) wix, =1) =0, w;(0,y) = w,(0,y),
wi(x, 1) =0, wy(l,y) = wil,y).

Note that these boundary values depend on, and are a.e.s. in, ¢; and that wy is
the correction needed to annihilate the boundary values of w, and w, at the sides
x =1 and x = 0, respectively (which were omitted from their definitions as
solutions of semi-infinite strip problems). Note also that the data (43) is con-
tinuous on the boundary, including the corners. It now follows from the maximum
principle that |w,| is bounded by its maximum on the boundary and hence is a.e.s.
throughout the rectangle. Its contribution to w may therefore be ignored.

The proof that the method of matched asymptotic expansions is valid for w,
and w, separately is the preceding portion of this paper. Note that the entire
problem is linear so that the approximation to w obtained by the method of
matched asymptotic expansions in any region is the sum of the approximations
obtained there for w, and w,. This shows that the method is valid for w.
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No mention has been made in this section about the differentiability properties
of the boundary data. The order to which the approximations can be carried out
will depend on these in the ways described in §9 and our earlier paper [2].
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BOUNDARY PROBLEMS OF STURMIAN TYPE
ON AN INFINITE INTERVAL*

WILLIAM T. REID}

Abstract. Two types of Sturmian boundary problems on (— oo, o), with boundary conditions
specifying that the proper functions are of integrable square, are considered with the aid of the principal
solutions of the involved differential equation at co and — co, and the reduction of the given problem
to an associated Sturmian problem on a finite interval. For problems of the first type it follows from
classical Sturmian theory that the totality of proper values may be ordered as a simple sequence, with
the proper function corresponding to the jth proper value possessing exactly j — 1 zeros on (— o0, ).
Problems of the second type involve “turning points,” and in this instance Sturmian comparison
theorems are used to establish the existence of a sequence of sets of proper values such that the proper
functions corresponding to parameter values in the jth set possess exactly j — 1 zeros on (— o0, o).

1. Introduction. This paper is concerned with two types of boundary problems
of Sturmian type for a real linear homogeneous ordinary differential equation on
the real line, in which the boundary condition prescribes that the proper functions
are of integrable square on (— 00, 00). Problems of the first type involve differential
equations whose coefficient functions possess monotoneity properties of the sort
appearing in the classical Sturmian theory, and the results obtained for this
problem are generalizations of those obtained many years ago by Milne [7].
Problems of the second type involve “‘turning points,”” and the coefficients of the
differential equation are monotonic of opposite character on complementary sub-
intervals of (— oo, o0). The present consideration of problems of this latter sort
was stimulated by the paper [1] of Harris and Sibuya, who utilized complex
variable methods to establish the existence and asymptotic form of the proper
values for a problem of this kind.

The central feature of the treatment of the present paper is the reduction of
each of the considered problems to an associated problem on a finite interval,
through the use of the principal solutions of the involved differential equation at
the end points co and — oo. For problems of the first type the associated finite
interval problem satisfies the hypotheses of the classical Sturmian theory, so that
the totality of real proper values may be ordered as a sequence {4;}, with the
proper function corresponding to 4; possessing exactly j — 1 zeros on (— o0, ).
For problems of the second type the associated finite interval problem does not
possess all the monotoneity properties so requisite for the Sturmian theory.
However, with the aid of Sturmian comparison theorems one may establish the
existence of a sequence A of sets of proper values, such thatif A€ A;, then 4 is a
proper value for which corresponding proper functions possess exactly j — 1
zeros on (— 00, 00). At the moment there remains unanswered the determination
of specific conditions on the coefficient functions of the differential equation which
will insure that each set A; reduces to a single value.
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The real number line (— 0o, co) will be denoted by R, and R* will designate
the nonnegative ray {t{te R, t = 0}. If [a,b] = R and a function f:[a,b] > R is
a.c. (absolutely continuous), then f'(t) denotes the derivative of f(t) at values
where the derivative exists and zero elsewhere. For a given compact interval
[a, b] = R the symbols €[a, b], L[a, b], 23[a, b], °[a, b] and Ala, b] are used to
denote the class of functions f:[a,b] = R which are respectively continuous,
(Lebesgue) integrable, (Lebesgue) measurable and f2 integrable, measurable and
essentially bounded, and a.c. on [a, b]. If functions f and g are equal a.e. (almost
everywhere), on a common domain of definition, we write simply f = g. If
f:[a,b] - R is essentially bounded, then ess sup,., f(t) denotes the essential
supremum of f on [a, b], that is, the smallest nonnegative number M such that the
set {t|lte[a,b], |f(t)) > M} has measure zero. A function f:R — R is said to be
locally integrable, of class 22, of class 2%, or a.c., if fe L[a,b], fe £[a,b],
fe 8%[a,b], or feW[a, b], for arbitrary compact subintervals [a, b] of R.

2. A problem of classical Sturmian type on an infinite interval. In this section
we shall consider a boundary problem

@ [r(t, WO = b, ule) = 0,
(2.2) Iw u*(t)dr < oo,

involving the real parameter A, under the following hypotheses, where
R=(—o,0) and A= {lA; <1< A,}.

(i) On R x A the functions r and p are real-valued, and r > 0.
(i) For AyeA, the functions r(t, o), 1/r(t, A¢), and p(t, A,) are locally of
class 2% ; moreover, for t a.e. on R these functions are continuous in
Aat Aq.
(iii) For teR the functions r(t,A), p(t,A) are monotone nonincreasing
functions of A on A, and such that for [a, b], an arbitrary nondegenerate
(o) compact subinterval of R, the functional

b
Jufns Ay = [ 406 A7) + ple, (0} de
is a strictly monotone decreasing function of A for arbitrary #(t) # 0
belonging to the class 2[a, b] defined by
Dla,b] = {nln e Ua,b], n' e L[a,b]}.
(iv) Fortae. onR,

lim p(¢, X)) = + 0.
A=Ay

(v) There exists a compact subinterval I, of R such that
lim p(t,A) = —oo fortae. onl,.
A= As

(vi) For A€ A, liminf,, ., p(t, 1) > 0.
Under hypotheses ($ (i), (i1)) a function u(t) is said to be a solution of (2.1) if
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there exists an associated v(t) such that (u(t) ; v(¢)) is a solution in the Carathéodory
sense of the differential system

(2.1) w(e) = [1/re, H]or),  v'(e) = ple, Du(t);

that is, u(t) and v(z) are locally a.c. on R and (2.1') holds a.e. on R.
Itis to be noted that the above conditions ($ (i)«(vi)) hold for A = R under the
following hypothesis :
r(t, A) = 1, while on R x R the real-valued function p(t, A) is continuous, has
a negative partial derivative with respect to 4, and

($°) lim p(t,4) = +o0,  lim p(t, ) = — oo,
A= — o0 A= 0

lim p(t,A) = + oo.
t—>+ oo
The conditions of ($°) are those imposed by Milne [7]; in particular, they are
satisfied if (¢, A) = 1and p(t, 1) = py(t) — A, where p,(¢) is a real-valued continuous
function on R such that lim,_, , , po(t) = + 0.

LeMMA 2.1. Suppose that hypotheses (9 (1)—-(v)) are satisfied, [a, b] is a compact
subinterval containing the interval 1, of (9 (V)), while (1), B,(2) are functions of A
on A which are real-valued, continuous and nonincreasing on A. Then:

(1) for ne P[a,b), and y(t) # 0 on [a, b], the functional

(2.3) Jln; da, b] = B(An*(a) + By(An*(b) + Joln; Ala, b]

is a continuous strictly monotone decreasing function of A on A;
(i) for A€ A, the real proper values of the Sturmian boundary problem

(r(t, (0] + [ — p(t, )lu(r) = 0,
(2.4) B (@) — r(a, Au'(a) = 0,
Byo(Au(b) + r(b, A)u'(b) = 0,

involving the characteristic parameter u, form a sequence

2.5 1) < pa(d) < -

such that :
(@) a proper function u = ujt;A) of (2.4) corresponding to the proper value
u = ujA) has exactly j — 1 zeros on (a, b);
(b) lim ufd) = +oo for A€ A;
Jj—= o

(c) forj=1,2,---, the proper value py4) is a strictly monotone decreasing
continuous function of A on A;
(d) there exists a 1 € A such that

(A >0 if Ae(Ay,d).

In view of hypothesis ($ (ii)), for # € Z[a, b] the functional J,[#; Ala, b] exists
for all A€ A, and conclusion (i) is a ready consequence of hypothesis ($ (iii)). For
each A € A the existence of a sequence of proper values (2.5) of (2.4) satisfying con-
clusions (ii (a), (b)) is a consequence of classical Sturm-Liouville theory. In case
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the coefficient functions r(t, 1), p(t, A) satisfy hypotheses ($ (i), (ii)), and are also
continuous in (¢, 4) on R x A, this result is given in Ince [5, Chap. X, § 10.71],
Hartman [3, Chap. XI, Th. 4.1], or Reid [10, Chap. V, Th. 7.4]. Also, under (£ (iii))
and these additional hypotheses the strict monotone decreasing character of the
proper values u(4) follows from a well-known comparison theorem for Sturm—
Liouville systems (see, for example, Reid [10, Chap. VI, Th. 4.1]), and the con-
tinuity of each proper value p () as a function of 4 is also a ready consequence of
the extremizing property of these proper values (see, for example, Reid [10, Chap.
VI, Prob. 5.8]). The proof for each of the above results may be modified to yield
the stated conclusions (ii (a), (b), (c)) when hypotheses ($ (i), (ii), (iii)) hold, and the
functions r, p are not required to be continuous on R x A.
Now in view of hypothesis ($ (iv)) we have that

(2.6) lim J[n;Aa,b] = +oo forneP[a,b] and n(t) 20 on[a,b].
A=Ay

We shall proceed to show that there exists a value 4 € A such that
2.7 JIn:Aa,b] >0 forie(A,A) and neP[a,b], n(t)#0 onl[ab].

Indeed, if there exists no value 4 such that (2.7) holds, then there exists a sequence
{esMe}>k = 1,2, -+, such that
hor€A,A)c A, k=1,2,---, limi =A;
k— o0
28 M) % Oon [abl, nee@[abl, Il hda.b] <O

Without loss of generality we may suppose that the functions #, are normed so that

b
2.9) Il = n2(a) + n2(b) + J n2(e) dt = 1, k=1,2
As
I Ala, b1 < Jlny; Ada, b] < 0, k=1,2,---,
if

Ko(A1) = max {|B,A1)], 1By(A1)], ess sup Ip(t, 411},

and
K(A,) = Ko(A,) esssup r=1(t, 1,),
tela,b]
it follows that
b
(2.10) | oo de < k@in? = ki, k=12,

Relations (2.9), (2.10) imply that the sequence of functions {#,(¢)} is uniformly
bounded and equicontinuous on [a, b]. Moreover, (2.10) states that the sequence
{ni(t)} belongs to a bounded ball in 2*[a, b], and hence there is a subsequence of
{ni(t)} which converges weakly in £*[a, b] to a function ¢. Also by the Arzela—
Ascoli theorem there is a subsequence of the first determined subsequence which
converges uniformly to a continuous function #(t). Combining these results we
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obtain a subsequence of {#,(t)}, which will still be denoted by {#,()}, that con-
verges uniformly on [a, b] to a limit function 5 ,(t), and the sequence {;(t)} con-
verges weakly in €%[a, b] to ¢(t) = 1',(t). Moreover, in view of (2.9) we have
Inell = 1,sothatn(t) # 0 on [a,b]. Then n, € Z[a, b], and since r(t, 4,) > 0 for
h =1,2,---, we have the lower semicontinuity result

I3 Ala, b] < lim inf J(n,; 2,la, b]
k— o
< lim inf J(n, ; 4la, b] < 0,
k—

which is contradictory to (2.6). Now if u(t) is a proper function of (2.4) correspond-
ing to a proper value p = u(4), then an integration by parts yields the relation

b
Jlu;Aa,b] = u(l)f u*(t) dt.

Consequently, if 4 is a value satisfying (2.7) we have that pu,(4) > 0 for Ae (A, 1).

The principal result to be established in this section is that of the following
theorem. For the particular case of r(t, 1) independent of A and p(t, 1) of the form
— A + q(t), results of the nature of this theorem have a long history, dating from
the basic work of H. Weyl [12], [13]; in this connection the reader is also referred
to the paper of Wolfson [14], and to references given by Hartman in connection
with §§ 4 and 6 of Chapter XI of [3].

THEOREM 2.1. Under the above hypotheses (9 (1}~(vi)) the real proper values of
the system (2.1), (2.2) form an infinite sequence

11<12<"‘

such that 2; - A, as j — oo ; moreover, for j = 1,2, --- the corresponding proper
Sfunction uft) = u(t, 2;) of this system has exactly j — 1 zeros on R.

In view of hypotheses ($ (i), (ii), (iii), (v)) it follows from oscillation results of
the Sturmian theory (see, for example, Ince [5, Chap. X, § 10.6], Hartman (3,
Chap. XI, § 3], or Reid [10, Chap. V, § 5]) for an arbitrary positive integer m there
exists a value [, such that if u = u(t, 1) is a solution of (2.1) for 4 > [, then u(t, 1)
has at least m zeros on Iy, where I, is the compact subinterval of ($ (v)). Moreover,
in view of hypothesis (9 (vi)),for A € Athereexistsat = 7(4) > 0andax = x(4) > 0
such that

2.11) pt, ) = k(d) forte(—o0, —1(A)] U [2(1), o0).

In particular, (2.1) is nonoscillatory on each of the intervals [7(4), ) and
(— oo, —1(4)], and consequently this equation has principal solutions u(t, 4) and
u_,(t,A) at oo and — oo, respectively.

The principal solution u(t, 1), {u_ ,(t, 1)}, is characterized by the property
that if for the given value of 1 the function u(t) is a solution of (2.1) which is not a
multiple of u(t, 1), {u_ 4(t, 4)}, then

Uo(t, 4) 0

u_ ot 3) _
t— oo u(t) t>— o u(t)

The corresponding functions w = w(t, 1) = r(t, Aul,(t, /ut, A), {w = w_ (8, )
= r(t, - (8, A)/u_ (t, A)} are solutions of the associated Riccati differential
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equation

w(t)
ra P

(2.12) w(t) + (t, A) = 0,

and are called the distinguished solutions of (2.12) at the respective end-values oo
and — co. For the case of real scalar linear homogeneous differential equations of
the second order the concept of a principal solution was introduced independently
by Leighton and Morse [6] and Hartman and Wintner [4], using different definitive
properties for such solutions. The extension to matrix systems is due to Hartman
[2] (see also [3, Chap. XI]) and Reid [8] (see also [10, Chap. VII]). Moreover, if
T € [1(4), 00) and s € (1, 00), there is a unique solution u = u(t, 7, 1), v = vyt, 7, 1)
of (2.1') satisfying the boundary conditions

(2.13) ult, 7, 4) =1, ugs, 7, 4) = 0,

and v (7, 7, 1) is a monotone nondecreasing function of s on (7, c0) which is bounded
above. If v (t, 1) = lim,_, , v(t, 7, 1), then a principal solution u = u (¢, 1, 1) of
(2.1) at oo is determined by the initial conditions

(2.14) Uy(t,7,4) =1, Vo(T, T, A) = 0,(T, 4).

Also the distinguished solution w(t, 1) of (2.12) at oo is given by
Woolt, A) = 05 (8, T, A/ug (8, T, 4).
In particular,

(2.14) Wo(T, 4) = 0,(1, T, 4) = v,(r,4) for T€[1(4), 0).

As r(t,2) and p(t, 1) are both positive on [t(4), c0) it follows that for
7 € [1(4), 00) the integral

(2.15) on {r(t, )t 7, T + plt, 1) [u(t, 7, D]}t

converges and has the value —v (1, ) = —w,(1, 4); for this latter result see, in
particular, Reid [8, Th. 8.1]. Since p(t, 1) = k(1) > Ofort € [t(4), 0),it follows from
(2.15) that u (-, A) € L3[1(4), o). Now if for given A € A and 7 € [t(4), 0) we have
that u = uy(t), v = vy(t) is the solution of the equation (2.1) which satisfies the
initial conditions

ug(t) = 1, vo(7) = 1,

it follows that uy(t) = 1 for t €[z, c0) and the integral fj‘)u%,(t) dt is divergent. As
every solution u(t) of (2.1) is a linear combination of u_(t, 1) and uy(t), it then
follows that a real-valued solution u(z) of (2.1) is such that the integral | ©u(t) dt
is convergent if and only if u(t) is a multiple of u(t, 4).

Similarly, if T € (— 00, —t(4)] and s € (— o0, 1), then there is a unique solution
u = uyt, 1, 1), v = v, 1, 4) satisfying the boundary conditions (2.13) and v(z, 7, 4)
is a monotone nondecreasing function which is bounded below on (— o0, 7). If
v_ (1, 4) = lim,, _, v(t, 7, 4), then a principal solution u_ (t,7,4) of (2.1) at
— oo is determined by the boundary conditions

(2.14,) u_ () =1, v_ (1,1,4)=0v_(t,).
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Also, the distinguished solution w_ (¢, 1) of (2.12) at — oo is given by w_ (¢, )
=v_,(t 1, )u_(tr,1),and

(2.14}) w_ (1, A) = v_ (1,7, 4) = v_(1,4) forte(—o0, —1(A)].

Corresponding to the above results for the endpoint co, we have that a real-
valued solution u(t) of (2.1) for a value 4 is such that the integral {_ _u*(t)dt is
convergent if and only if u(t) is a multiple of u_ (¢, ).
Now under hypotheses ($ (i), (ii), (i) it follows that if Ag = {A]4' < 1 < 1"}
is a compact subinterval of A, then 0 < r(t, A) < r(t, A') and |p(t, )] < |p(t, 1)
+ Ip(t, /l”)l for (t, A)e R x A,. Consequently, 1f la, b] is a compact subinterval of
R, and /1 €Ap, j=0,1,2,---, with lim;, , 4; = = 1, then with the aid of the
Lebesgue dominated convergence theorem it follows that the sequences {r(t, 1 J)}
and {p(t, /IJ } converge strongly in £[a, b] to the respective limit functions r(t, Zo)
and p(t, A,); that is,
b

b
lim | |t 1) — r(t, o)l de = 0, lim | |p(z, ) — plt, Zo)l dt = 0.

Jjo o J—©
Consequently (see, for example, Reid [9, Th. 3. 1]),1f (t;,u 0 J, 0)eR x R x R, with

the sequences {¢;}, {u7}, {v}} converging to to, ug, vg, respectively, then for the
solutions u = ujt), v = vjt) of (2.1') for 4 = /'L satisfying the initial conditions

uj(tj) = uja Uj(tj) = U?’
we have that the sequences {u(t)}, {v,(t)} converge on R to u,(t), vy(t),, respectively,
and the convergence is uniform on arbitrary compact subintervals of R. Also,
since p(t,4) =2 0 for teft(dy), 0) U (— o0, — ©(de)] and Ae(A;, Ay), for the
principal solutions u(t, 1), v (¢, 4) and u_ (¢, A), v_ (1, 1) of (2.1) satisfying

U(t(Ao), ) = 1, u_o(—=1(4o), 4) = 1 for Ae (A, Ao],

we have that v (1(1o), 1) = w(t(4o), 4) and v_ (—1(4¢), ) = w_ (—1(4¢), 4) are
continuous functions of A on (A, 4¢]. For a proof of this result stated precisely
in these terms, the reader is referred to Reid [11, Th. 3.2, Cor.]. For the case of
r(t, A) = 1 and p(t, A) continuous in (¢, 1) on R x A, this result is a consequence of
Hartman [3, Chap. XI, Cor. 6.6].

As a first step in the proof of Theorem 2.1, for a given 4, € A satisfying A, > 1,
lett, = 1(dy) and ko, = Kk(4,) be determined asin (2.11). In view of the monotoneity
property of (£ (iii)) we have

211 plt, ) Z plt, Ag) Z k(o) for A€ (A, Ag], te(—00, =7o] U [ro, 00).

Forie (A, Aolletu = uft, 1) = uft, 1o, 1), v = vyt, 1) = v(t, 14, 4) be the solution
of (2.1') determined by the corresponding boundary conditions (2.13). For
A < Ay < A, £ Ay we then have

- US(TO’ Al) = _us(TO’ ll)vs(TO’ Al)

= [ bt A AP+ ple 20 2T e

> f (A e, AT + Ut A e, A0)T2) de

(cont.)
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2 [t 20 o) + 22 e, 2

where the last inequality is a consequence of the fact that in view of the discon-
jugacy of (2.1) on [1,, s] for A = 4, the solution u(t, 1,) minimizes Jy[#, 4,|t,, 5] in
the class of arcs n e Y[, s] satisfying 5(to) = ultg,4,), n(s) = uys, 4,) (see, for
example, Reid [10, Chap. V, Cor. 2 of Th. 3.1]). Moreover, we have

fs {r(t, ) [u(t, 2200 + plt, 2) [ut, 22)1°} dt = —u(To, 22)v4(T0, 42)

= —0(T0,42),

and consequently —u(tg,4,) = —v19,4,) for Ay <1, <A, £ 4y. Finally,
since vy(tg, A,) = V,(To, 4y = Wi(To, 4,) as s = 00, we have

—W(Tg, A1) = —Wy(Tg,4,) for Ay < iy <4, £ 4.
In a similar fashion, we may establish that
W_o(—Tor A1) = W_(—T0,42) for Ay < iy < 4 £ 4.
Now, for n € 2[—1,, 1) and 4 € A, define
I3 2 = w_ (=0, WP (=T0) — Weo(To, AN*(T0) + Jo[115 4l — 7o, To)

(2.15)
for Ae (A, Aol;
I 4] = w_ (=T, Ao (—To) — Wo(To» Ao’ (T0) + Jo[n; Al — 7o, 7o)
(2.15") for A € (4o, A,).

The functional J[n; A] specified by (2.15), (2.15") is clearly of the form (2.3)
witha = —14,b = 74, and

BaA) = w_o(=T0,4), Bpd) = —wy(19,4) for Ae(Ay, 4],
BuA) = Bho), Bu(A) = By(do) for e (g, Ay).

Consequently, in view of Lemma 2.1 the corresponding Sturmian boundary
problem (2.4) has an infinite sequence of proper values (2.5) satisfying the con-
clusions (a)—-(d) of that lemma. Moreover, for A€ (A, 4,] the boundary conditions
of this problem (2.4) specify that the proper solutions are multiples of u(t, 1)
and u_(t, A) on the respective intervals [t,, ), (— 00, — 1], so that for such
values of A the boundary condition (2.2) is equivalent to the two-point boundary
conditions of this associated problem (2.4).

As A, has been chosen so that any solution of (2.1) for 4 = 4, has at least m
zeros on Iy, and I, = (—1,, 7o), we have that y,,(1,) < 0. Since each of the proper
values u L(i) is a strictly decreasing continuous function of A on A, and y,(4) > 0 for
A€(Ay,4), it then follows that for j =1, .-, m there is a unique value 4;€ A
such that u{4;) = 0. Moreover, in view of the inequalities (2.5), we have that

Al <).1 <iz<"'<imélo,
and for j=1,2,---, m the proper solution ut) = ujt;4;) of the associated
Sturmian boundary problem (2.4) is a solution of (2.1), (2.2) which has exactly
j — 1 zeros on R.

(2.16)
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In view of the above result, for a given 4, € A there are only a finite number of
proper values 4 of (2.1), (2.2) on the interval (— A, 4,], and consequently for the
sequence of proper values {4} determined above we have that 1; > A, as j — co.

It is to be emphasized, however, that there is no condition on the order of
growth of the 4; specified by the hypotheses of Theorem 2.1. Indeed, let (1) be
any continuous, positive monotone increasing function of A on [0, c0) such that
b(A) > o0 as A - o0, and for A = (0, o) define r, por R x A by:

— 4% forte[—b(A), b(A)],

2.17 A =1 pd) =
@17 e =1 ptA) {1 for t & (— o0, —b(1) U (b(d), ).

In this case, for 4 € (0, c0) one may choose t(1) = b(1). Moreover, one may verify
readily that u(t, 1) = exp { —t + b(A)}, u_(t, 1) = exp {t + b(A)}, and the cor-
responding distinguished solutions of (2.12) are w,(t,A) = —1, w_ (¢, 1) = L.
Hence u(t) is a proper solution of the corresponding system (2.1), (2.2) if and only if

u’(t) + Au(t) =0 for te[—b(2), b(A)],
(2.18) u(—b(4)) — u'(=b(2)) = 0,
u(b(%)) + u'(b(%)) = 0.

By elementary computation it may be verified that A€ A is a proper value of
(2.18) if and only if it is a root of the equation

(2.19) ctn [2Ab(A)] = %{ - %}

An associated proper function of (2.18) is then a nonzero multiple of
(2.20) A7 Vsin (At + b(A)]) + cos (A[t + b(A)]),

and a corresponding proper solution of (2.1), (2.2) is a nonzero multiple of the
function u(t, 1) defined as

u(t, A) = exp {t + b(1)} (te(—o0, —b(2))
= A" Ysin (At + b(A)]) + cos (A[t + b(A)]) (te[—=b(4), b(A)])
= (4™ 'sin (24b(A)) + cos (2Ab(A)} exp { —t + b} (t € (b(3), 0)).

In particular, if {4;} is any monotone increasing sequence of positive numbers
which tends to oo as j — oo there exists a continuous positive monotone in-
creasing function of 4 on [0, co0) such that b(4) - o0 as A — 0o and 4 = 4; is the
jth root of the equation (2.19).

In the above example the function p(t, ) defined in (2.17) is discontinuous
along the curves t = b(A) and t = —b(4) in (t, A)-space. However, by suitably
modifying p(t, A) “near’’ these curves one may obtain a boundary problem with
continuous p(t, A) that exhibits the same type of phenomenon as illustrated by the
presented example.

3. A Sturmian problem on an infinite interval involving “‘turning points.” Let
g(t, 1) be a real-valued function defined for (t, A)e R x R™* which satisfies the
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following conditions:
(@) For AoeR™, g(t, 4) is locally of class 2® on R; moreover, for t.a.e. on R
this function is continuous in 4 at 4.
(b) g(t,0) = 0.
(c) Forte(—1,1),gismonotone nonincreasingin Aon R*,and the functional

f {0 + gt D)} de

(o) is a strictly monotone decreasing function of A for arbitrary #(t) # 0
belonging to the class 2[—1, 1].
(d) For te(—o0, —1) U (1, ), g is monotone nondecreasing in 4 on R*.
(e) There exists a subinterval [a, b] = (—1, 1) such that lim,_, , g(t, ) = — o0
for t a.e. on [a, b].
(f) For A€ (0, o0) there exists a 7(4) = 1 and a k(1) > Osuch that g(t, 1) = k(1)
for te (— o0, —1(A) U (z(4), 0).
We shall be concerned with the boundary problem
(3.1 u"(t) — g(t, Au(t) = 0,

(3.2) Jw u() dt < oo,

for which we shall establish the following theorem.

THEOREM 3.1. Under the hypotheses (9’ (a)—(f)) the real proper values of the
system (3.1), (3.2) comprise a sequence of disjoint subsets A;, j =1,2,---,of R*
such that if A€ A then there is a corresponding proper solution u = u(t, A) of (3.1),
(3.2) which has exactly j — 1 zeros on R, and these zeros all occur on the open
interval (— 1, 1). Moreover, {A;} — oo in the sense that for each AeR" there exists
an integer k = k(A) such that A; = (4, ) for j = k.

In view of hypotheses ($’ (a), (b), (d)), for arbitrary Ae R* the differential
equation (3.1) is disconjugate on each of the intervals [1, o) and (— o0, — 1], and
consequently for each such A at these respective endpoints there exist principal
solutions u(t, ), u_ ,(t, A) which are different from zero on the respective intervals
[1, 00), (— o0, — 1], and corresponding distinguished solutions

Weo(ty ) = (1, fu(t, 4), W (1 ) = Ul (L, Dfu_ ot 4)

of the associated Riccati differential equation. Moreover, by argument similar to
that employed in the preceding section, the functions u(t, 1), u/,(t, 4), u_ (t, 1),
u_ (t, A) are continuous in (t, A) on R x R*, and therefore w_(t, 1) and w_ (¢, 4)
are continuous in (¢, A) on [1, 0) x R* and (— o0, —1] x R*, respectively. Also,
in view of hypothesis ($’ (f)), a solution u(t) of (3.1) is such that condition (3.2) is
satisfied if and only if u(t) is a multiple of u,(t, 4) on [1, 00), and a multiple of
u_(t,A)on (— oo, —1]. That is, u(t) is a proper function of (3.1), (3.2) for a value 4
if and only if u(t) is a proper function corresponding to a proper value A of the
finite interval boundary problem

u'(t) — g(t, Mu(t) = 0,
(3.3) w_oo(—=LDu(—1) —u'(=1) =0,
—wo(1, Hu(l) + v'(1) = 0.
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The quadratic functional associated with this finite interval boundary problem is
1

G4 Il = w_ (=L AN (=1) — w (1, (1) + f () + g(t, Hn*()} dt.
-1

Now if u(t) = uyt, A) is for s > 1 the solution of (3.1) satisfying the end-conditions
uy1,4) = 1,uys, 1) = 0, then as in the previous section we have that u(t, 1)
= lim,_, , u(t, A) is the principal solution at oo satisfying u(1, ) = 1, and in view
of conditions (£’ (b), (d)) we have that the principal solution of (3.1) at co thus
determined is such that u_(t,4) > 0 for t € [1, o0) and u/ (1, 1) = w,(1, A) is non-
positive and monotone nonincreasing in A on R*. Similarly, the principal solution
of (3.1) at — oo satisfying u_ (—1,4) = 1 is such that u_(t,4) > 0 for t e (— oo,
—1],and u”_ (—1, A) = w_ (— 1, A) is nonnegative and monotone nondecreasing
in A on R*. Consequently, the boundary term

(3.3) W_ (=1 Dn*(—1) — w1, An*(1)

of (3.4) is a monotone nondecreasing function of A for arbitrary real-valued
functions #5(t), while for n € A[—1, 1] with n’ € 83[—1, 1] the integral term

(3.6) Lm%+mm%w

is a monotone nonincreasing function of 4, so that the functional (3.4) does not
possess the monotone properties requisite to insure the classical Sturmian theory
for the boundary problem (3.3). As 4 increases on R* the functional (3.6) tends to
attract zeros of solutions of (3.1) into the interval [ —1, 1], whereas the functional
(3.5) tends to repulse zeros of solutions away from this interval.

As in the case of the problem treated in the preceding section, however, we
shall discuss the existence of proper values of (3.3) by the consideration of the
related system

u"(t) — g(t, Au(t) + ou(t) = 0,

3.7) w_ (=1, Yu(—1) — u(—1) = 0,

—wy(1, Ju(l) + v'(1) = 0,
which is linear in the characteristic parameter . From standard Sturm-Liouville
theory (see, for example, Reid [10, Chap. V, Th. 7.4]) it follows that foreach Ac R
the proper values ¢ = g(4) of (3.7) are real, may be ordered as a sequence

0,(D) < 0y(A) < - <o) <o,

and a proper function u = ut, 4) of (3.7) corresponding to ¢ = g (4) possesses
exactly j — 1zeros on (—1, 1). Clearly u(t) is a proper function of (3.3) correspond-
ing to a proper value A = 4, if and only if there exists a j such that g (4,) = 0 and
u = uft, A) is a proper value of (3.7) corresponding to o = g (4,).

As g(t,0) = 0 by hypothesis (£’ (b)), for A = 0 the equation (3.1) reduces to
u" =0, so that u (,0)=u__(t0) =1, w,(t,0) = w__(1,0) =0, and conse-
quently 6,(0) = 0. Also, in view of hypothesis (' (¢)), from the extremizing prop-
erties of the proper values of (3.7) it follows that each o;(4) is negative for A
sufficiently large. Finally, as in the discussion of the boundary problem in § 2, the
condition (§’ (a)) and the continuity of the functions w__(—1, ) and w (1, 1) on
R™ imply that each o(4) is a continuous function on R*, and consequently the
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conclusion of Theorem 3.1 holds for A; defined as the set of values 4 such that
c{4) =0.As 11mano o {(4) = oo for each AeR*, if[0, 1] is a compact subinterval
of R*, and k is an integer such that ak(l) > 0, then g(4) > 0 for A€ [0, 1] and
j=kk+1,--- sothat A; < (4, ) for j = k.

Itisto be noted that one can estimate the position of the sets A ; through the
consideration of a second related boundary problem

u” — g(t, Au(t) + vu(t) = 0,
(3.8) —w_ o (=L Au(—1) —u'(-1) =0,
wo(1, Au(l) + u'(1) = 0,

which is linear in the characteristic parameter v. For (3.8) the related functional is

1
(39) JolnAl = —w_ (=LA (=1) + w1, An*(1) +f () + g(e, hn*(0)} dt,
-1

which is a monotone strictly decreasing function of A for each nonidentically
vanishing # € 2[ — 1, 1]. Consequently, the proper values v = v(4) of (3.8) are real,
may be ordered as a sequence

(3.10 Vi(d) < v(A) < - <viA) < -

and a proper function of (3.8) corresponding to a proper value v = v{(4) has
exactly j — 1zeros on (—1, 1). Also, each proper value v (4) is a strictly monotone
decreasing function of A on R* and v,(0) = 0. In particular, the real proper values
of the system

u’'(t) — g, Aulr)
(3.11) —w_ (=1, Au(—1) — u(—1
wo(1, Au(l) + w'(1

0
) =0,
) =0

may be ordered as a sequence
(3.12) Li<ly< o <lj<-,

where each /1 has the definitive property of being the unique value 2 on R* such
that v {/1) = 0 and a proper solution of (3.11) corresponding to A = /1 has exactly
Jj— 1lzeroson(—1,1).

Now, as noted above, for Aie R* we have w_(1,1) £ 0Oand w__(—1,4) = 0,
so that the functionals J[n|A] and J,[y|A] defined by (3.4) and (3.9) satisfy the
inequality

(3.13) JA] = Jo[nl] forne [ —1,1].

Therefore, by classical comparison theorems (see, for example, Reid [10, Chap.
VI, §4]), we have

(314) vj(’q') é O-j(j') é vj+2(i), .1 = 1’2’ Tt AGR'*.

Consequently, the set A; = {4]AeR", g/(4) = 0} must lie in the compact interval
[i‘p '1; + 2]
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Added in proof. Subsequent to the completion of the present paper and the
associated one listed as [11] in the References, Philip Hartman has considered a
related problem. His paper, Boundary value problems for second order, ordinary
differential equations involving a parameter, has appeared in the Journal of
Differential Equations, 12 (1972), pp. 194-212. In particular, for second order
linear equations he has presented some results on principal solutions in more
detail than I have given, as well as an extension of the principal existence theorem
to some more general nonlinear problems.
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GENERALIZED CAUCHY AND POISSON INTEGRALS
AND DISTRIBUTIONAL BOUNDARY VALUES*

RICHARD D. CARMICHAEL*}

Abstract. Let C be an open connected cone, and let O(C) denote its convex envelope. Cauchy and
Poisson integrals of distributions in 2j,,1 < p < 2, corresponding to tubular radial domains
T%© = R" + iO(C) are defined ; and properties of these integrals are obtained. The boundary values
of these integrals are obtained in the distributional sense on the distinguished boundary of T9©.
Functions which are analytic and have a specified growth condition in T°© are related to the Cauchy
and Poisson integrals of their distributional boundary values. The results concerning these functions
extend some well-known theorems concerning the Hardy HP(T%©)-spaces to our distributional
setting. Further, functions which are analytic in disconnected tubular cones are considered; and in
particular conditions are obtained under which such a function has an analytic extension to the convex
envelope of the tubular cone.

1. Introduction. The concept of distributional boundary values in &}, has
been introduced by Tillman [1]. He has characterized functions which are analytic
inanoctant B; = {ze C*:9(Im (z))) > 0,0 = (y, -+, 6,),0; = +1,j=1,---, n}
and which have distributional boundary values in the topology of &} , using the
“Indikatrix” of U € 2,,1 < p < oo, which is the analytic function

f(Z) = (27'Ci)_" <Ut’ ﬁ 1 >’ Im(ZJ) # 0’ ] — 1, I A

ji=1

t.

zj—

Tillman proves that the “Indikatrix” satisfies the following properties:

- 11
M @ =M T o+, = lImz), —+ =1
j=1 p 49
) {fe(x) =Y I16;/x + iaé)} is bounded in 9}, ;
o j=1 £>0
3) f. = U in the topology of 2/, as ¢ — 0.

Furthermore, Tillmann obtains the converse that if f(z) is analytic and (1) and (2)
hold, then f(z) is the Indikatrix of a distribution U € 2, ; thus (3) holds for this U.
Luszcyki and Zielezny [2] have obtained results similar to Tillmann but for only
one dimension.

Beltrami and Wohlers [3], [4], [5], [6] have obtained results in which an
element U € &7, is the boundary value of an analytic function from the upper or
lower half-plane. The topology used is that of &’ ; furthermore, they confine their
attention to the space 2. and work in only one dimension. By using the &%’
topology and thus considering &, as a subspace of &', Beltrami and Wohlers
are able to associate the generalized Cauchy integral (Indikatrix) with analytic
functions in the upper (lower) half-plane which satisfy

) /@ =1 +z)",  Im(z) 2y >0,

a more general boundedness condition than that of Tillmann. Also available in

* Received by the editors November 15, 1971.
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this setting is the use of the Fourier transform in &’ with which Beltrami and
Wohlers show that the generalized Cauchy integral of U € 2. equals the Fourier—
Laplace transform of an element Ve & having support in a half-line. A generalized
Poisson integral for Ue 2. has been defined by Beltrami and Wohlers [5,
pp. 70-71], and this generalized integral has been related to analytic functions
having growth as in (4).

In Carmichael [7] we considered 2}, as a subspace of ' and generalized
several results of Beltrami and Wohlers concerning Cauchy and Poisson integrals
to octants and to distributions U e @},,1 < p < 2. Further results concerning
distributional boundary values in 2), considered as a subspace of &' were
obtained in Carmichael [8], [9]; however, in [8], [9] we were concerned with
Cauchy or Poisson integrals.

In the present paper we define and obtain properties of a generalized Cauchy
integral (Indikatrix) and a generalized Poisson integral for distributions U € 27,
corresponding to tube domains T¢ = R" + iC = C", where C is an open con-
nected cone, of which the half-plane in C! and the octant in C" are examples.
These integrals (and their properties) have as special cases the Indikatrix of Till-
mann and Beltrami, Wohlers and the Poisson integrals defined by Beltrami,
Wohlers in 1 dimension and by Carmichael in n dimensions. In fact the present
definitions of the Cauchy and Poisson integrals are considerably more general ;
for also included as special cases are integrals corresponding to such tube domains
in C" as the forward and backward light cones, which are important domains in
quantum field theory. These results will be contained in § 3 of this paper along
with some needed preliminary theorems.

In §4 we shall prove that the generalized Cauchy and Poisson integrals of
Ue 2}, attain boundary values in Z;,. The boundary value theorem for the
Poisson integral of Ue %), generalizes a well-known result concerning the
boundary value attained by the classical Poisson integral corresponding to tube
domains of L?-functions.

We relate the Cauchy and Poisson integrals of U € 9}, in tube domains to
a space of analytic functions which will be denoted as G2 (see § 3) and whose
elements satisfy a more general boundedness condition than that of Tillmann or
Beltrami and Wohlers (recall (1) and (4)). Our theorems concerning the distri-
butional boundary values of functions in G% (and in a special case of G2) and the
relation of the functions to the Cauchy and Poisson integrals of the boundary
values, which are elements of 27 ,, are of importance because they may be viewed
as generalizations of known results concerning the Hardy HP-spaces in tube
domains. In our theorems the set of functions having boundary values and
representable by Cauchy and Poisson integrals of the boundary values is enlarged
from the HP-spaces to the space G (H? = G for all p,1 < p < o0) and the set
of admissible boundary values is enlarged from the LP-functions to the 2 ,-
distributions (L? = 2},.) We accomplish this without altering the structure of the
classical H” setting; however, we must replace pointwise and norm convergence
by weak convergence. Further, some of our theorems concerning boundary values
of elements in the space G% have as special cases results obtained by Tillmann,
Carmichael, and Beltrami, Wohlers ; but again the theorems presented here are
considerably more general.
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In § 5 we obtain theorems concerning functions analytic in tubular cones
T€ = R" + iC = C", where the cone C is not necessarily connected. We are
especially interested in obtaining conditions under which a function analytic in
T¢ has an analytic extension to T2, the convex envelope (hull) of T€.
Topics which will be considered in future research will be briefly discussed in
§ 6. To obtain most of the results of this paper, we must restrict our attention to
1l <p=2

2. Notation and definitions. The n-dimensional notation to be used in this
paper will be the same as that in Carmichael [8]. In particular we recall that by
D*, o being an n-tuple of nonnegative integers, we mean D* = DY --- D" where
D; = (1/2mi)(0/0t)) or D; = (1/2ni)(6/0z), j=1,---,n. We put Df or D} to
distinguish between differentiating on the real variable ¢t = (¢, ---, t,) or the
complex variable z = (z, - -+, z,) whenever there is a possibility of confusion.
The Fourier transform for L!-functions ¢ is defined as in [8] and is denoted by
d(x) or F[P(t);x]. The inverse Fourier transform of ¢(t) will be denoted
F 1 g(t); x].

For the definitions of the function spaces &, .4, and %,, and the distribution
spaces &' and %), we refer to Schwartz [10]. We recall that Z;,,1 < p < o0, is
the dual space of 2,,, 1/p + 1/q = 1. We shall particularly be concerned with the
notions of convergence in %;, and %. A sequence of functions {¢,} € Z,, con-
verges to peJ,as A — A, if

}LH}O I1D*(¢x(t) — ¢(®))l|a = 0,

where « is an arbitrary n-tuple of nonnegative integers. A sequence of functions
{¢,} € F converges to p € S as A — 4, if

}i‘?o sup |t D% ,(t) — P(1)) = 0,

where o and f are arbitrary n-tuples of nonnegative integers.

For all terminology concerning distributions we refer to Schwartz [10]. We
recall that the convolution of two distributions U and V is defined, when it exists,
by

KUV, ¢) = (Ug, (V 9+ 1),

where ¢ is an element of the appropriate function space. The Fourier transform is
a continuous isomorphism of & onto % with the same being true of & under the
definition

0,¢> =<U,¢>, Ue¥, $pe.

The support of a distribution U will be denoted by supp (U) with the same notation
for the support of a function.

The definitions of cone and compact subcone are the same as in [8]. If C is
a cone, O(C) will denote the convex envelope (hull) of C;and T¢ = R" + iC will
be called a tubular radial domain if C is a connected cone. If C is not connected,
then T will be called a tubular cone. The function

uc(t) = ysel;pc (=<t )
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is the Indicatrix of C. (pr C denotes the projection of C, which is the intersection of
C with the unit sphere.) C* = {t:uc(t) < 0} = {t:{t,y> = 0, ye C} is the dual
cone of C; and the number

_ Uo(c)(t) .
Pc-f:lcli:‘"u—c(—t)“, C, = R"\C*,
characterizes the nonconvexity of the cone C.

Let C be an open connected cone. Let f(z) be a function of ze T¢ = C", and
let U be a distribution. By f(z) — U in the topology (i.e., weak topology) of the
distribution space as y = Im(z) - 0 (ie., y; >0, j=1,---,n), ye C, we mean
{f(2), p(x)) = KU, ¢p(x)>asy — 0, y e C, where ¢ is an element of the appropriate
function space. U is then called the boundary value of f(z); and we note that it is
defined on the distinguished boundary of T¢, {z = x + iy:xeR" y = (0, -- -, 0)},
which is not necessarily the topological boundary of TC.

Throughout this paper L? denotes LP(R"), the equivalence class of Lebesgue
measurable functions over R” whose pth power is absolutely Lebesgue integrable.

3. Generalized Cauchy and Poisson integrals and preliminary theorems.
Throughout this section C will denote an open connected cone. Consider

K(z—1t) = f exp 2ni{z — t,n))dn,
C*

where C* = {n:uc() < 0} is the dual cone of C and z is an arbitrary but fixed
point in T2 = R" 4 iO(C). We call K(z — t) the Cauchy kernel function and
note that kernel functions similar to K(z — t) were first studied by Bochner [11].
If O(C) contains an entire straight line, then by a result of Vladimirov [12, Lemma 1,
p- 222] the cone C* lies in some (n — 1)-dimensional plane. Thus C* has measure
zero,and K(z — t) = 0. To avoid this triviality when working with the generalized
Cauchy and Poisson integrals, we assume throughout this paper that all open
connected cones C are such that O(C) contains no entire straight line.

THEOREM 1. K(z — t)€ Dpq, 1/p + 1/q = 1,1 < p £ 2, as a function of t for
fixed ze T2,

Proof. Let o be an arbitrary but fixed n-tuple of nonnegative integers. For
z = x + iy fixed in T°©, it follows from a result of Vladimirov [12, Lemma 2,
p- 223] that there exists a real number ¢ > 0 such that {5, y> = oln| forall e C*.
From this and a well-known result concerning Lebesgue integrals (see Schwartz
[13, Theorem 32, p. 39]) we have

< | ey
C*

'(__ l)lal na ez;:i(:—r,n)d"
C*

)

é S"f rl“l*'l‘l e—21wr dr < 0,
0
where S, is the area of the unit sphere in R". By (5),
(6) DiK(z — 1) = (— 1) J 2R gy
C*

exists, where the integral converges uniformly with respect to t. Thus K(z — t)eC*®
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since a is arbitrary. It remains to show that D!K(z — t)e L4, 1/p + 1/q = 1,
1 < p £2; arguing as in (5), we have that (—1)*I.(n)n* e* =" e L' N LP,
1 <p <2, for fixed ze T?©, where I.(n) is the characteristic function of C*.
From (6), D*K(z — t) = F ~[(—= D™ I{n)n* e*™<*"; t]; and the Fourier inverse
transform can be interpreted as a limit in the mean. Thus by a well-known result
from Fourier transform theory, we have

IDIK(z = D)llLa < (=D el 72| Ly < 005

and D!K(z — t) € L7 as desired. The proof is complete.
We note that if the tubular radial domain T is either the upper half-plane in
C' or the octant B, ..., in C", then K(z — t) becomes (2ni)” '[1/(t — z)] or
(2ni)‘”]—[';= [1/(t; — z;)], respectively. These are the classical Cauchy kernels.
Now let Ue 9},, 1 < p < 2; and let z be an arbitrary but fixed point in
T9©), Put

(7 CU;2) = (U, K(z = 1)).

From Theorem 1 we see that C(U ; z) is well-defined ; and if T is the upper (lower)
half-plane in C! or an octant in C", then C(U;z) is Tillmann’s Indikatrix. We
prove that C(U;z) is an analytic function and satisfies a certain boundedness
condition.

THEOREM 2. Let Ue @;,, 1 < p < 2. Then C(U; z) is analytic in T°©; and
for any compact subcone C’ of O(C),

K(C) 5 (C";0)

8 CU,Z < T adip °
® (W32l =+ & e

where K(C') and Q(C’; o) are constants which depend on C" and C' and a, respectively,
m is a fixed positive integer depending on U, and d, is a positive integer depending
on a. v

Proof. By the characterization theorem of Schwartz [10, Theorem 25, p. 201],
U= Zlalém Df (0, f(H)e LP,1 < p < 2. Thus

CU;2)=( ) D“fa(t),K(Z—t)>
la|=m

)

= 3 1 [ g0 [ et e dnar

la| =m Rn Rn

Now consider a fixed o, |o]| < m. Let z, be an arbitrary but fixed point in T°©,
and suppose N(z,, d) is a neighborhood of z, of radius 6 such that the closure of
N(z,, 6) is a proper subset of T?©). Let z be an arbitrary point of N(z,, d); and
suppose B is an arbitrary but fixed n-tuple of nonnegative integers. Using an
argument as in (5) we have that I.{n)n**# e2"<=" e L' N L?, 1 < p < 2. Further,

f IC*(n)"a+B 2Kz =61 d11 = F~ 1[10*("),1a+/x e27n'<z,'1>;t],
Rn
and

. . 1 1
R e atl PER R R Y
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Using Holders inequality, (10), and an estimate as in (5), we obtain

[ 20 [ tetmwes e dya
Rn Rn

S Mol Z U el *P 25 1]

S Mol ol Icslmn® = 27

(11)
®© 1/p
< ||fa||”(gnf rlpa+pﬂ|+n—1 e~ 2mpar dr) < o,
0

Thus for each fixed a, |o] < m, and any fixed f,

Y f 140 [ et e dy d
R~ Rn

- f 10 f T+ 5= dy dy
Rn Rn

and by (11), the differentiated integral converges uniformly with respect to
z€ N(z,,d). From this and the arbitrariness of the point z, € T°“) we have that
each term in the sum on the right-hand side of (9) is analytic in T, Thus C(U ; z)
is analytic in T°© as desired.

It remains to prove the boundedness condition (8). Let z be an arbitrary but
fixed pointin T, C’ being an arbitrary compact subcone of O(C). By the character-
ization theorem of Carmichael [9, Theorem 6], there exists a constant R such
thatif 1/p + 1/q = 1,

IC(Us2) =R Y,

la] =m

D?J e2ni<z—t,r]) dn
C*

La

(12)

(=D ey 7710 dy
Rn

<R Y

la| =m

La

For any fixed o, |a| < m, we have as in (10) that

(13) H f (— DIl 2700 dy
R"

< =D ely® 7 .
La

By the result of Vladimirov [12, Lemma 2, p. 223], there exists a real number
o > 0 depending on C’ such that {y,n> = aly|lnl, n € C*. From this and (13) we
have

p

[0ttt e ay
Rn

< |77 e~ 2rpalylinl dn
La c*

(14)
0
< Snf r|pa|+n—1 e—21tpo’r|y| dr,
0
where again S, is the area of the unit sphere in R". For the fixed a, |¢| < m and

o # (0, ---, 0), we integrate by parts d, times on the last integral in (14), where d,
is an arbitrary but fixed positive integer depending on « such that |pa| + n — 1
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—d, =2 0. We obtain

o
S j rlpu|+n—-l e-—ano‘rIyI dr
n
0

_ T ol n =1 =

15 |pa| +n—1—dy ,— 2mpar|y|
1 (2mpaly)*™- o ¢ dr
de—1 .
= tpal + n—1—)
< M(C)S ~=0°
= MCRS, (2npaly)* ’

where M(C’) is a constant depending on ¢ which depends on C'. Ifa = (0, - - -, 0),
then integrating by parts n — 1 times we obtain

© n—2 _ ) 0
Sn rn—l e—2npur|y| dr = Snl_[J':O (n ,,1—1 J) e—-anurlyI dr
16 0 (2mpoaly)) 0
[[Icot—1-)
= S .
" (2npaly)"

Applying (14), (15) and (16) in (12) we have

S, [[iz2(m—1—jyr
|C(U;2) = R{ = -
(2mpaly))i?,
(SMEC) 145" (pod + 1 — 1 — j))””}_
O<|a|=m (2np0-lyl)du/p ’

and (8) follows from this estimate. The proof is complete.

We note the following more general setting for Theorems 1 and 2. Let b be a
fixed nonnegative real number, and let C be an open connected cone. Put
S, = {t:ut) < b}. If the cone C is such that {t:0 < uc(r) < b} is a bounded set
in R", then using essentially the same proofs as in Theorems 1 and 2 we have that

) 1 1
J 2T dp e G, -+-=1, 1<p=2;
S» p 4

and that

(17) <Uf e2rica=tm dn>
Sb

isanalyticin T°©). A more general boundedness condition than (8) can be obtained
for (17) in which exponential factors appear. This more general setting will not
change the essential content of our results concerning the boundary values of the
generalized Cauchy integral ; and the methods of proof are the same for arbitrary b
as for b = 0. Thus to avoid making the additional assumption on the cone C that
{t:0 < uc(t) < b} is a bounded set in R", we shall prove our results for b = 0
and then note the corresponding results for arbitrary b = 0.

We now introduce the generalized Poisson integral of an element U € &} ,,
1 < p £ 2. Let z be an arbitrary but fixed point in T?©), C being an open con-
nected cone. We define the Poisson kernel related to T9© by

K(z — )K(z — 1)

(18) 0(z;1) = KQiy)
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where K(z — 1) is the Cauchy kernel. Letting o be an arbitrary n-tuple of non-
negative integers and using the generalized Leibnitz rule we have

0z =L 5 pik(z — DK =D
(19) DQ(z;t) = Ko B;y::a ﬁ!v!Dt K(z — t)D!K(z — t).
By Theorem 1, D’K(z — t)existsandisanelementof LY, 1/p + 1/qg = 1,1 < p < 2.
By the same proof as in Theorem 1, D}K(z — t) exists for all n-tuples y of non-
negative integers ;and by the same proofasin (5), D!K(z — t)is a bounded function
of t € R" for fixed ze T?C). Thus for all B and y such that § + y = a, D!K(z — 1)
-DYK(z — t) exists and is an element of L4, 1/p + 1/q = 1, 1 < p £ 2. It follows
from (19) that any derivative of Q(z;¢) exists and is in L% We have proved the
following theorem.

THEOREM 3. Let ze T?©. The Poisson kernel Q(z;t)e Dyq, 1/p + 1/q = 1,
1 < p £2,as a function of t.

If T%© is the upper half-plane in C!, then the Poisson kernel Q(z; t) defined
by (18) becomes

1
Q(Z;t)=gm: z=x+1y,
which is the classical Poisson kernel. We note that the Poisson kernel for general
tubular radial domains T%© as defined in (18) was first introduced by Koranyi
[14] and Stein, Weiss and Weiss [15] and has been studied by these authors in
connection with the Hardy HP(T%))-spaces.
Nowlet Ue 2,,1 < p < 2;and put

(20) P(U;2) = (U, Q(z;0)), zeT*,

C being an open connected cone. By Theorem 3, P(U; z) is well-defined ; and we
call P(U; z) the generalized Poisson integral of Ue 2;,,1 < p < 2. In Theorem 2
we saw that C(U;z), the generalized Cauchy integral, is analytic in T%©). In
general, however, P(U ; z) is not an analytic function. In §§ 4 and 5 we shall obtain
distributional boundary value results concerning both the generalized Cauchy
and Poisson integrals.

In the remainder of this section we shall obtain results which will be needed
in §§ 4 and 5. It is well known that if f and g are in L?, then

@1 FJ8l = =g,
where * denotes the usual convolution. Similarly if f and g are in L?, 1 < p < 2,

and if fand garein LY, 1/p + 1/q = 1, then (21) holds. Furthermore, if fe L? and
ge L', then
(22) Flf*el=fa
ip the sense of L?. It is obvious that under the above conditions both f * g and
f& in (21) and (22) are elements of &',

LEMMA 1. Let f and § be elements of LP,1 < p < 2;and let f and g be elements
of L% 1/p + 1/q = 1. Then F[f*g] = f§ in &

Proof. Let pe <. By (21), {f*g, ¢> =<{F '[f8], ¢)>. Since the Fourier
transform is a continuous, one-to-one mapping of ¥’ onto &', we have (F[ f * g],

o> = <f§, ¢> as desired.
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Using (21), (22), and exactly the same proof as in Lemma 1 we have the
following lemma.

LEMMA 2. Let feL? and let ge L' or ge L% Then F[f*g] = f§ in &

LeEMMA 3. Let felL?, 1 <p <2. Letge L%, 1/p + 1/q = 1; and assume that
F ~ Ng) exists and belongs to LP. Then
(23) F U f*el=F"(NHF
in &'

Proof. Since feL?, 1 < p <2, then & !(f) exists and is an element of
L9, 1/p + 1/g = 1. Thus Y f)F ~g)e &'. Also f * g exists as a classical con-
volution, and it is known that f*geL", 1/r = 1/p + 1/q — 1. Thus f*ge 9’;
hence & ~ [ f * g] € &'. Thus both sides of (23) are well-defined as elements of &".
By a well-known result of Schwartz [10], the inverse Fourier transform in &%’
converts convolution into multiplication ; and (23) is obtained.

Schwartz [10, p. 270] has shown that if Ue 9;,, | S p =<2, and Ve %,
1 < g <2, then #[U * V] = UV. We now obtain a variation of this result, where
we let one of the distributions be an element of &, such that g does not have to
lieinl £g<2

THEOREM 4. If Ue D),, 1 <p <2, and Ve D14, 1/p + 1/q = 1, such that
V= Zlﬁlér(— D#IxPg,(x), g4(x) € LP, then U* Ve S and FIU* V] = UV in &".

Proof. By the representation theorem of Schwartz, U = ZM <m D" fos JLELP,
l<p<2, and V=3, Dlg geld 1/p+1/g=1 As in the proof of
Lemma 3, f,*gze L', 1/r =1/p + 1/g — 1. Thus f,*g;€.%’; hence the distri-
butional derivative D**#(f, * g;)e &', Let ¢ € #. Then

YooY ()AL, DY

lelsm |B]=r

Y 2 (SIS (g D*TPHE + D

la|sm |B] <r
”Z D(f)e» w»Z< D¥(gp),, (& + n>
=U=*V,¢>.

Thus U * Ve &', and as a consequence #[U * V] e ¥'. Using (24), the assumption
that g,(x) e L?, and Lemmas 1 and 2 we have

(FIUVL 0 = X X D“”(fa*gp),ﬁ(t)>

lelsm |B]=r

(24)

(25) = Y Y (=D)L + gp], x* P P(x))

lel=m |B|=r

=< Yy (—1)'“'+"*'xa+ﬂf;(x)gﬂ(x>,¢(x>.

lal=m |Bl <r

Now

(200 U, 9> = ¥ D“fa(t),d3(t)>= <||Z (—1)'“'x“ﬁ(x),¢(x)>,

la| sm
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where f(x)e L4 1/p + 1/q =1, since f(t)eL?, 1 <p <2. By assumption,
V=352 (= D"x"g4(x), 85(x) € L?. Using this assumption and (26), we see from
(25) that

27) (FIU*V], ¢)> =<0V, ¢>

as desired.

We now obtain a converse result to Theorem 4. Recall that if Ve D1q, then
by the Schwartz representation theorem, V = ZI Bler D# 2, gp€ L

THEOREM 5. Let Ue @,,,1 <p <2, and Ve Dya, 1/p + 1/q = 1, such that
V= X" 1[g,,(t) x], where F ~'[g,(t); x] is assumed to exist and belong to
LP. Then FIUV]=U*Vin ¥

Proof. 1t suffices to prove that

(28) FUO V] =

in &’ ; for the desired result follows immediately by taking the Fourier transform
of both sides of (28). It is evident that (28) can be proved by the same method as
was used to obtain (27) in Theorem 4 where we use Lemma 3 instead of Lemmas 1
and 2. We leave the straightforward details to the interested reader.

We note that by using the same calculation as in (26), one can show that if
Ue Py, 1 £p <2, then Ued has the form U =Y, (—1)"x*f,(x), where
f(x)lscontmuousand boundedifp = land f(x)e L9, l/p + 1l/g =1,ifl <p <2
Schwartz [10, p. 256] first recognized this result. We note further that in the case
p = 2in Theorems 4 and 5, some of our assumptions are redundant. For example
in Theorem 4 if p = 2, then g = 2. Thus the form of ¥ can be proved as in (26),
and g, € L? by the Plancherel theory. In Theorem 5 the form of ¥ can be proved
if p = 2; and one does not have to assume that &~ 1[g,,(t); x] exists, for it auto-
matically does by the Plancherel theory and is an element of L2 The stated
assumptions are needed, however, for 1 < p < 2.

Beltrami and Wohlers [5, Theorem 1.36, p. 43] have considered Theorems 4
and 5 for the case p = 2 and for one dimension. However, there is an error in their
method of proof; for they have used the supposed fact that if f and g are in L?
then Z[f*g] = f& classically. This is incorrect since one can say only that
f *ge L and is continuous. Such a function does not necessarily have a Fourier
transform, and [ f*g] does not necessarily have meaning classically. The
correct approach is as we have stated in Lemmas 1-3; that is, Z[ f * g] = f and
F U f*gl = F (f)F g) as equalities in &

In Carmichael [8] we have considered functions f(z) which are analytic in
T€, C being an open connected cone, and which satisfy

(29) /@) £ K(C)A + [2)¥ 2 C+W 2 = x +iye T,

for all ¢ > 0, where b is a nonnegative real number, N is any real number, and
K(C’) is a constant depending on C’, C’ being an arbitrary compact subcone of C.
We denote the set of all such functions f(z) by G%. In the present paper we shall
need the following two theorems, the proofs of which can be found in [8].

THEOREM 6. Let f(z)e G2, and let f(z) > U in the & topology as y — 0,
yeC < C. Then Ue S ; there exists an element Ve &' such that supp (V) < S,
= {t:uc(t) £b} and U = V; and f(z) = {V,e*"*V> 2e T, C' < C.
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THEOREM 7. Let Ve % and supp (V) < S, for some fixed real number b = 0
and some open connected cone C. Let ¢ € & and C’ be an arbitrary compact subcone
of O(C). Then

<<V, e21ti<z,t)>, ¢,> — <V, e—2n<y,r>4‘)>’ ze TC"

For special cases of Theorems 6 and 7 and other related results we refer to
Carmichael [16]. We note that distributional boundary value results in &’ using
boundedness conditions similar to (29) are of importance in quantum field theory
(see Streater and Wightman [17]).

We shall also use the following important result due to Vladimirov [12,
Theorem 2, p. 239].

THEOREM § (Vladimirov). Let C be an open cone and Ve &’ withsupp (V) = S,
= {t:uc(t) £ b}, b = 0. Then {V, *™>2> is analytic in T°© and satisfies
(30) D2V, &M<=0 5 < K(C) (1 + 121 + [y1™™) exp [2mbpcl ],
z=Xx+ iye T, where C' is an arbitrary compact subcone of O(C), K(C') is a
constant depending on C', and M and N are nonnegative integers which do not
depend on C'.

Note that the cone C does not have to be connected in Theorem 8. Vladimirov

first proved this result in [18], where he introduced the concept of distributional
boundary values of functions analytic in tubular cones.

4. Distributional boundary values. In this section we shall show that the
generalized Cauchy and Poisson integrals for tubular radial domains have
boundary values in the distributional sense. We shall relate these generalized
integrals to the space of functions G2 and shall obtain theorems in which an
element f(z) € G% has a distributional boundary value in 2/,. It will be seen that
our results concerning the space Gb are generalizations of classical H”-space
theorems. Throughout this section C will denote an open connected cone ; and
C' = Cor C' = O(C) will denote that C’ is an arbitrary compact subcone of C or
0(C), respectively.

Let Ue Z;,, 1 £ p < 2. Using the Schwartz characterization theorem for
2, and a calculation as in (26) we have
€2y FHU) = Y rh),

el <m
where h,(t) is continuous and bounded if p = 1 and h(t)e L%, 1/p + 1/q = 1, if
1 < p £ 2. This representation of & ~*(U) will be used frequently in this section
and the next.

To obtain the boundary value result for the generalized Cauchy integral, we
shall need two lemmas.

LEMMA 4. Let Ue9D;,, 1 <p =2, and ¢ & For fixed y = Im(z) e O(C),

(32) (C(U3;2), ¢(x)) = (U, <{K(z — 1), p(x)).

Proof. By a proof as in Theorem 1 we have that [, e*"*" dne 9, = D,
1/p + 1/q = 1,as a function of x. Thus by a theorem of Schwartz [10, Theorem 26,
p. 203], U * [, *™<=" dp exists and is an element of &}, 1/r = 1/p + 1/g = 1.
By a change of variable, we have

(K(z = 1), ¢(x)> =<f XM d, p(x + t)>;
o
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so that
(33) KU, L{K(z — 1), p(x)y = <U *J e2mizm dy ¢>
C*

Thus by (33), the right-hand side of (32) exists. Using the characterization theorem
of Schwartz for U and a change of order of integration, we have

(U, LK@z = 0),9(x)y = ) (=D fwfa(t) fRn D{K(z — t)¢(x) dx dt

la| =m

— Y (-1 fR" $(x) fwfa(r)D:K(z ) didx

la] =m

= <<U’ K(Z - t)>a ¢(X)>,
and (32) is obtained.
LEMMA 5. Let C be an open connected cone. Let I.{n) be the characteristic
Sunction of C* and ¢ € &. Then

(K(z = 1), p(x)> = F " Uc)p(n); 1]

in the topology of D14, 1/p + 1/g=1,1<p <2,asy =1Im(z) >0, ye O(C).
Proof. For the present let y be a fixed point in O(C). By a change of order of
integration, we have

(K = 0.9(0) = | Tetn)ln) e”2rr ¢~ dy;
Rn
and @(n) € . Thus for a being an arbitrary n-tuple of nonnegative integers,
IDIK(z — 1), p(x)) — DiF k() 11l a
= |17 (=) dmie > ™ = 1} 0]l 4

and because of the inequality

(35) esmm®$(n) {e ™2™ — 13| < 2n*(n)|
and the fact that ¢(n) € &, we have that (— 1)*Ia(nn*d®) {e 2= — 1} e L!
N LP,1 < p £ 2 Thus
17~ (= D Ll d(n) {e 2 — 1} 1)1
< elmm* @) {e™ 2 — 1} 1.

By (35), we can use the Lebesgue dominated convergence theorem to obtain
lim f |y din) {e™ 2" — 137 d = 0.
Vo) v
This fact combined with (34) and (36) proves the desired convergence.

We can now prove the following theorem.

THEOREM 9. Let U e 2;,,1 < p £ 2. Then C(U; z) > F[In)F ~'(U)] in the
topology of D1, asy = Im(z) - 0, ye O(C).

Proof. From Lemma 5 and the continuity of U we have for ¢ € & that
(37) (U, <K(z = 1), §(x)) > U, F U ln)d(n); 11> = CF U F ~(U)], $(x))
as y = Im(z) » 0, ye O(C). The result is obtained by combining (32) and (37).

(34)

(36)
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We shall now obtain conditions on U € 27, such that the boundary value of
C(U; z) is U. Under these conditions we shall see that C(U; z) is identical in &’
to the Fourier-Laplace transform of an element Ve %'. The topology we use is
that of &".

THEOREM 10. Let Ue @1, 1 < p < 2, such that U = V, where Ve &' and
supp (V) € C¥*, C being an open connected cone. Then V = Zlal < Ih(0), hy(t) € LY,
1/p + 1/q = 1, for any compact subcone C' = O(C) we have

(38) V, =05 = C(Us2),  zeTC,

as elements of &'; and C(U;z) - U in the topology of &' as y =1m(z) -0,
yeC < 0(C).

Proof. Since ¥V = U, then V = % ~}(U); and the representation of V follows
as in (31). Let ¢(n)e & such that &(y) = 1 forn =2 0, &(n) =0forn < —¢, 6 > 0;
and 0 £ &(n) £ 1. Put y(t) = &Kt yY), y€O(C). By Theorem 8, (V, ™<=
= (V,y(t) e*™<=2 is analytic in T?© ; and by Theorem 7 we have

(39) (Y, M=y $(x)y = (Vo 9(0) e 20 d(0),

ze TC, C' = O(C), where ¢ € &. Now supp (V)  C*; so that supp (h,(t) = C*
for each element h,(t) in the representation of V. Letting I.(t) denote the character-
istic function of C*, we obtain

Vo) e 2700 d(0)y = eV, 9(1) e 2 0 (1))
= (FUcA)y(t) e 2OV ], $(x)).
By Theorem 5 and equations (32) and (33), we have
(FUeAt)(t) e 20V, p(x)) = (P * FlUedeyy(t) e 2725 X1, $(x))

_ % 27idz,t)
a1) = <U L* e dt, ¢(x)>
<< 2m<z t,n) dﬂ> >
C“

Combining (;7’9) (40) and (41) we have (38). It is straightforward to show that
(1) e 20 (1) — p(t)P(t) in the topology of & as y — 0, ye C' = O(C). By the
continuity of ¥ and (39), we have

(42) KV, M0 d(x)y = KV y0d(e)y = <V, d(x))

asy » 0,ye C’ = O(C). Since U = V, then by (38) and (42), we have C(U ;z) > U
in % asy—0,yeC < O(C); and the proof is complete.

COROLLARY 1. Let f(z) € G2 converge in the &' topology to U € 2},,1 < p < 2,
as y=1Im(z) > 0, ye C' = C. Then f(z) = C(U;z), ze T, as elements of &";
and U is the Fourier transform of V = 2|a|<m t*h(t)e S, h(t)e L4, 1/p + 1/q = 1,
such that supp (V) < C*.

Proof. By Theorem 6, there exists an element Ve’ with supp (V) = C*
such that U = ¥ and

(43) f2) = (V,e2H=0N e TC, ¢ < C.

(40)
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But for such a V, (38) holds. Thus by (38) and (43), we have f(z) = C(U; z),ze TC,
as elements of %’. The representation of V follows as in (31) since V = & ~}(U).

We now give necessary and sufficient conditions that an element U € 27, be
the %’ boundary value of a function f(z) € G2.

THEOREM 11. Let f(z) € G2 converge inthe &' topologyto U € 91,,1 < p < 2,
asy=Im(z) > 0,yeC < C. Then C(U;z2) =0, ze T, C' = C, where C is any
open connected cone such that C* N {t:ug(t) < 0} = &.

Proof. V = # ~}(U) has the representation as in (31); and by Theorem 6,
supp (V) = C*. Now let C be any open, connected cone such that C* N {t:ug(t)
< 0} = &. For each such C let ya(t) = &(<t, y)), y € C, where &(n) is defined as in
the proof of Theorem 10. Let Ix(t) be the characteristic function of {t:ug(t) < 0}.
By exactly the same calculation as in obtaining (38), we have

(44) C(U; 2) = eV, yelt) 2=y, zeTY, €' < C.

But supp (V) < C* and supp (Ig(t)ye(t) e2™¢*P) < {t:ug(t) < 0}. Thus supp (V)
N supp (I(t)ye(t) e2™¢>?) = ¥, which implies that <I(t)V, ya(t) 2= ) = 0.
This combined with (44) implies C(U;z) = 0,ze T, ' < C.

THEOREM 12. Let Ue 9},,1 < p < 2; and let C be an open connected cone.
Suppose there exists a finite number of open connected cones C;, j = 1, ---, m, such
that

Rn\{ {tiuc () =0} U C*}, C* N {t:uct) < 03, j=1,--,m,

j=1
and

{tuc =0} N{tu, =0},  j#k j=1,---,m k=1,---,m,

are sets of Lebesgue measure zero and such that C(U;z) = 0, ze TS, C;c Cy,
j=1,---,m Then U is the S boundary value of a function f(z)€ G, as
y=Im(z) » 0, ye C' < O(C). '

Proof. Let Ic«(t) be the characteristic function of C*; and for each C;,
j=1,---, m1letl(t)bethecharacteristic functionof {t:uc (t) < 0}.V = #~ )
has the representation as in (31); and by hypothesis, we have

V=10V + ﬁ Ic )V
i=1
almost everywhere in R". Thus for ¢ € & we have
(45) U, 9> =<KF UV ], ¢ + .Zl (FUOV], ¢

By hypothesis and a calculation as in obtaining (38) we have for each C;, j = 1,
-+, m, that

(46) 0 = C(U;2) = IOV, yc,(t) 70

in &' for ze T, Cj < C;, where y (t) is defined as in the proof of Theorem 10 for
each C;. Using the same proof as in (42) we have

47) U OV, yc ) 740 — FIc (V]

in¥ asy =1Im(z) - 0,ye Cj = C;. By (46)and (47), we have that Z[I ()V] = 0
foreach C;,j =1, ---, m. Returning to (45) we thus have (U, ¢) = (ZF[I(t)V],
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¢>. Since the Fourier transform is a continuous, one-to-one mapping of &’ onto
L', U =V=F[H)V] implies V = I.(t)V. Thus supp (V) = C*; and we con-
sider the function f(z) = (V, e*"=?%  ze T?©. By Theorem 8, f(z) € G5 ¢,; and
by a proof as in (42), f(z) = V= Ue Z,,, 1 < p < 2, in the topology of &’ as
y=Im(z) > 0, ye C' = O(C). The proof is complete.

Recall now the discussion in § 3 in which we indicated that the generalized
Cauchy integral can be defined in a more general setting if the cone C is such that
{t:0 < uc(t) < b}isabounded setin R". In this setting Lemmas 4 and 5, Theorems
9 and 10, and Corollary 1 all hold with C* replaced by {t:uc(t) < b}, b = 0, and
G replaced by G2.

Tillmann [1] has shown that any Ue 92;,, 1 < p < o0, can be decomposed
into a sum of boundary values of functions analytic in the 2" octants. We wish
now to obtain a similar result for cones and U e 27,,1 < p < 2, using the tech-
niques in the present paper. Our method of proof yields more information about
the boundary values than Tillmann has obtained. Not only is each element in the
decomposition the boundary value of an analytic function, it is also the Fourier
transform of an element in &%’ having support in a specified subset of R". We also
include the case p = 1, which Tillmann has not done.

THEOREM 13. Let Ue 27,, 1 < p £ 2. Suppose there exist open connected
cones C;, j=1,---, m, such that

RN U {t2ue0) < 0)

j=1
and
{t:ucj(t)éo}n{t:uck(t)éo}’ ]#k’ j=1,”',ma k=1a"',m,
are sets of Lebesgue measure zero. Then U = Z; W,in &, where W,,j =1, ---, m,

isthe”’ boundary value of a function f{(z) e GO(C yasy = Im(z) - 0,ye C < O(C PE
and W, = V;, where Ve &' and supp (V) < {t: uc(t) < 0.

Proof V F- 1(U) has the representatlon asin (31). For each {t:uc (t) < 0}
let I (t) be the corresponding characteristic function. Let () e & such that
S =1,1=20,4(n)=0,n= —¢,e>0;and 0 < ¢{(n) < 1. Put y(1) = &<, y)),
yeO(C), j=1,---,m;andlet V;= I (t)V, j=1,---, m. By the same method
used to obtain (45), we have

(48) U, $y= z 2 ¢> pe.
Since V;e ¥’ and supp (V) < {t: uC t) < 0}, then by Theorem 8, f{z) = {V;
(1) ez’”<z 2% is an element of Go(c, for ze T?C), j=1,.--, m. (Note that 1f

f{z) satisfies (30), then f|(z) satisfies (29) for any b = 0.) By the same proof as in
(42), we have f(z) - V in the topology of ¥ asy =Im(z) » 0, ye C; = O(C),
j=1,---, m. Putting W =V, j=1,---,m, and recalling (48), we have that
U= Z;.":l W,, where the Wj are the de51red &' boundary values of the corre-
sponding analytic functions.

We turn our attention now to the generalized Poisson integral of U € 271,,
1 < p < 2. Koranyi [14, Prop. 3(c)] has stated that the Poisson integral of fe L?,
1 £ p < o, corresponding to tube domains has f as boundary value in the
L?-norm topology. We shall show that the corresponding statement for the
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generalized Poisson integral of Ue 9;,, 1 < p £ 2, holds where we use the
topology of 2;,. To do so we use several lemmas. Koranyi [14] and Stein, Weiss
and Weiss [15] have obtained the following lemma, which states that the Poisson
kernel Q(z;t) as defined in (18) is an approximate identity.

LEMMA 6. Let C be an open connected cone; and let z be an arbitrary point in
T9©). Then

(49) 0z:)20 forallteR";
K(x + iy)K(x + iy)
dx =1 0(C);
(50) f St  e0(O)
; K(x + iy)K(x + iy)
‘ 1 dx = 0.
(51) fn>0, lim ) K N
yeO(C)

The following lemma was obtained by Koranyi [14], who stated it without
proof. We shall sketch the proof here, for the method used will be important
in obtaining the boundary value result for the generalized Poisson integral.

LEMMA 7. Let C be an open connected cone; and let fe LP,1 < p < co. Then
the Poisson integral of f converges to f in LY as y = Im (z) - 0, y e O(C).

Proof. Performing a change of variable gives

K(t + iy)K(t + iy)

" f0Q(z; 1) dt = . fx—1) K@) dt;

and by (50),
K(t + iy)K(t + iy)
K(2iy)

fx) = " f(x) dt, yeO(C).

We thus wish to show that

lim J©Q(z;0) dt — f(x)
(52) yLo IR L7
L K(t + iy)K(t + iy) _
= yggé) JRn{f(x —t)— f(x)} K0iy) dt Lo 0.

Using Lemma 6, this can be done by exactly the same method of proof used in
Hoffman [19, Theorem, pp. 17-19 ; see also Theorem, p. 32]. We leave the straight-
forward details to the interested reader.

LEMMA 8. Let Ue Z,,1 < p £ 2;andlet p € ¥. Then for fixed ye O(C), C
being an open connected cone,

(33) CP(U; 2), p(x)> = (U, <Q(z; 1), p(x))-

The proof of Lemma 8 is similar to that of Lemma 4 and will be omitted.
We can now prove the following theorem.

THEOREM 14. Let C be an open connected cone; and let Ue 2;,,1 <p £ 2.
Then P(U; z) — U in the topology of @}, as y = Im(z) > 0, y € O(C).

Proof. Let ¢ € &. By a change of variable,

K(x + iy)K(x + iy)
K(2iy)

(54) 0(z; )b(x) dx = f $x + 1) dx.
R~ Rn
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Let a be any n-tuple of nonnegative integers. Recalling that D*¢(t) = Y(t)e &
and using (54), we have

0(z; )p(x) dx — Diep(t

R~

e K( )K( )
x + iy)K(x + iy
K(2iy) x V)

Butye¥ <« 9, L% 1/p + 1/g = 1,1 < p £ 2; and by exactly the same proof
as in obtaining (52), we have that the right-hand side of (55) converges to zero as
y— 0, yeO(C). Thus by (55), <Q(z;1), ¢(x)> = ¢(t) in Dp., 1/p + 1/qg =1,
1 <p<2asy—0,yeO(C). By the continuity of Ue 2/,,1 < p < 2, it follows
that (U, <Q(z; 1), p(x)y — KU, ¢> as y » 0, ye O(C). From this fact and (53) we
obtain P(U;z) » U in 9}, as y — 0, ye O(C); and the proof is complete.

A comparison of Theorems 9 and 14 shows that the generalized Cauchy and
Poisson integrals have distinct properties. C(U ; z) attains a boundary value which
depends on the cone C; while P(U;z) always has U as its boundary value ir-
respective of C.

For the special case that T€ is an octant in C", further results can be obtained
for the generalized Poisson 1ntegral For the octant B; = {ze C":d(Im(z;)) > 0,
0=1(,-++,9,),90;=+£1, j=1,---, n}, the generalized Cauchy integral for
Ue%;,,1 <p = 2, becomes

1
z j>’

C(U;zeBy) = (21ti)_”( In] sgn yj) <U, In] —

j=1

Yx +1)
R

La

where sgn y; represents the sign of y;,j=1,---, n. The generalized Poisson

integral for U is
P(U;zeB,) = <U 1 (sgn y;)ly;>

Since

" : "1 1 1
1l Lzzjl;llz_m{tj” 5 f- 5}
then we have the relation
P(U;zeB;) = C(U;zeB;) — C(U;(Zy,25, - 5 2,), ZE€E By) +
(56) + (=1YCWU;Ey, - 3 2y Zjgs o> 2), ZEBS) + -+
+ (=1'CU;(zy, -+, Z,),2€ By),

where there are 2" elements in this sum. Using (56), a stronger result than Theorem
14 can be obtained for the octant; we can prove that P(U;ze€ B;) — U in the
topology of &’ as Im(z) » 0, ze B;. Further, consider the set of functions
f(z) e G5 which are analytic in B; and satisfy

If(2) = K,(1 + |2V
in {z:0Im(z)) 2y;>0, j=1,---,n} where y = (y,---,7,). We can show
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thatif Ue 97,,1 < p < 2,is the &’ boundary value of f(z) € G, for fixed J, then
there exists an element Ve %’ with supp (V) < {t: —o0 < d;t; < 0,j=1,---, n}
such that

f(2) =<V, e 2005 = C(U; z€ By)

= P(U;ze By), z € B;.

Thus for the octant more can be said about the function f(z) than in Corollary 1
of the present paper. Conversely, if we have that Ue &;,, 1 < p < 2, is the
Fourier transform of Ve %, supp (V) € {t: —o0 < 6;t; <0, j=1,---, n}, then
U is the &’ boundary value of a function f(z) € G4 such that (57) holds. Details of
these results for the octant are contained in Carmichael [7].

Several of our results in this section are reminiscent of classical results in
which analytic functions are related to their boundary values. Hille and Tamarkin
{207, [21], [22] have obtained theorems concerning functions which are analytic
in a half-plane and which obtain boundary values and have applied their results
to the specific set of Hardy H?-spaces. Theorems 10, 11 and 12 and Corollary 1 of
the present paper have classical counterparts which have been obtained by Hille
and Tamarkin (see [20, Theorems 1 and 3] and [21]). Zygmund [23], [24] extended
the classical H?-spaces to n dimensions by considering functions analytic in the
polydisc {zeC":|z| < 1, j=1,---, n} and in the octant B, ... ;,. A further ex-
tension of HP-spaces has been obtained by Koranyi [14] and Stein, Weiss and
Weiss [15] in which the domain of analyticity is a tubular radial domain. Our
theorems concerning the space of functions G2 and the results stated above
concerning the space G; of functions analytic in an octant can be viewed as
generalizations of HP-space results. In our distributional setting the space of
functions having boundary values and representable by Cauchy (Poisson) integrals
has been enlarged from H? to G2 (HP(T®) = G2),and the set of admissible boundary
values has been enlarged from LP-functions to Zj,-distributions (Lf < Z},.)
Further, our theorems concerning the boundary values of the generalized Cauchy
and Poisson integrals generalize corresponding classical theorems. The distri-
butional setting is obtained without altering the essential structure of the classical
setting ; that is, the relations between the analytic functions, the corresponding
Cauchy (Poisson) integrals, and the boundary values are retained in the distri-
butional setting. However, the topology employed in obtaining our distributional
results is weaker than that of pointwise or norm convergence.

(57)

5. Functions analytic in tubular cones. Let C be an open cone which is not
necessarily connected. In this section we shall obtain distributional boundary
value results for functions analytic in tubular cones T = R" + iC. Some of the
theorems in this section are generalizations of results contained in § 4.

Suppose C is an open cone which is the countable union of open connected
cones, C = U,C;, AeA. Let Ue % such that supp(U) = C*; and put f(z)
= (U, e*™=0% | 7€ TOC), By Theorem 8, f(z) is analytic in T%© and satisfies
(30) for b = 0. Suppose now that y is restricted to C,, 1€ A ; and put f;(z) = f(z2),
ze T2, Since f(z) is analytic in TC» and satisfies (30) for b = 0 in T,
C’, = O(C,), then by a theorem of Vladimirov [12, Theorem, p. 235] we have
fi(z2) > W, e ¥ in the topology of &' as y —» 0, ye C;, = O(C,), A€ A. Assume
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now that W,e%;,, 1 <p <2, AeA. Since b =0, then by (30) we have
fi(2) € GJc,y» 4 € A. Applying Corollary 1 to each f;(z), we obtain f(z) = C(W,; z),
ze T, C, = O(C,); and W, is the Fourier transform of an element
Vi= Y tﬂhzﬂ(t),
[Bl=m
where supp (V) S {t:ug,(t) £ 0}. This proves the following generalization of
Theorem 10.

THEOREM 15. Let C be an open cone which is the countable union of open
connected cones, C = U, C,, AeA. Let Ue %" with supp (U) = C*; and put
f(z) = U, ™<= ze T?O. Suppose the &' boundary values W, of f,(z), which
exist in the &' topology, are elements of D1,,1 < p < 2. Then for all A€ A,

£i(2) = (Vy, 20N = C(W,; 2), ze T, C, < O(C);

and W, is the Fourier transform of V, = Zlﬂlém t”hw(t), hy(t)eLi, 1/p + 1/q = 1,
where supp (V) € {t:ugc,)(t) = 0}.

We now wish to extend the generalized Cauchy and Poisson integrals to
tubular cones. In the proof of Theorem 1 one of the main objectives was to show
that differentiation under the integral sign in K(z — t) was justified. To do this we
used Lemma 2, p. 223, of Vladimirov [12]. However, this lemma holds for any
open cone C; C does not have to be connected. Thus using exactly the same proof
as in Theorem 1, we have that K(z — )€ %24, I/p+ 1/g=1, 1 < p £ 2, for
fixed ze T?ON\{z:ye O(C), y; = O for any j = 1,---, n}, where C is any open
cone. But then using the same proof as in Theorem 3 we have for any open cone C
that Q(z;)eZa, 1/p +1/g=1, 1 <p £2, for fixed ze T?“\{z:ye 0(C),
yj=0forany j=1,---, n}. Using these facts and Theorems 9 and 14 we have
the following two theorems.

THEOREM 16. Let C be an open cone which is the countable union of open
connected cones, C = U, C,, A€ A. Then the generalized Cauchy integral C(U ; z)
of UeP},, 1 < p <2, exists for ze TPON\{z:ye O(C), y; =0 for any j=1,
-+, n}; and for each T?€?, J e A,

<U,J\ e27|:l'<2“t.'l> d’7> — ,?[Ica(n)g_ 1(U)]
o1

in the topology of 91, asy = Im(z) » 0, y e O(C,).

THEOREM 17. Let C be an open cone as in Theorem 16. Then the generalized
Poisson integral P(U;z) of Ue€ @},,1 < p < 2, exists for ze T°“'\{z:ye 0(C),
y;=0foranyj=1,---, n};and for each T?, j € A,

U K(z — t)K(z — 1)
< ’ K(2iy)

in the topology of ', asy = Im(z) - 0, ye O(C,).

Theorems 16 and 17 point out the basic difference in the boundary values
attained by the generalized Cauchy and Poisson integrals. The Cauchy integral
corresponding to T?C# converges to a boundary value which depends on 1eA;
while the generalized Poisson integral corresponding to T%€#, A€ A, always has
U as its boundary value.

- U
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For the remainder of this section we shall be concerned with open, dis-
connected cones C which are the union of a finite number of open, connected
cones C;, j=1,---, m. In the following theorem, which is a generalization of
Theorem 13, the fj(z),j = 1,---, m, represent the analytic functions whose
boundary values form the decomposition of U in Theorem 13.

THEOREM 18. Let C be an open cone such that C = U;’;l C;, where C;,
j=1,---, m, are open connected cones such that the assumptions of Theorem 13
hold. Let Ue Z;,, 1 < p < 2. Suppose the boundary values W;, j=1,---,m,
which form the decomposition of U, are equal. Then there exists an element Ve &',
with supp (V) € {t:upct) < 0}, and a function f(z), which is analytic in T°©
and satisfies (30) for b= 0 and ze Tc', C' < O(C), such that mV = # ~Y(U) and
f(2) = fl2),ze T*, j =1,

Proof. By Theorem 13, U = Z i» where W, is the &’ boundary value of
a function f{z)eGo(C y, and W, = V such that supp(V) {t:uc(t) < 0}. By
hypothes1s W=-..= W,,,, and we call this common value W. But Vj =Z (W),
j=1-,m Thus V= = V,,, and we call this common value V. Hence
wW="V; and since U = Z —1Vp then mV = #~(U). From supp (V), j = 1,

, m, we see that V vanishes on U {t:uc,(t) > 0}. Now

uclt) = ~n}ax uc (1),
= 1oem
and from the definition of p. we have uy\(t) < pcuc(t). Thus
(58) uocft) = pe max uc,(t);
j=liem

and by a lemma of Vladimirov [12, Lemma 3, p. 220], 1 < p < + 0. Now con-
siderthesetJ = {t:ug (1) > 0}.1ft € J,thenby(58),t € {t :max;_; ... , uc(t) > 0}.
Hence te U {t:uc(t) > 0}, and on this set V' vanishes. Thus V vanishes if
t € J which implies that supp (V) < {t:ug(t) < 0}. Putting f(z) = (V, 2™,
ze T2©), and applying Theorem 8, we obtain that f(z) is analytic in T°¢) and
satisfies (30) for b = 0. Further, since V; = V, j = 1, ---, m, then by the definition
of f{(z) from the proof of Theorem 13, we have f(z) = f(z),ze T, j=1,---, m,
The proof is complete.
THEOREM 19. Let C be an open cone such that C = U;f':le, where C;, j = 1,

, m, are open connected cones. Let f(z) be analytic in the tubular cone T and

satisfy (29) for ze T, C' = C. For each C;, j = 1, -, m, suppose that

lim f(z) = Uje Zp», 1<p= oo,
ye"C)‘?COCj
inthe topology of &' ; and assume that U, = U, = --- = U,,. Then f(z) is analytic

in U T%C) and satisfies (30) for ze T, C' = U"_,0(C)); and f(z) has an
analyttc extension to T?©,

Proof. For each j = 1,---, m, f(z) is analytic in T and satisfies (29) for
zeTY, Cj< Cj;and f(2) » U;ePy,, 1 £p < 0,as y >0, yeCj < C;. Thus
by Thef)rem 6, for each U there exists a V;e &’ such that supp (V) < {t:uc(?)
< b}, V;=U;;and

(59) f(2) = (Y, 7<=y, zeT%, CicCj j=1,---,m.
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By hypothesis, U, = U, = --- = U,, = U. As in the proof of Theorem 18, we
obtain Vy =V, = --- = V,, = V, where supp (V) S {t:upt) < bpc}. Since f(2)
is analyticin TS, j =1, ---, m, we have by Bochner’s theorem on analytic ex-
tension of tube domains [25, Chap. V] that f(z) is analytic in T?€),j =1, ... m.
Thus f(2) is analytic in U, T2, By (59), Theorem 8, and the identity theorem
for analytic functions, we have f(z) = (V,e?™ =% zeTOCD) j=1,.-.- m;
so that

fl@) =V, ey, ze U TO.
i

Applying Theorem 8, we see that f(z) satisfies (30) for ze T¢', C’ < U;?; L0(C));
and (V, e*™<=2% is the analytic extension of f(z) to T°©),

We note that if p is restricted to 1 £ p < 2 in Theorem 19, then the exact
form of V can be calculated as in (31).

6. Miscellaneous. In this section we briefly discuss some topics which will be
considered in future research.

It is well known that the classical Poisson integral of a function f e LP(R?),
1 £ p £ o0, is a harmonic function in the upper half-plane (see Hoffman [19,
p- 123]). Koranyi [14] has shown that the Poisson integral of f € L’(R"),1 < p < o0,
for tubular radial domains corresponding to homogeneous self-dual cones is a
harmonic function with respect to a Laplace-Beltrami type operator. (See Hua
[26] for the construction of such operators for the classical domains.) We have
proved in Carmichael [7] that the generalized Poisson integral of Ue 2i,,
1 < p £ 2, corresponding to octants is an n-harmonic function with respect to the
usual Laplace operator. It would be interesting to obtain a Laplace—Beltrami type
operator such that the generalized Poisson integral for general tubular radial
domains, as defined in this paper, is harmonic with respect to this operator.

In this paper we have related U € 2, to the space of functions G% and have
obtained generalizations of classical HP-space theorems. To obtain our results it
was necessary to consider only the spaces 2;,, 1 < p < 2, and in most of our
results 27, was considered as a subset of &’. We conjecture that the generalized
Cauchy and Poisson integrals of Ue 27,, 1 < p < o0, exist for tubular radial
domains and that results generalizing those of Tillmann [1] can be obtained using
only the topology of 2;,. We shall consider these problems in a future paper.
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ON WIENER-HOPF OPERATORS ASSOCIATED WITH THE
HANKEL TRANSFORM*

G. GREGORY STEPHENTY

Abstract. Asymptotic estimates of determinants of finite section Wiener—Hopf operators associated
with the Fourier transform were obtained initially by Szego and Kac. In 1966, Davis and Hirschman
obtained similar results for operators associated with ultraspherical polynomials. In this paper we
develop such estimates for determinants of finite section Wiener—Hopf integral operators associated
with the Hankel transform. These estimates are continuous analogues of the Davis—-Hirschman results.

1. Introduction. Let v be a fixed positive number and set du(x) = k, 'x?¥ dx,
where k, = 2'7Y2I°(v + 1/2). Let ¢ be a function in L!((0, 00); du) whose Hankel
transform ¢ belongs to L((0, c0); du). We denote by c(x, y) the Hankel transform
analogue of the translated function ¢(x — y) (see § 2). For each r > 0, we define
an operator T, on L*([0, r]; du) by

r

Tf () = f (%, 1) S 0) du(y).

0

This is a nuclear operator (trace class). Let {4,(r)} be a sequence consisting of all
the nonzero eigenvalues of T, enumerated in order of decreasing absolute value,
each eigenvalue repeated according to its algebraic multiplicity. The determinant
D(r) of I — T, is defined by

D(r) = TI(1 — A(r)).
Define

G = exp (% f: log (1 — &(t)) dt),

1° (1 . 2
E = __ o A —itx
exp (2 J;) x{Zn J_ } log(1 — &(t)e dt} dx),

extending ¢ as an even function. If  |c(t)l du(f) < 1, then G is finite and we shall
show that

(1.1 [D(r)]'" =G + o(1) as r— oo.

If we also have [ tlc(t)| du(t) < oo, then E is finite and

(1.2) D(r)G™" =[1 — &O0)]*E + o(1) as r— 0,

where o = (1 — 2v)/4. All logs and powers throughout the paper are principal

values.

* Received by the editors June 11, 1971, and in revised form April 14, 1972.

1 Department of Mathematical Studies, Southern Illinois University, Edwardsville, Illinois 62025.
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The condition | |c| du < 1 allows us to write
® 1
D(r) = exp (— Y ;tr (n,r)),
n=1

where tr (n, 1) = tr (T}) is the trace of (T,)". In §§4 and 5 we develop asymptotic
formulae for tr (n, r). In § 6, following Kac [10], we combine these to obtain the
determinant estimates (1.1) and (1.2). Sections 2 and 3 describe the Hankel trans-
form theory that is needed.

The prototypes of these formulae, for determinants of finite sections of
Toeplitz matrices, were discovered by Szegd in 1915 and 1952; see [5]. In [10],
Kac, Murdock and Szegd introduced the continuous analogue of the Toeplitz
matrix, an integral operator with a displacement kernel, and proved a formula
like (1.1). Then, in [11], Kac obtained a formula similar to (1.2).

More recently, Davis and Hirschman [2] developed these estimates in a new
setting : for Toeplitz matrices associated with ultraspherical polynomials. Their
work represents the first such results outside of a Fourier transform setting. Since
the Hankel transform is the continuous analogue of the ultraspherical transform,
and considering the parallel between the Szegd limit theorems for the discrete and
continuous Fourier transform, one would expect estimates like (1.1) and (1.2).

The original Davis—Hirschman results have been improved [9] and extended
to a wider class of Jacobi polynomials [1]. New proofs resulting in stronger
theorems have been given in the Fourier case [8], [3], [6].

2. The Hankel transform. Let v be an arbitrary but fixed positive number
and set

du(x) = k; 'x* dx,

where k, = 2'72[(v + ). We denote by L?(Q) the Banach space of complex-
valued measurable functions f defined on Q < [0, co) for which

i/p
111, = Ugmxw’du(x)] <.

We define
23v—5/21-(v + %)2
TGHIre)

where A(x, y, z) is the area of a triangle with side lengths x, y, z if there is such a
triangle ; otherwise set D(x, y, z) = 0. Finally, let

J(X) = kvxllz— vJv~ 1/2(X),

D(x,y,z) = (xyz)' " 2Ax,y,2)> 72,

where J, is the Bessel function of the first kind of order .
We have

(2.1) ) = 1
forall x,0 < x < oo see [7]. Since

J(x) = 0(x" %) as x— o0,
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we have

(2.2) J(x) =0(x"") as x— 0.
Combining (2.1) and (2.2) we see that

(2.3) Jx)| < M1+ x)7!

for all x = 0, where M is a constant which depends only on v.
The integral formula

(2.4) J(xt)J(yt) = J; J(zt)D(x, y, z) du(z)

is valid for x, y > O and t = 0;see [12, p. 367]. By setting ¢t = 0 in (2.4) we obtain

on D(x,y,z)du(z) = 1.

0

Note that D(x, y,z) = 0 and that D(x, y, z) is symmetric in x, y and z.
Ifa function fis locally integrable (with respect to di) and y > 0, we associate
with f the “translated” function f(x, y) defined for almost all x by

foen = [ 1000,y 2 duto.

If f'is bounded, then | f(x, y)| < | fl, and if /'€ LY(0, 00), then | f(-, p)II, = [ /1],
If f, g e L1(0, o0), the Hankel convolution of f and g is given by

(f # g)x) = f FO)gx, ) diy).

This integral converges absolutely for almost all x, 0 < x < oo, and || f # g||,
< [[fl1lglly (cf. Young’s inequality).
The Hankel transform of f'e L}(0, oo) is defined as

) = f FOIxt) duao).

Among the basic properties of this transform are the following:

@ (f#8) =&

(b) fis bounded and continuous on [0, ©0);

(c) if fe L0, o), then (f) = fae.
These properties of the Hankel transform and convolution are developed in detail
in [7].

PROPOSITION 2.1. Let fe LY(0, c0). Then

f £, )3 dit) = FeIx),
0
and if g = f, then

g(x,y) = j FOII00) du).
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These are proved in the same way as their Fourier transform analogues with
identity (2.4) playing the role of the group character property x(u)x(v) = x(u + v).

We shall frequently work with functions f € L!(0, oo) for which fe L!(0, o0).
Such functions are essentially bounded and hence are integrable on (0, co) with
respect to ordinary Lebesgue measure.

3. A relation between the Hankel and Fourier transforms. For x > 0, we
define

bx'"2(x2 — k2! if 0 < b < x,

E(h, x ={
) 0 if 0<x<|h,

where b, = ['(v + 1/2)/(T(1/2)[(v)).

Lemma 3.1 (a) E(h, x) = 0,

(b) f*_ E(h,x)dh =1,

(c) [*, h*E(h, x)dh < x*, a0 2 0,

(d) {* E(h,x)e™ dh = J(tx).

Proof. By evaluating the integral we obtain (b); (c) is a consequence of (b)
and the finite support of E; identity (d) is a variant of the Lommel integral rep-
resentation of the Bessel function.

For fe L}(0, o) and t > 0, set

o o)

SF-(1) = j E(t, %)/ () du().

0

This formula defines Sf a.e. in (— o0, 00) and, moreover,

f IS/ (0] dt < f /()] du().
— o0 0
Also

f (SF)(0) e di = f " ) du).
0 0

Thus Sf is an even function in L!(— oo, co) whose Fourier transform is equal to
the Hankel transform of f.

The next two propositions indicate how we shall encounter the mapping S.
Both will be used in § 4.
PROPOSITION 3.2. Let x, y, z be fixed real numbers, z > 0. Then

lim k; '(r 4+ X)'(r + y)'D(r + x,r + y,2) = E(x — y,2).

Proof. If u,v,w are the sides of a triangle and A(u, v, w) is the area of this
triangle, then

A(U,U,W)Z = S(S - u)(S - U)(S - W)’
where s = (u + v + w)/2. Thus for |[x — y| < z and r large,

ky {r + X)'(r + p)'D(r + X, 1 + y,2)

2, )v-1
) zz_zvb”{(zr(:r e } P e
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It is now evident that the limit of this expression as r — o0 is E(x — y, z). When
|x — y| = z, D(r + x,r + y, z) is zero for all r.

Formally, the next proposition follows from the preceding material. We give
a direct proof.

PROPOSITION 3.3. If ¢ and its Hankel transform ¢ are in L}(0, c0), then

lim k7 '(r + X)'(r + y)’cr + x, 7 + y) = (Sc)- (x — ).

r— o0

Proof. Set
I(r) =k '(r + X)(r + y)c(r + x,r + ).
Then, by Proposition 2.1,

I(r) = foo eO[(r + X)),y ol + X[ + P, 2l0r + y)ede.
0

Since

zM2J, 1 5(2) = (2/n)"? cos (z - —;f) +0(z7Y

as z > o0, and z'?J,_, ,(z) is bounded, we have
z'2J, 1 5(2) = (2/m)'7* cos (z - %n) + R(2),
where |R(z)] £ M(1 + z)" ' for all z = 0 and M is a constant depending only on v.
Thus
[(r + 00" 2T, - ol + ][ + W22l + 92

= 1cos [tx — y)] + lcos (2rt + (x + y)t — va]
n n
+(2/m)'/? cos [(r + X)t — v—;]R[(r + yi]-

+ (2m)'? cos [(r ¥y — Xzf]R[(r + 0]

+ R[(r + x)t]R[(r + y)t],
so that

I(r) = %on &(t)cos [t(x — y)] dt

0

+ if e(t)cos [2rt + (x + y)t — v dt
T Jo

0

+ (/)12 f

0

&(t) cos [(r + Xt — %]R[(r + )] de

(cont.)



226 G. GREGORY STEPHEN

0

+ @ f

0

&) cos [(r 4oy — %n]R[(r + x)]dt

+ J ) SOR[(r + x)t]R[(r + y)t]dt.
0

It is clear that the last three integrals go to zero as r — co. By the Riemann—
Lebesgue lemma,

f e(t)cos [2rt + (x + y)t — va]dt —» 0
0

asr — 0.

4. Trace estimates. Let c € L!(0, c0) and let tr (n, r) denote the trace of the
operator (T,)". For n = 1,

tr(n,r) = f~--fc(xl,x2)c(x2,x3) e, x 1) dplxy) - du(x,),

where the integration is over the cube [0, r]" in R". We shall decompose this
integral into two parts and estimate each.
Let

H(n,r):ff f 01 X)X, ) - €y, x0) dplxy) -+ - dp(x,).
0 Yo 0

Using an induction argument based on Proposition 2.1, one easily proves that
forn = 2,

[ () = f % j et X300, X3) -+ (% 1 %D Cexy) dp(xy) - - dp(xy).

Thus if ¢ € L(0, 00), it follows from the same proposition that

H(n,r) = fw [é(x)]”[J:Jz(xt) du(t)] di).
0

Asymptotic expansions of this integral (as r — oo0) are developed in the next
section.
The difference H(n, r) — tr (n, r) is the integral

In,r) = j-.-fc(xl,xz)c(xz,xs) e ey, x1) dulxy) - - dp(x,),

the integration being over the region Q(r) in R" consisting of those points
(xy, -+, x,) for which 0 < x; <r, x; 20 for all j, and x; > r for at least one j,
2sj=n

THEOREM 4.1. If ¢ and its Hankel transform & are in Ll(0, o), then
tr(n,r) = H(n,r) + o(r) as r —» 0.
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Proof. We can write

I(n,r)=f ~-~f{f-7Jc(zl)c(zz)-~-c(zn_l)D(xl,xz,zl)D(xz,x3,zz)~--
Qr) 0

D(xn— 15Xns Zp— 1) dl"'(zl) t du(zn—- 1)}C(Xn, xl) dlu(xn) e d”'(xl)’
or
(4.1) I(n,r) = f o JC(ZOC(Zz) o o(zy- Wz, r) dplzy) - - - dp(z, - ),
0

where z = (z,, - -+, z,_ ) and
W(Z’r)=f "'fD(x15x2’Zl)D(x2’x3’ZZ)"'
Q(r)

' D(xn— 15 Xns Zn— l)c(xna xl) dl’l'(xn) e dl’l'(xl)

Since c is essentially bounded, the transition to (4.1) is easily justified.

We shall show that r~'y(z, r) is bounded independent of z and r and that
W(z,r) = o(r) as r —» oo for each z. It will then follow from (4.1) and the dominated
convergence theorem that I(n, r) = o(r) as r — 0.

Set
parix) = [ o [Dlvxs, 20D, 0,7 -
A(n,r)
D(xn-—la Xp—152Zp— 1)C(X,,_1, X) du(xn— 1) e d:u(xl)’
where A(n,r) = {(x;, -+, x,-)€R" " ':x;20for j=1,---,n—1and x; > r
for atleast one of j = 1,---, n — 1}. Then

Wiz, r) = j'ﬁ(z,r;x)du(x).
0

We claim that
4.2) [r"x*Bz,r;x)| < (n — )M,

where M depends only on v and c. To prove this inequality, we shall decompose
the region A(n, r) into n — 1 disjoint subregions and obtain a common bound for
the integral over each subregion.

Set A,(2,r) = A2, r) and let Ayn, r) = {(xy, - -+, X,—1) € A(n, r):0 < x,
<rand (x5 -+, X, )€An—1,r} for k=1,---,n—2 and A4,_(n,r)
= {(xy, -+, X,—1) € A(n, r):x; > r}. To illustrate, we give explicit descriptions
of the four subregions of A(5,7):

A5,r): 0Zx, =, A,5,r): 0Zx, =,
0<x,=r, 0=x,=r,
0<x3=r, r<x; < oo,
r<Xx, < o0, 0= x, <00,
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As(5,r: 0= x, =, Au5,r) r<x; < o0,
r<x, < o, 0=x, <00,
0= x;3 < 0, 0= x3 < 0,
0=<x, < o0, 0=x, < .

For the argument which follows, the important fact is that x,_, > r in the sub-
region Ay (n, r).
Now,

Bz, r; x) z .JD(x,xl,zl)...

Ay(n,r)

(43) : D(xn~29 Xpn—152n- l)c(xn—l’ X) dﬂ(xn— 1) e d.u(xl)

Since ¢e€ L0, 00), |x’c(x,y)y’] £ M for all nonnegative x,y, where M
depends only on v and [ |&(t)] dt (combine (2.3) and the Proposition of § 2). Thus

f "'fD(xaxl,Zl) e D(Xy gy Xy g5 2 1)C(Xp— g5 X) dp(X,— ) - - - dp(x,y)
Ai(n,r)

f f f (x,x1,24) - Xn—25Xn— 15 Zn-1)C(Xy— 15 X)dp(x,_ 1) -+ dpa(xy)
<MX_VJ f f (%, X1,21) o D(Xy— 2, Xy 15 Zp )X Y 1 dp(X, - 1) - dpa(x )
§Mx_vr_vf'(')"[D(xaxhzl)"‘D(xn—z,xn—l’Zn-l)dﬂ(xn—l)"'dﬂ(x1)

=Mx""r".

Fork > 1,

f ---fD(x,xl,zl)--'D(xn-z,xn_l,z,,_oc(xn_l,x)du(xn_l)~-du(xl)
Ay(n,r)

LA o

D(x, -2, Xy 15 Zn—1)(Xp— 1, X) dp(Xy— 1) -+ - dp(xy),

where r < x,_, < c0. We shall exhibit the method of obtaining a bound for an
integral of this type by considering the particular case n = 5, k = 3. The integral is

44) L0 L peexiszpeiscs, zabcs, xsoza
“D(x3, X4, Z4)c(Xq, X) du(xy) - - - du(x,).
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Note that since ¢ € L}(0, o),

f (e, wID(x, v, 2) du(x) = f{f &I xt)Iwe) du(r)} D(x, y, 2) du(x)
- f e(t)J(wr){ f IxOD(x, v, 2) du(x)} du)

= Jé(t)J(wt)J(yt)J(zt) du(t).
Thus (4.4) can be written as

r

f T eIz (zat) du) f D(x, 1, 2,) du(x,)

4.5) . ¢
f J(,0D(x; 2 X, 23) dp(x).

Since |J(x)] < 1 and J(x) = O(x™") as x — 0, (4.5) is bounded by
M [ letonde [ Dexxzdutxy) [ xs Dk, 20 dut),
0 0 r

where M depends only on v --- [x*y*J(x)J(y)] £ M. This expression is no larger
than

Mxr f |é(t)|drf D(x, %1, 21) du(x) f D(xy, X, 23) du(xs)
0

0 0
= Mx~r j é(0) de.
0
Hence each term in the sum (4.3) is bounded by Mx™*r~", where M depends

only on v and [ |&(t)| dt, and (4.2) is proved.
We now have

¥z, ) éjo 1Bz, r; )| d(x)

< (- 1M f () dx,
0

so that
(4.6) W(z,r)| £ (n — )Mr
for all z.
Fix x, 0 < x < oo, and assume that (x, ---, x,_,) € A(n, r) is such that the

integrand of f(z, r; x) is nonzero. Then, from the definition of D(a, b, ¢), we must

have
X <Xx+zy,

x2<x1 +22,

Xp—1 < Xpoz + Zy—y.
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Since at least one of x4, - - -, x,_ is greater than r, it follows that
n—1
r<x+4 ) z
k=1
or
n—1
r — Z Zy < X.
k=1

Thus the support of f(z,r;x) as a function of x is contained in the interval
r — 3 z, £ x < oo. Therefore,

Wl =| [ pariaduo| o - 0 Yz,

r—Xzp

4.7)

so that W(z, r) = o(r) as r - oo for each z.
For future reference, we state the following.
LEMMA 4.2. If ¢ and its Hankel transform ¢ are in L1(0, c0), then

ltr (n, )] = nrM|c|",
where M is independent of n and r. If, in addition, [ x|c(x)| du(x) < co, then
ltr (n,r) — H(n,r)| < n*M|jc|".

Proof. In the following, M is a constant independent of n and r. It will vary
from step to step. From (2.3),

[H(n, )| = \ | [é(t)]”[for 32(xt du(x)} dute ] = M [lecoy ,

while from (4.1) and (4.6), |I(n,r)| £ nrM||c||"~*. These inequalities along with
[e(t)] = |lc|| yield the first part of the lemma. The second part follows from (4.1)
and (4.7).

The estimate of Theorem 3.1 can be improved. For each z,

lim W(z,r =J‘-~Jmax 0,8, -, 8,_1)EMh;,z) -
(48) o ( ) . ( 1 1 1 1
'E(hn—lazn—l)f(hl+'”+hn-1)dh1"'dhn—1’

where s, = hy + -+ + h,and f = Sc. We shall verify (4.8) for n = 4 as this case
contains all the essential features of a general proof.
When n = 4,

Y@, 1) — fgm- D X2, 20D0 X5, 220D X250l 0) i) - i)
We begin by setting

X, =r+ X,

X,=r+x+hy,

Xz=r+x+h + h,,

Xog=r+x+h, +h, + hs.
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This transformation is a combination of a linear transformation with Jacobian
equal to one and a translation. Thus if we let 5, = h; + --- + h,, then

‘I’(z,r):kv‘“J~ ---fD(x+ X+ r+s,z)DX+r+s,x + 1+ 8;3,2,)
B(r)

4.9)
“D(x 4+ 1+ 55, X + r+ 835,23)c(x + 1+ 55, x + r)(x + 1)

(X 5)P0 + 1+ 5)P(x + v+ 5302 dxdhy dh, dhy,

where B(r) is the region in R* consisting of those points (x, h,, h,, h;) for which
(i) —r = x=0,(3i)0 < x + max (0, s, s, 83),and (iii) x + s, = —rfork = 1,2, 3.

In order that D(u, v, w) be nonzero it is necessary that |u — v| < w. Thus if the
integrand of (4.9) is nonzero, then || < z, for k = 1,2, 3.

Let U(z) denote the set of points (x, hy, h,, h3)in R* for which —max (0, s, 55,53)
<x=0and |k =<z for k=1,2,3. If we let F(z, r) represent the support of
the integrand of (4.9), then when r > 2(z; + z, + z3) we have U(z) N F(z,r)
= B(r) N F(z,r) so that B(r) in (4.9) may be replaced by U(z).

For the remainder of this discussion, M will denote a constant depending
only on v and c. It may vary from step to step.

If u, v, w are the lengths of sides of a triangle, then

D(u,v,w) = M(uow)' ~ 2" A(u, v, w)?' "2,
where A(u, v, w)? = [(u + v)> — w2][w? — (u — v)*]/16. Thus

[2x +2r + 285, + h)* — 2271
(X +r+s-)" x+r+s) !

Dx+r+s_1,x+r+s,2z)=M E(hy, z)

if it is nonzero.
When r > 3(z, + z, + z3) and (x, hy, h,, h;) € U(z), we have
O<(X+r+s_)x+r+s)<2x+2r+ 25, + h)* — z2
S8x+r+ s )x+r+s)

and therefore,

Dx+r+s_1,x+r+58,2z)SMx+r+s._,)7"x+7r+s)  Eh, z,).

Hence, for r sufficiently large, the integrand in (4.9) is dominated by
ME(hy, z,)E(hy, 23)E(hs, z3)l(x + r + s3)°c(x + 1 + 53, X + r)(x + )|

and since |x’c(x, y)y’'| £ M for all x, y = 0, this is no larger than ME(h,, z,)
E(hy, 2,)E(h3, z3).
From Propositions 3.2 and 3.3, the pointwise limit of the integrand in (4.9)
asr— oo is

E(hy,z)E(h,, z,)E(hy, z3) f(hy + hy + h3),
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where f = Sc. Thus, by the dominated convergence theorem,
lim W,(z,r)

r— o

- f f E(hy, 2,)E(hy, 23)E(hy , 23) f(hy + hy + hy)dxdh, dhy dh,
U(z)

- f f max (0, 51,53, 53)E(hy , 20)Elhy, 25)Elhy, 23) f(h, + hy + hy)dhy dhy dhy.,

and (4.8) is proved.

By combining (4.7) and this last result, one can easily prove the following
theorem.

THEOREM 4.3. If ¢ and its Hankel transform ¢ are in L0, o) and if
[ x|e(x)| du(x) < oo, then forn = 2,

tr(n,r) = H(n,r)

= [ fmax s s D0 S DS )

+ o(1)

asr — oo, where s, = x, + x, + -+ + x, and f = Sc.

5. Trace estimates (conclusion). The next theorem provides an estimate for
H(n,r) = f [é(x)]”{f J3(xt) du(t)}d,u(x)
0 0
asr — oo.
THEOREM 5.1. If fe L'(0, ), then

f ) {f JZ(xz)du(t)}du(x f £ dx + o)

asr — oo. If, in addition, | f(x) — f(0)|/x is in L*(0, &) for some ¢ > 0, then

f f(x){ f 2(xt) du(t )} d(x) f S dx + £O)(1 — 24 + of1)

asr — oo.
Proof. Let ¢(x,r) = k; 'x*" |7 J*(xt) du(r). From Watson [12, p. 135],

(5.1 olx,r) = —{Jv 1/2(xr) J,- 3/2(Xr) +1/2(xr)}.
Using the usual asymptotic expansion for J,

(4% — 1)

< sin(z — am/2 — /4) + O(z ™2 ]

J(2) = (rz/2)~ 12 E:os (z — an/2 — m/4) —
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we find that
(5.2) ox,r) = (r/n)I: 1+ oc—)i:—)sin (2xr — vn) + 0((xr)_2):|
as (xr) — oo, where o(v) depends only on v.
Therefore,
(5.3) lim {qb(x, =1 G axr — vn)} -0
r—© T XT
for each x > 0. Also
1
(5.4) lim (r“q&(x,r) -~ ;) =0

for each x > 0. From (2.3) it follows that ¢(x,r) < Mr for all r = 0, where M
depends only on v. Hence,

(5.5)

r
——|EM
Plx. 1) ~ l < Mr
for all x = 0. The first part of the theorem follows from (5.4), (5.5), and the dom-
inated convergence theorem.

Let N be a fixed large number. If xr > N, then from (5.2) we have |¢p(x, r) — /7|
< M/x, where M depends only on v and N. If xr < N, then using (5.5) we obtain

(5.6) |p(x,r) — r/al £ M/x.

Thus (5.6) is valid for all x > 0 and all r = 0.
If f e L'(0, 00), then from (5.3) and (5.6) we find that

f f(x) [ P(x,r) ———&sm@xr— vn)}dx—>0
X
asr — co. But
f F(x)x™'sin (2xr — va)dx - 0
as r — oo, by the Riemann-Lebesgue lemma. Hence,
(5.7) f fX)[@x,r) —r/a)ldx >0 as r— 0.
If | f(x) — f(0)|/x is in L'[0, ¢] for some & > 0, then by the same argument,
(58) [ 00— ronte.n — x50 as v oo
0

Now we investigate [} [¢(x,r) — r/n]dx. By combining (5.1) and the basic
Bessel function recurrence relation we obtain

2
Qx.r) = SL2 o)+ S alm] = 0 = Dy M, o).
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Hence,

f $0x, ) dx = (PRI 50) + T2 (0]

0
- (7‘2/4) [Jv—3/2(r)‘]v+ 1/2(") + Jy- 1/2(r)Jv+3/2(")]

Y f Tz s (W1 1 a(x) .

0

Applying the asymptotic formula for J and using the fact that

}LII(}) Joo 1200, 4 1)2(x) dx = 3
0
(Watson [12, p. 404]), we arrive at

JI [p(x,r) — r/m)dx = (1 — 2v)/4 + o(1)

as r — 0. This coupled with (5.7) and (5.8) yields the second part of the theorem.
Thus, if ¢ and its Hankel transform & are in L(0, c0), then for n > 1,

(5.9) tr(n,r) = % f “ T dr + o) as r— oo
0

If, in addition, | x|e(x)| du(x) < oo, then ¢ is differentiable at 0. (This follows from
the corresponding Fourier transform result. The even extension of ¢ is the Fourier
transform of Sc and, by Lemma 3.1(c), { |tSc- (1)l dt < [ x|c(x)] du(x).) Therefore,

tr (n,r) = Hw [&(n]" dt + [2O)](1 — 2v)/4
[

—foo -~-J‘max(0,sl,-'-,s,,_l)f(xl)~--f(x,,_1)f(s,,_1)dx1 ceedx, 4+ o(1)

asr — oo, where s, = x; + --- + x, and f = Sc.

The trace estimate (5.9) can be used to prove the following distribution
theorem of Szego [, p. 141].

THEOREM 5.2. Let ¢ be a real-valued function in Ll(0, o) and let N (o, )
denote the number of eigenvalues of T, which lie in the interval [o, 1. If [o, f] does
not contain O and if the set {x € R: &(x) = o or &x) = B} has Lebesgue measure 0,
then

1 1
lim 2N, f) = 7., B).
where Q(a, f) is the Lebesgue measure of the set {x € R: o < &(x) < f}.

Proof. Let A be the set of real-valued functions in L}(0, c0) whose Hankel
transforms are in L1(0, 00). For c € A4, the proof given for the analogous theorem
in [11] can be used. This requires (5.9). Otherwise, there is a sequence {c,} in 4
converging to ¢ in L!(0,00). Then |T™ — T, —» O uniformly in r as n -
(T®™ is the operator corresponding to c,) and an application of a theorem of the
Courant-Weyl type (e.g., [4, p. 1091]) will conclude the proof.
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6. Determinant estimates. Suppose that c € L!(0, o) is real-valued. If its
Hankel transform ¢ is in L!(0, c0), then c(x, y) is the difference of two positive
definite, continuous kernels

e1(x, ) = f (@) (OIC)I (1) du(t),

e, y) = j @) (OIC)I(vt) du),

where ¢, and ¢_ are the positive and negative parts of & Thus each operator T,
is nuclear (or of trace class) since it is the difference of two such operators, and the
determinant definition of § 1 is valid. More generally, if ¢ is complex-valued and
¢, ¢e L1(0, o0), each T, is nuclear since it can be written as a linear combination
of such operators.

If —1 is not in the spectrum of T,, then

D(r) = exp (tr [log (I — T))))

and, in particular, if | T,|| < 1, then

D(r) = exp (—z%tr (n, r))

(see Dunford and Schwartz [4, Chap. XI, § 9]). The restriction ||c| < 1 will allow
us to use this representation since, as is easily verified, ||T,| < ||c| for all r.

THEOREM 6.1. If ¢ and its Hankel transform ¢ are in L}(0, 00) and if ||c|| < 1,
then

DM =G + o(1) as r— oo,

where

G = exp {%Jﬂn log (1 — &(1)) dt}.

0
Proof. From Lemma 4.2, |r~ ! tr (n, r)] £ nM||c||", where M is independent of

r and n, and hence, by the dominated convergence theorem and our first trace
estimate (5.9),

11 1
;Z;tr(n,r) —»Z;Ef[é(t)]"dt

as r — oo. Since [&(t)] £ ||| < 1, we can interchange the summation and inte-
gration in this last expression and write it as

1
—Eflog(l — o) dt.
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THEOREM 6.2. If
(i) ¢ and its Hankel transform ¢ are in L}(0, o),

(i) fell <1,
(iii) [ x|e(x)] du(x) < oo,
then
D(r)G™"=[1 — &0)]"E + o(1) as r— o0,
where

1 r® 1 @ . ik 2
E = exp (EL x{% J_w log (1 — &(t))e dt} dx)

(extend ¢ as an even function) and o = (1 — 2v)/4.
Proof. Let

1 r
G, = exp (;Jlog(l - 6(t)){fo J3(xt) d,u(x)} du(t)) .

Since |é(x)] £ |lc|l < 1, we have

G = expd - 5 1 )

nx1

and hence
1
D(r)[G,]7" = exp {Z ;(H(n, r) — tr(n, r))}.

By combining Lemma 4.2, the dominated convergence theorem, and Theorem
4.3, we obtain

11m D([G,] "=exp| ) - f max (0,sy, -+, S,_1)

n>2

Sx) o S ) S (S 1)dx1"‘dxn—1)a

where f = Sc and s, = x; + --- + x;. The second and third hypotheses and the
properties of the mapping S allow us to apply an identity of Kac [10] to reduce
the right side of this expression to E. Finally, we use Theorem 5.1 to obtain

lim [G,/G)" = exp {1 + log(1 - é(on}.
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FINITE MELLIN CONVOLUTION EQUATIONS*

WILLIAM L. PERRYY

Abstract. Sufficient conditions on f(x) and k(u) are given so that the integral equation of the
first kind

b
[ Kenay = s, xe(@bh),

with —oc0 <a <0 < b < + o0, can be solved by means of the (left-sided) Laplace transform.

1. Introduction. An integral equation of the first kind of the form
(L) [ ks dy = 50, xeD,
D

where D = (— o0, 00), may be called an integral equation of the Mellin convolution
type, because the equation in (1.1) can be solved (under appropriate conditions) by
means of the Mellin transform when D = (0, c0) [8] or D = (— 00, c0) [4]. When
D = (0, c0), one may sometimes use the results of Fox [3].

When D is a finite interval, we may distinguish between two cases: 0 € [a, b]
or O ¢ [a, b]. In the latter case, dilatory and exponential changes of variable show
(1.1) to be equivalent to an integral equation of the form

1

(12) . kl(x - J’)¢1()’) =f1(X), XE[—I,I],
which can be solved in principle by the general method of Wiener and Hopf
developed by Shinbrot [6]. Regarding the former case, no integral transform tech-
niques for solving (1.1) have appeared. Thus, in this paper, we exhibit an integral
transform technique, valid under conditions to be specified, for solving (1.1) with
D = [a,b], 0€[a,b]. To show that there actually are equations to which this
technique is applicable, we shall supply an example.

2. The problem. The problem under consideration is to find, for a given kernel
k(xy) and given free term f(x), a measurable function ¢(y) such that the integrals,
j: k(xy)p(y) dy, exist for almost all x in [a, b] and such that for almost all x in [a, b],

@.1) f K)o dy = 1),

where a and b are fixed constants,a < 0 < b.
To simplify the presentation, we start with the equation,

b
2.2) L k(xy)p(y) dy = f(x), x€[0,b].

* Received by the editors December 28, 1971, and in revised form March 16, 1972.
T Department of Mathematics, Texas A & M University, College Station, Texas 77843. This
work forms a portion of the author’s doctoral dissertation at the University of Illinois, Urbana.
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That is, the origin is an endpoint of the domain of integration. We now assume
that the given kernel and free term satisfy the following conditions:

(2.3) There exists a real number d > 0, such that the integrals

b2

fbx_2d+‘(f(X))2dx, fx"““(k(x))zdx,

0 0

are finite.
(2.4) The complex-valued function of the complex variable s,

fox=1f(x) dx
o x* " k(x) dx

which is well-defined by virtue of (2.3), is analytic in the half-plane Re s < g,
—d < ay,is of order O(|s| %), as |s| — oo where k > 0, and the only singularities of
this function are poles.

The condition in (2.3) is not too restrictive ; it essentially means that f(x) and
k(x) are of the order O(x?**~ 1), x - 0%, ¢ > 0. More restrictive is condition (2.4)
which is imposed to ensure the validity of the method of solution exhibited below.

3. An equivalent integral equation and the application of the left-sided Laplace
transform. Assume for the moment that there exists a measurable function
¢(y) such that jg k(xy)p(y) dy exists for almost all x in [0, b] and that equation (2.2)
holds for almost all x in [0, b]. To derive the desired equation, we make two changes
of variable. First, let x; = (1/b)x and y, = (1/b)y to obtain for almost all x, in
[0, 1], the equation

1
[ K,y ey ay, = fbx).
0
Next set x; = e*, y, = ¢’ so that for almost u in (—00,0) = R,

JO k(b? e"* )b " (b e") dv = f(b €“).
Thus, defining .
k(b? ") = ky(u +v), be'pbe’) = ), f(be') = fi(w),
we may rewrite the preceding integral equation in the form
6. [ ks iy = o, xeR™.

Since the changes of variable are reversible, (2.2) and (3.1) are equivalent in
the sense that a solution of (3.1) leads to a solution of (2.2) and conversely. Thus,
we may restrict our attention to (3.1).

The left-sided Laplace transform, F(s), of a real-valued function f(x) is defined
by

0
(3.2) (L)) = Fls) = f e,
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whenever the improper integral on the right-hand side of (3.2) exists. If L(f)
exists for all s with Re s = ¢, then it exists for all s with Re s < ¢, and it is analytic
in that half-plane. The number,

0
o f) = sup {ocf e "f(x)dx < oo,ozeR}

is called the abscissa of convergence of L(f) and the line Re s = a(f) is called the
axis of convergence of L(f).

The convolution theorem for the left-sided Laplace transform states that if
L(k) = K, L(¢) = @, and

(3.3 ak) >0 and a(¢) > 0;
or
(3.4) ak) <0 and a(¢) >0, with —oa(p) < ak);
or
(3.5) ak) >0 and a(¢p) <0, with —o(¢p) < a(k);
then [7, pp. 30-31 with a simple change of variable],
1 petio min (0,x)
66 5| Kee-getas= [T ko~ 0y,
where c is a real number in the interval
(3.3) {ol —a(¢) < ¢ < min («(k), (o))},
or
(3.4) {ol —a(¢) < o < afk)},
or
(3.5) {o] —a(p) < 0 < a(k)},

according to which of the cases (3.3}+3.5) holds. For fixed x < 0, we may put
y = u + x in (3.6) so that

(3.7 ! fc+iw K(s)®(—s) e ds = jo k(x + u)p(u) du.

2mi c—ioo

Taking the left-sided Laplace transform of both sides of (3.7) we obtain
0
(3.8) L( f k(x + y)é(y) dY) = K(s)®(—5s)

for all s in the respective vertical strips with horizontal section given in (3.3
(3.5).

Now suppose that there exists a measurable function ¢,(y) having a left-
sided Laplace transform such that (3.1) holds for almost all x < 0, and that a(k,)
and a(¢,) satisfy (3.3). It follows from the conditions on k and f in (2.3) that the
functions k, and f; have left-sided Laplace transforms, K,(s) and F,(s), respectively,
and their abscissae of convergence, a(k,) and o f;), are both positive. In fact,
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o f1) and a(k,) are both greater than or equal to d. Since ®,(s) exists and (3.3)
holds, we have from the equality in (3.8) that

(3.9) K (s)®,(—5) = Fy(s)

for all s in the vertical strip {s|—a(¢,) < Res < min (d, a(¢,))}. Similar results
are valid if (3.4) or (3.5) hold.

4. Construction of solution. The reasoning above is now reversed to construct
a left-sided Laplace transformable, measurable function ¢,(x) which solves (3.1).
More precisely, we define a function ¢,(y) as the inverse Laplace transform of the
function F;(—s)/K,(—s) and show that the function so defined solves (3.1).

To this end, we first note that F,(—s)/K(—s) is analytic in the half-plane
Res < ¢, 6o > —d, and is of order O(|s|*) as |s| - oo, for some k > 0. Hence,
F,(—s)/K,(—s) has an inverse Laplace transform, L~ '(F,/K ),

LR

*S ds, <0,
2 )iy Ki(—9)° O ¥

(4.1) d1(x) =

where —d < ¢ < g,. Thus, for all s in the vertical strip, {sj—d < Re s < a4}, we
have (L(¢,)(s) = @,(s) = F;(—s)/K,(—s). This means that for all s with
—0, < Res < d, K, (s)®,(—s) = F,(s), and since —a(¢p,) = —a, and a(k,) = d,
it follows from the convolution theorem that

0
[ k4 0000y = £, x<0.

That is, ¢, defined in (4.1) solves (3.1).

By virtue of condition (2.4), F,(—s)/K,(—s) has only a finite number of poles
in the plane. Thus, using the residue calculus, it is not hard to verify that ¢,(x) is
continuous on R ™. Also, the solution is unique as a consequence of the uniqueness
theorem for the Laplace transform. What has been shown above establishes the
following theorem.

THEOREM 1. If the given kernel k and free term f satisfy the conditions (2.3)
and (2.4), then the integral equation (2.2) has a unique solution which is continuous
on (0, b).

5. Example. Consider the equation

(xy)(1 — 2alog (xy))
(5.1) f (~log () P(y)dy = x(—log x)'"2,

where x€(0,1) and a < 0. By making the exponential change of variable, we
obtain as equivalent to (5.1) the equation:

O exp(x +y)(1 —2ax+y) o /T
(5.2) f_w s )7 [e*p(e”)]dy = e/ —x,
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x < 0, where a < 0. Applying the left-sided Laplace transform, we obtain for
K, and F; (see [2]),

mY*(=s+a+1)

K,(s) = S Res < 1,
I3/2
F“S)=ﬁ, Res < 1.
Hence,
F,(— 1
o, (s = 2= _ Res < —1 —a,

K(-s) 2s+a+1)y

is analytic in the half-plane Res < —1 — a = 6y, 65 > —1 = d, and is of order
O(s|™") as |s| — oo. In the strip {s|]l + a < Res < 1}, K,(s)®,(—s) = F,(s). In
addition,

_ 1 c+ioo 1 . B .
63 0= | g s = —de (=1 - ),

where —1 < ¢ < —1 —a and x < 0. Thus, the convolution theorem implies
that ¢,(x) defined in (5.3) is a solution to (5.2); this may also be verified by a table
of integrals. Reversing the exponential change of variable, we see that the solution
to (5.1)is

d(x) = —1/2x*9), x€(0,1),

which is continuous on (0, 1).

6. Zero in (a, b). We now extend the preceding analysis to equation (4.1)
with a < 0 < b. To this end, we define

#(x), xe(0,b),
0, x€(a,0),

0, xe(0,b),
#(x), xe(a,0),

and f*(x) and f~(x) in a completely similar way. Using these definitions, (2.1)
may be written as the system of equations:

(6.1) ¢7 (%) E{ ¢~ (x) E{

0 b
f k()™ () dy + f Kx)é*(0)dy = £*(x), x€(0,b),
(6.2) ‘ 0

0 b
f Koxey)b~ () dy + j Koep)b* () dy = £~ (), x€(a,0).

Again making dilatory and exponential changes of variables it is easy to see that,
in obvious notation, (2.1) is equivalent to the system of integral equations:

2 0
63) ‘Zf_hﬁ+w@m@=ﬁm, i=1,2, x<0.

Under assumptions on a(k;;) and «(¢;) similar to those which have been used
above, namely, that a(k) = min a(k;;) > 0 and a(¢) = min {«(¢,)} (the minimum
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taken over i, j = 1,2) satisfy one of the inequalities in (3.3')+3.5'), we see that a
solution pair (¢, ¢,) to the system (6.3) must satisfy the equations

(6.4) i K;i(s)®(—s) = F{s), i=1,2,

j=1
for all s in a nonempty vertical strip I" determined by a(k;;), a(¢;), and a(f;).
Defining functions J,(s) and J,(s) by
Fi(=9)K35(—s) = F)(=5)K 5(—5)
Kii(—=9)Kp5(=5) — Ki5(=9)K;1(—5)’

Jy(s) = Fy(=5)K1(—s) — Fi(—5)K34(—5)
e K 1(—95)K;5(—5) — K{,(=5)K;(—5)’

Ji(s) =

we may state a result analogous to the preceding theorem as follows.
THEOREM 2. If there is a real number d > 0 such that all the integrals

b 0
f M s, [ P,
0 a

a? 0
J x_z““kz(x)dx, J‘ |x|_2‘”1k2(x)dx,
0 ab

are finite and if the functions J(s) and J,(s) are analytic in a half-plane Re s < oy,
—d < gy, are of order O(s| %), |s| = o0, k > 0, and have only poles as singularities,
then (2.1) with a < 0 < b has a unique solution, continuous on (a, b) with the possible
exception of a discontinuity at zero. The solution is formed from the solution pair

(1, ¢,) of (6.3), obtained as ¢, = L™(J,), ¢, = L™1(J,).

7. Remarks. If in the example of § 5, we let @ = 0, then the method is no
longer applicable, due to the fact that the equality K(s)®(—s) = F(s) no longer
holds in a vertical strip in the complex plane.

The conditions given in (2.4) may be relaxed, and the method will still work,
provided the residue integrals involving the necessary inverse Laplace transforms
can still be computed. The properties of the solution may be changed by the
change in condition (2.4).
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GENERIC PROPERTIES OF DIFFERENTIAL EQUATIONS*
THOMAS COSTELLOt

Abstract. Property P is said to be generic for a class of equations, E, if P is satisfied by each equation
in E — A, where A is a set of the first category in E. It is shown that uniqueness of solutions is generic
for the functional differential equations X(¢) = f(t, x,), and existence, uniqueness and continuous
dependence of solutions are generic for the characteristic initial value problem for u,, = f(x, y, u,u,, u,).

1. Introduction. The identification of properties generic for a particular
class of differential equations was begun by Orlicz [6]. He showed that uniqueness
of solutions is generic for y' = f(x, y). Using similar techniques, Alexiewicz and
Orlicz [1] extended this result to the characteristic initial value problem for

(L.1) Uy = f(x, ¥, u, Uy, u).

Lasota and Yorke [5] employed a different approach to show that existence of
solutions is generic for y* = f(x, y) in Banach space.

In § 3 we show uniqueness of solutions is generic for the functional differential
equation

(1.2) x(t) = f(t, x,).

In §4 existence and continuous dependence of solutions are proved to be
generic properties for the class of equations studied in [1].

2. Preliminaries. A property is said to be generic if the set of continuous
real-valued functions f for which problem (1.1) (or problem (1.2)) does not possess
that property is a set of the first category in the space of continuous functions with
the topology of uniform convergence, that is, if it is a ““‘small’ set in the sense of the
Baire category theorem.

Let a, b and q be finite positive real numbers. We denote by Cy the set of all
real-valued, bounded, continuous functions defined on [0,a] x [0,b] x R>.
C1? denotes the set of continuous functions mapping [ — g, 0] into R"” and Cy is the
set of bounded continuous functions defined on [0, c0) x C? with values in R".
For xe C4, |[x(-)|| = supge;—4,011X(0)]; Cy and Cy are given the supremum norm.

We let (H) and (F) denote the following problems:

Uy, = f(x,y,u,u,u) for 0<x<a and 0=y=b,
(H) u(x,0) = 1(x), 0x=<a,
u(0, y) = o(y), 0<y=b,
where fe Cy, 1( - ), o( - ) are continuously differentiable functions;
) %0 =f(t %), tZto,
xo(0) = ¢(0), —qg=0=0,

* Received by the editors June 24, 1971, and in revised form April 3, 1972.
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where fe Cp, ¢ € CL
If x(-) is continuous on [t, — q,t,], then x,, is that function in C? defined
by

Xo(0) = x(to + 0), —q=06=0.

(H,f) and (F,f) denote problems (H) and (F) with the right-hand side f.

Let E; and E, be Banach spaces with U, < E,. We shall say f:U, - E, is
locally Lipschitz if for each pe U, there is an open set O, with pe 0, = U, and
an L, > 0 such that || f(x) — f(yll, £ L,lx — y|, for all x,ye 0, where |- |,
and | - ||, are the norms on E, and E,.

3. Functional differential equations. Consider the set X defined by
X = {fe C{(F,f) has nonunique solutions}. X consists of all functions in Cp
for which (F) has at least two solutions.

THEOREM 3.1. The set X is of the first category in Cp.

Recall that a set is said to be of the first category if it is the union of a countable
collection of nowhere dense sets.

Before proving this result we state a lemma that will be used in the proof.

LeMMA 3.2. Let U be an open subset of [0, c0) x C,andf:U — R" be continuous.
Let 6 > 0 be given. Then there exists a locally Lipschitz function g:U — R" such
that

lf(t, ¢) - g(t’ d))l <9

for all (t, p)e U.

For a proof of this lemma the reader is referred to Lasota and Yorke [5]
where a more general statement is proved.

Proof of the theorem. The hypotheses guarantee that solutions exist for (F,f).
Furthermore, there is a number w > ¢, such that each solution is defined at least
on [t,, ®]. This result is well known (see, for example, a proof in [3]). Define

2f) = lim sup {Ix} — x2]1:x'(-), x*(-) solutions of (F. )},

and

T, = {fe Ceb(f) = 1}

; .
Note that we have

LemMA 3.3. Each T, is a nowhere dense set.

Proof. Choosef e T, arbitrarily. Let ¢ > 0 be arbitrary and consider a neighbor-
hood of fof radius ¢. Lemma 3.2 guarantees that there is a locally Lipschitz function
g, such that g, e N,(f). This implies each neighborhood of f contains a locally
Lipschitz function. However, (F,g,) has unique solutions since g, is locally
Lipschitz. Hence no point of T, has a neighborhood contained in T,, that is, T,, is
a nowhere dense set in Cy.

Therefore X is a set of the first category in Cp, since each T, is a closed set.
This is a consequence of the convergence of solutions of (F,f,) to solutions of
(F, h) when f, —» h. So X is an “F-set”, i.e., the countable union of closed sets.
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4. Hyperbolic partial differential equations. For the remainder of the paper
we shall deal with generic properties of (H). Hartman and Wintner [4] studied
(H) and obtained sufficient conditions for existence and uniqueness of solutions.
Furthermore, they demonstrated, by examples, that certain hypotheses could not
be dropped without possible loss of the related property. That is, there exist
continuous functions f such that (H,f) has no solution whatever; there exist
continuous functions f which are Lipschitz in the last two variables but for which
(H, f) has nonunique solutions. A natural question arises: Are these examples in
some sense “‘a small fraction™ of the cases, or do they indicate a general behavior
for (H,f). Orlicz and Alexiewicz [1] demonstrated that ‘‘uniqueness of solutions”
for problem (H)is a generic property in a more restrictive class of functions than Cy.
We shall show that existence and continuous dependence are also generic properties
for (H). In addition, a shorter proof is given for the result of Orlicz and Alexiewicz.

DEFINITION. A function u(-,-) is said to be a solution of (H, f) if u is defined
on R? = [0,a] x [0, b] and

(i) u(-,-)is continuously differentiable on RZ,
(ii) u(x, y) satisfies (1.1) for each (x, y)e RS,
(ii1) w(x,0) = 17(x)for0 = x < q,
u(0, y) = o(y)for0 < y < b.
Notice that a solution of (H, f) is not necessarily a C2-function on R?.

4.1. Existence. The following result, which appears in [1], will be needed
later in this section. Let |- ||, be the usual supremum norm on the space of
continuously differentiable functions.

THEOREM 4.1. Let fe Cy and be locally Lipschitz in (u,,u,). Assume (H,f) has

a unique solution. Let ||f, — f|| = 0 as n > oo and (H, f,) have a solution u,(-, )
for each n. Then

lu, — ulc, >0 as n— .
THEOREM 4.2. Let fe Cy and set
N = {fe C4|(H,f) has no solution on RZ}.

Then N is a set of the first category in Cp.
Proof. Define a function V(-) on Cy by

V(f) = limsup {|lu;, — ug,llc,:uy, solves (H,f)},
S/

S22~

where f, and f, are restricted to be functions in Cy which have at least one solution
of (H, f,) defined on R:. The density of the Lipschitz functions in Cy assures that
this can be done. V(f) is defined and finite for all fe Cy,. If fe Cy and fis locally-
Lipschitz in (u, u,, u), then V(f) = 0. As, for such functions, the problem (H, f)
has a unique solution, and Theorem 4.1 implies {u,(-)} converges to that
solution.

Assume f is such that V(f) = 0. Then lim,, ,,_, {lu;, —uy,llc,} exists and
implies lim, ., u, (x, y) exists uniformly on R? for some sequence {u,,}. The u,,
are chosen so that for any two consecutive terms u, , u, ., in the sequence we
have ||u,, — u,,. llc, <27 2" This generates a Cauchy sequence in C'(R}). For
details the reader is referred to Buck [2, p. 46]. Denote the limit by u(x, y). Using
the integral form of (H) it can be seen that u satisfies (H,f).
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Therefore, if (H, ) has no solution on R2 we must have V(f) > 1/n for some n.
Hence, letting N, = {fe Cx|V(f) > 1/n)}, we haveN = Uj_ | N,.

Each N, is a nowhere dense set, since for any f€ N, there is a locally Lipschitz
function g for which V(g) = 0 and g may be chosen arbitrarily close to f. Clearly
g¢ N,. The following result shows g¢ N, .

LemMA 4.3. If f,€ Cy and f, > g as n - oo, then lim,_, , V(f,) = 0.

Proof. Assume this is not the case. Then there exists a sequence { f,} and an
¢ > 0 such that f, > g as n > oo and V(f,) > ¢ for each n. We may choose f},f2
within 1/n of f, and such that

lup, — ugalle, > € — pe

This implies V(g) > 0 which contradicts V(g) = 0 for alocally Lipschitz function g.
Therefore N is a set of the first category.

4.2. Continuous dependence. Before proceeding to the next result we define
what we mean by “‘continuous dependence on f”’. When we assume continuous
dependence on f we shall mean that the following property is satisfied for fe Cy:

(CD) Let {f,} = Cy,feCy,f,— f uniformly. Consider the fixed initial
condition (z(-), o( -)). When (H, f) and (H, f,) have at least one solution u,u,,
respectively, defined on R?, then lim, , , u,(x, y) = u(x, y) uniformly on R®.
Condition (CD) is basically the conclusion of the Alexiewicz—Orlicz Theorem 4.1.
Notice that if f(x,y,u, p, q) satisfies a local Lipschitz condition in (u, p, ) and
fe€ Cy, then (CD) holds for fand (H, f) has a solution.

THEOREM 4.4. Let G = { fe Cy|(CD) does not hold for (H,f)}. Then G is a
set of the first category in Cy.

Proof. The proof is essentially the same as for the previous result. Let f be
chosen so that (H, f) has a solution. Let

V(f) = lim sup {|lu, — ullc,},
SnS

where u(-,-) is a solution of (H,f). f satisfies (CD) if and only if V(f) = 0. This
follows in a manner similar to the method used in the proof of Theorem 4.2.

Define: N, = {fe Cy|V(f) > 1/n}.G = U2, N, and each N, is a nowhere
dense set in Cy. To see this is true, let n be arbitrary and choose any h e N,. There
exists a sequence {h,} < Cy, where h,, satisfies all the conditions of Theorem 4.1
and (H, h,,) has a unique solution for each m. As a result of this choice, V(h,) = 0
implies h,, ¢ N,. Thus, every neighborhood of h contains points which are not
in N,. From this it follows that N, is a nowhere dense set, and thus that G is a set
of the first category in Cy.

4.3. Uniqueness. The following theorem is proved in [1]. The proof we give
is shorter and simpler than the proof of Orlicz and Alexiewicz.

THEOREM 4.5. Let U = {f e Cyl(H, f) has nonunique solutions}. Then U is a
set of the first category in Cy.

Proof. We repeat the arguments of the preceding proofs using

V(f) = limsup {[lu; — uz“cl},
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where the lim sup is taken over all solutions u; of (H,f), and

N, = {fe CAV(f) 2 }1} .

We leave the details to the reader.

Remark. If one were to define (CD) in a different way, keeping the convergence
notion, it seems as though our techniques would still work. T. Langan of the
University of Maryland has proved a continuous dependence result, for hyperbolic
operators, similar to the one we present in [3] for (F). It seems likely his result
could be substituted for (CD) with no effect on the conclusions. However, we
concentrate on the simpler case.

Acknowledgment. The author wishes to express his gratitude to Professor
James A. Yorke of the University of Maryland for his assistance during the
preparation of this paper.

REFERENCES

[1] A. ALEXIEWICZ AND M. W. ORLICZ, Some remarks on the existence and uniqueness of solutions of
the hyperbolic equation 0*z/0xdy = f(x, y, z, dz/0x, 0z/dy), Studia Math., 15 (1952), pp. 201—
215.

[2] R. C. BUCk, Advanced Calculus, 2nd ed., McGraw-Hill, New York, 1965.

[3] T. M. CosteLLO, Fundamental theory of differential and integral equations, Doctoral thesis, Univer-
sity of Maryland, College Park, 1971.

[4] P. HARTMAN AND A. WINTNER, On hyperbolic partial differential equations, Amer. J. Math., 74
(1952), pp. 834-864.

[5] A. LAsoTA AND J. A. YORKE, The generic property of existence of solutions of differential equations
in Banach space, IFDAM Tech. Note BN-655, University of Maryland, College Park, 1970.

[6] M. W. ORLICZ, Zur Theorie der Differentialgleichung y' = f(x, y), Acad. des Sciences, Bull. Inter.
Sci. Math., (1932A), pp. 221-228.



SIAM J. MATH. ANAL.
Vol. 4, No. 2, May 1973

ON THE UNIQUENESS OF BOUNDED SOLUTIONS TO
u'(t) = A@Ou(t) AND u"(t) = A(t)u(t) IN HILBERT SPACE*

HOWARD A. LEVINEf}

Abstract. Let A:D, — H be a symmetric linear operator. If 0 is not an eigenvalue of A, then
every solution u to u/(t) = Au(t), —o0 <t < oo, is either identically zero or satisfies
SUP_ o <;< o |[U(t)]l = + 0o0. This result is proved via an elementary argument and then extended in two
directions: (i) A = A(t), te(— 00, 00), and (ii) A=A, + A_, where A, is symmetric, zero is not an
eigenvalue of A,, A_ is skew symmetric and Re(4,x,4_x) > —||4,x|* for all xeD,, x # 0.
This inequality is sharp. A similar analysis is carried out for u"(t) = A(t)u(t). A number of examples
from partial differential equations are given.

1. Introduction. In this paper we prove, via elementary considerations, an
extension of the following theorem of S. Zaidman [6], who based his proof on
the spectral theorem for self-adjoint operators. We also prove an analogous
result for certain abstract equations of the form d?u/dt> = A(t)u in the case that
the symmetric part of A(t) is “positive”.

THEOREM. Let H be a Hilbert space and suppose that A is a self-adjoint operator
defined on a dense domain D = H. Suppose that zero is not an eigenvalue of A.
Let u:(— o0, + o0) = D be a (strongly) continuously differentiable solution to

du/dt = Au, -0 <t < +00.
Then either

t+1
sup f )2 dn = + oo
- <t<®t

orelseu = 0.

Our proof of this result has the advantage that it applies to a wider class of
operators, that it is elementary and that it even allows us to have 4 “time-
dependent”. In general, 4 can be somewhat worse than symmetric, provided the
skew symmetric part is not “too big” relative to the symmetric part and that
zero is not an eigenvalue of A. (As is well known, id/dx has no self-adjoint extension
when thought of as an operator on Cg(0, c0).) Moreover, it is very difficult to
prove that partial differential operators which are symmetric have self-adjoint
extensions (unless they have real coefficients or are semibounded). Nevertheless,
we can apply our results to certain partial differential equations of mixed or even
no type.

Zaidman [7] has extended his result to the case of evolutionary equations
in a Banach space if A4 is the infinitesimal generator of a one-parameter semigroup.
Since we rely heavily on the Hilbert space structure, we cannot extend our results
in this direction.

* Received by the editors December 10, 1971, and in revised form April 11, 1972.
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2. The equation u'(f) = A(f)u(t). We prove the following theorem.

THEOREM 1. Let H be a Hilbert space, real or complex, and let D = H be a dense
linear subspace. Let, for each te€(— o0, 00), A(t) be a symmetric operator defined
on D with 0 not a eigenvalue of A(t). Let A(t)x be strongly differentiable for each
x €D and suppose that (A(t)x, x) = —y(t)||A(t)x||*> for all xe D and te(— o0, ),
where, for each t, y(t) is continuous and y(t) < 2. Let u:(— 00, 0) — D be a con-
tinuously differentiable (in the strong sense) solution of du/dt = A(t)u(t). Then either

t+1

() M= sup lutm)l|* dn = + o0
— o0 <t < oo t
or
(B) u=0.
Proof. Assume that M < oo, and suppose that u = 0. Let
t+ 1
(1) FO= [ ) dn.
t
Then
F(t) = Jlu(t + D))* = [lu@)]?
t+1
d
= —lum)|*d
ft dn 1
t+ 1
= 2f Re (u,, u) dn (u, = du/dn)
t
t+ 1
=2 (), At dn.
t
Moreover,*
F'(t) = 2(u, Au)(t + 1) — 2(u, Au)(z)
t+1 d
2 Gt Audy
t n
t+ 1 t+1 .
= 4J Re (u,, Au) dn + 2f (u, Au)dn.
t t
Thus
t+ 1
2 F'(t) 2 2J 2 — Yl Amyum)|I? dn.
t

Now, since u(t,) # 0 for some t,, A(to)u(to) # 0. Also || A()u(t)||? is continuous, as
it is the same as ||u/(¢)]|%. Therefore,

F'(ty — %) > 0.

! Agmon [1] has shown that the indicated differentiation of (u, Au) is justified for u, u’ strongly
continuous, A(t) is symmetric and A(t)x is strongly differentiable for each x.
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Thus F is a nonconstant, convex function of t, which is bounded (0 < F(r)
< M < ). However, as is well known, there are no such functions. (For if F were
such a function and F'(f,) > 0, say, for some %,, then for t > %,, F'(t) = F'(,)
(F"(t) = 0) so that F(t) = (t — I,)F'(,) + F(#,) and F(t) > + 0 as t > +co. If
F'(t,) < 0, we find that F'(t) < F'(,) for t < T, so that F(t) = (t — i,)F'(,) + F(Z,)
fort < 1,and F(tf) > + o0 ast - —oo. Thus F'(t) = 0 and F is a constant. Thus we
have a contradiction and u = 0.)
As a first example, consider the equation

ou oOu .
E=l& in [0, 00) X (—00, 00).
Here
H = %%0,0), A=id/dx and D, < {f|feH,f eH}.
If

D, < {feH|f' e H and f(0) = 0},

then A will be symmetric. However it is well known that A has deficiency indices
(0, 1) so that it has no self-adjoint extension [3]. Nevertheless, 0 is not an eigenvalue
of A and therefore we have that solutions to this equation satisfy

sup lu(x, t)]*dx = + o0

—w<t<w Jg

orelseu = 0.

Remark 1. Note that Theorem 1 remains true if the operator domain D depends
on t under the following conditions. Denote by

S @) = d(u(t), A@u(t)/dt — 2 Re (u,, A(t)u)
and require that f(t) > —y(t)|| A(¢)u(t)||*, where y(t) < 2 and is continuous.
Remark 2. Condition () may be replaced by
@) _sup_[u®) = +oo.

Remark 3. Suppose A(t) = A for all ¢ and that zero is an eigenvalue of A.
Let N = {x e D|Ax = 0}. Then we have the result that either

u(t) = const.
or

t+ 1
sup j )12 dn = + co.
o < <oo,

To prove this we write u(t) = v(t) + w(t), where for each t, (v(t), w(t)) = 0 and
v,w take values in D N N and D N N* respectively. Then u'(t) = v'(t) + w'(t)
= Aw(t). A limiting argument shows that v'(t) and w'(¢) take values in N and Nt
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respectively. Assuming v'(t)e D also, we have (v/,v") + (v/,w) = (v/, Aw) = 0 by
the symmetry of A so that (v,v') =0 and thus v = vy, a constant. Hence,
u = vy + wand u'(t) = w'(t) = Aw. Therefore, as before, we see that either w =0
OF SUP_, <i<oo Ji 7' IW|?dn = oo by reasoning with F(t) = (w(t), w(t)). (Then
F'(t) = 4| Aw(t)||?.) Since

t+1 t+1
j lutn)]12 dn = lol® + f w12 di,
t t

the result follows.

Remark 4. Suppose again that A is independent of t. Then it is sometimes
possible to have the result of Theorem 1if A = A, + A_, where A is symmetric
and A_ is skew symmetric. Suppose that zero is not an eigenvalue of 4, . Letting
F(t) be as in the theorem, we have

t+1
F(t) = ZJ Re (u,, u)dn
t

t+1
= ZJ [Re(u, A, u) + Re(u, A_u)]dy

t+1
=2 j (ua A+u) d?”
t
so that
t+1
F'(t) = 4f Re (u,, A u)dn
t
t+1 t+ 1
= 4f A ull?dy + 4f Re(A_u, A, u)dy.
t t
Suppose now that A_ = ilA, + B, where 1 is a real-valued, measurable, locally

integrable function (A(f) = 0 in the case of real Hilbert space) and B is a skew
symmetric operator satisfying

Re(Bu, A,u) 2 —y(t)| A, ul?

for some nonnegative, continuous function y such that y(t) < 1 for all t. Then

t+1
F(t) > 4f (1 = YDl A +ulm)l|* dn

and we may finish the argument as before. This result fails if Re(Bx, 4, x)
= —||l4,x|* for some xeD (x # 0) as the following example shows: Let
H = L*(— o0, o) and let
m—x"! for n—1<x<n, n=1,2,3,...,
¢(x)= 0 for X=0,i1,i2,"‘,

—3n+x)7! for —n<x<-n+1, n=1,2,3,---.
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Let
D= {feH|f'eHand ¢-fe H}.

(Note that this says that if fe D, then fis “small” to the right of every integer
point. Note also that D is dense in H.) Now consider the partial differential equation

ou ou
—0; = ¢(X)u + &
in the (x, t)-plane. One can easily verify the following:
(i) A,:D — H defined by A, f = ¢ - f is a symmetric operator and zero is
not an eigenvalue of 4, .
(i) A_:D — H given by A_ f = f’ is skew symmetric (Re (f,f") = 0).
(ili) ¢'(x) = 2¢*(x) except when x is an integer.
Let
n—x for n—1<x<n, n=1,2,3,---,
Y(x) =11 for x=0,

Jn+x for —n<x< -n+1, n=1,2,3,---,

and note that sup_ , <, <o, [Y(x)| = L.
Let f, € D with | f,|| # 0 and f, vanishing in a small neighborhood of each

integer point. Let
u(x, 1) = folx + (x).

One can easily verify that u is a solution to the differential equation in the plane
except on the lines x = n,n = 0, +1, +2, -- -, and that the evolutionary equation
du

= = Aut) = (A, + At

is likewise satisfied. (The solution is found by formally applying the method of
characteristics to the equation and obtaining the formal solution u(x, t) = fy(x + t)
-exp (—[% $(n) dn).) We see that for all ¢,

lu(-, 1> = fw | folx + D (x)I* dx

< [ 1+ 0rax = 150,

while

Re(A. o A_fy) = Re [ 9f0To00 dx
1 [ d
=53] oo ax

1 0
- -] B dx

(cont.)



UNIQUENESS OF BOUNDED SOLUTIONS 255

" s ax

= — AL fol.

Thus u(-,t) is a bounded nontrivial solution to u, = Au while Re (4, f,, A_ fo)
= || A, foll*. Therefore the inequality y(f) < 1 must be strict.

As a simple example, let H = ¥*(—n,n) and D = {fe H|f,f’ are absolutely
continuous, f” € H andf(—n) = f(n) = 0}. Let a(x, t) be a real-valued, continuous
function such that for each real t, 0a/0x and da/0t are bounded in x, da/ot < 0
almost everywhere in x and [ 1/a(x, t) dx exists and is not zero. Let

AW /1) = :%(“‘x’ 07 v).

One easily checks that (A(f) f)(x) = 0 a.e. implies that f(x) = 0 a.e. Moreover,
. " da
(£,400) = - [ Dex 0l WP dx 2 0.
Thus, there are no nontrivial bounded solutions to
ou 0 du
'é? = a(a(x, t)&(x, t))

in (—m, ) x (— o0, 00) with u(—m=, t) = u(n, t) = 0 for all ¢. (Bounded here means
that

sup f lu(x, £)1> dx < 0.)
— o0 <t<oo -n
As another example, consider the Blackstock equation for 4, ¢ given real
constants and 0 # 0;

u, = ou,, + cu,, -0 < X,t < 0.

With D = {fe [*(— o0, )| f",f" € [(— o0, 0)}, let A, = §d*/dx*, A_ = cd/dx.
Since, as is well known, CP(R?') is dense in D (D being nothing more than H¥R")),
one easily checks that

(i) A, is symmetric on D and 0 is not an eigenvalue of 4,

(i1) A_ is skew symmetric on D,

(i)

® oc [(® d
Re(4.f,A_f) = Ref def"(x) f'(x) dx = —2€ 33;|J”(>C)I2 dx = 0.
Therefore, for any solution u(x, t) of Blackstock’s equation,
sup lu(x, t)|? dx = + o0
— o0 <t <00 — o

or

<
I
o
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If c = o + iff where § # 0, we take

d? d
Av =002 Tiby
and
d
A_ = o—.
adx

One easily checks that for fe D, A, f = 0 implies that '(x) + (i8/0)f(x) = a, and
consequently, f(x) = a,d/if + a, exp (—ifix/5), where a, and a, are constants so
that fe D if and only if a; = a, = 0 and thus zero is not an eigenvalue of 4.
Moreover, Re (A, f, A_ f) = [*_ daf"f’ dx = 0 so that the above result remains
true in this somewhat more general case as well. This same result can also be
proved by means of Fourier transforms, using the well-known fact that the Fourier
transform is unitary.

3. The equation u"(f) = A(t)u(f). Now let us consider the equation u”(¢)
= A(t)u(f). In fact we shall consider the more general equation

Pu, = A(t)yu + F(t,u,u,),

where #(t,-,-):D 4, x H — H, and prove two theorems, one for the case # = 0
and the other when &% = 0.

THEOREM 2. Suppose that either set of hypotheses given below is satisfied and
that & = 0. Then either

(@) _sup. (u(?), Pu(t)) = + o0
or
1) u = const.

for every twice continuously differentiable solution u:(— co, 00) - H of the equation

d*u

P__._
dt?

= A(t)u
such that D, S Dp,u(t),u'(t),u"(t)€ Dp and u(t)€ D 4, for all t. Moreover, the
constant in (P) is zero if 1-P, 1-A, and 1-A, below hold :

I-P. P is symmetric and, for all x € Dp, (x, Px) = 0.

I-A;. A(t) = A,(t) + A,(?), where, for each t, A\(t) is symmetric and A, is
skew symmetric.

I-4,. For each t, (x, A,(t)x) > 0 for xe D, x # O.

II-P. P is symmetric and (x, Px) > O for all xe D, and x # 0.

I1-A. Same as 1-A above except that (x, A;x) = 0 for x € D,.

Proof. The proof is straightforward. Let

F(t) = (u, Pu).
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Then, we have, successively,
F'(t) = 2 Re (u,, Pu),
F"(t) = 2 Re (Pu,,, u) + 2(u,, Pu,)
= 2(A,(t)u, u) + 2(u,, Pu,).

Suppose that (f) fails. Using I-P, I-4, and I-A4,, there is a t, with F’(t,)
= 2(u(to), A1(to)u(ty)) > 0 so that (x) holds, by the remarks in the proof of the
first theorem. If (f) holds, then F” = 0 and hence (u, A,u) = 0so that u = 0. If the
second set of hypotheses holds and (f) fails, then F"(t) = (u,, Pu,) > O as u not
constant implies #, # 0 and thus (&) holds.

Remark 5. Note that A4,(¢) played almost no role in the proof and that 4,(t)
was not required to be differentiable.

Remark 6. Condition (x) may be replaced by

=00 <t < o0

t+1
) sup f (u(n), Puln)) dn = +co0.

We also have the following theorem.
THEOREM 3. Let u be a twice continuously differentiable solution to

Pu, = A(tu + F(t,u,u,).

Suppose that P and A satisfy 1-P and 1-A | above and
(i) there is a constant A > O such that for all x€ D 4, and all t, (x, A(t)x)
2 Mx, x);
(ii) there is a constant p (which may depend upon the solution u) such that for
all t,

17 (8w, u)l* < pl(w,, Puy) + (u, Ay ()]

(i) 0 < pu < A
Then either

(o) B 00Sl<1tp< . (u(t), Pu(t)) = + o0
or
G u=0.

Proof. As in the preceding theorem, let F(t) = (u(t), Pu(t)). We find that for
any a > 0,

F'(t) = 2(u, Au) + 2(u,, Pu) + 2(u, )
=2 — po — 1/ad)(u, Au) + (2 — po)(y,, Pu,),
where we have used the estimates
@, PN < ull |71 < (120)]ul® + @27
< (1/230)(u, Au) + (@/2)] 7|12

and condition (ii) of the theorem. We want to choose @ > Osuch that (2 — ux) = 0
and (2 — ua — 1/aAd) > 0. This will be possible provided the intersection of the
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intervals
{o]0 < po < 2}
and
ol — (1 = WAV < por < 1+ (1 — w/AH"?}

is not empty. Since 0 < u/A < 1, this is the case. Therefore F"(t) = C(u, A)(u, A u)
for some positive constant C(u, 1). The remainder of the argument is now routine.

From Theorem 2 we can deduce a sort of Liouville theorem. Let n be a fixed
direction in R", which, since A, = ) 0%/0x} is invariant under rotations, we may
take tobe (0, ---, 0,1). Let D = #2(R""!) be the usual space H*(R"~ 1) consisting
of (the completion of) the set of functions f such that f, f,, and f, ,, are square
integrable foralli,j = 1, ---, n — 1. Let u be a solution of

— Ay, Ay =0,

in R" and suppose, for each x,,, u( -, x,) € D. Then if

u

XnXn

sup J |u(x1a"'axn—1axn)|2dx1 ”'dxn-l < 0,
—0<x,<0w JRn-1
we have u = 0. (The same result, we note in passing, can be proved via Fourier
transform arguments.)
Since the skew symmetric part of A played no role in the determination of a
positive lower bound for F” in Theorems 2 and 3 we could equally well make an
analogous statement for the equation

azu n—1 azu n—1 au
Y SR
where the b;’s are constants. If the b;’s are not constants but functions of x;, - - -, x,,
the second sum should be replaced by
n=l du 1"_! ob,
bi— - :
.;1 lax; * (2 i§1 ox;

In addition, one can even apply the conclusion of Theorem 2 to elliptic
equations of the form (with a; j =aj;

Z b.a (1" 16b) ’

as long as one has, for each x,, a constant M = M(x,) > 0,

n—1

n—1
MY &z ¥ ayx )l 20

ij=1

for all real &,---,¢&,_, and xe R"™ . (In this case the appropriate operator

domain is
n—1 a af 2
o o)

ij=1

D = D(x,) = {fe HY(R"™ 1)

dxl A dxn_.l < OO}.)
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Finally, we remark that our results can be applied to

"l 9 o\lo*u "l @ ou

L,]=
n—1 a3u
C;
,,Z‘ T ox,0x 0%,

under the appropriate “ellipticity” conditions on the matrices (a;;) and (b;)).
Here b(x) = 0 for all xe R"~ ! and we take the C;;, to be constants. In the interest
of brevity, we omit the details.

In conclusion, we note that similar results can be obtained for initial boundary
value problems for the preceding equations which have solutions in the entire
space-time cylinder Q x (— o0, c0), where Q < R" ! is a bounded domain with a
“nice” boundary. It simplifies matters to consider the case u = 0 on 0Q x (— o0, 00)
although certainly similar results follow with “Neuman” data prescribed on part
of 0Q. Again, we omit details.
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the improved and simplified version of the result contained in Remark 3. He
would also like to acknowledge the helpful comments of Professor S. Zaidman
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ASYMPTOTICALLY NEUTRAL FAMILIES IN E3*

D. T. PIELE}

Abstract. Consider a bounded, open, connected region D in E3 with connected complement. For
a sufficiently smooth Lyapunov boundary surface S, we construct an asymptotically neutral family
{Vat>Yn2> "= » Yun}» h = n; > 00, of points on S which, by definition, have the property that the sum
of the potentials due to unit charges placed at {y,;, yn2, -+, Yun} converge (modulo constants C,) to
zero as n = n; — co. Specifically, Z',:=1(1/||x — Ynxll) + C, = 0 uniformly on every compact subset
K < D. The fields corresponding to asymptotically neutral families tend to zero uniformly on every
compact subset K = D, Y _ V[(1/|x — y,,[)] = 0. In the course of the construction we examine:
(i) the equilibrium distribution x on §, j's (u(»)/Ix — yllyde(y) = C, and how the Holder continuous
differentiability of u is related to that of S ; (ii) a proof of the strict positivity of u using a result of E. Hopf;
(iii) an approximation to the integral { _(u(y)/llx — y||) do(y) by a sum of plane integrals each of which is
further approximated by a Gauss-type numerical integration rule. The construction of asymptotically
neutral families for bounded simply connected regions in E2 has been done by Korevaar. New techniques
are developed in this paper to extend the results to E", n = 3.

Introduction. Let D be a bounded, open, connected region in E* with con-
nected complement. For a sufficiently smooth boundary S (specifically, if it has a
local parametric representation with Holder continuous third partial derivatives)
we construct an asymptotically neutral family {y,y, Yoz, -+, Yunj> B = n; > 00, Of
points on S which by definition (see [6]) have the property that the sum of the
potentials due to unit charges placed at {y,y, Yp2, -, Yun} converge (modulo
constants C,) to zero as n = n; — co. Specifically,

" 1
S——
=1 1x = yuell

uniformly on every compact subset K = D. We note that the fields generated by
the asymptotically neutral family tend to zero as n = n; —» oo in D.

The construction begins by taking the well-established equilibrium distribu-
tion u on S (see [4]) and normalizing it on S. Hence,

C,—0

_ u(y) _
[ 1ot =1 and [ Paoty — €

for all x e D.
We next approximate the integral

2 [ M) _ 2
7 J e =

by a sum of potentials of unit charges

)

1
—, y; €S,
Ix — il !

* Received by the editors November 2, 1971, and in revised form April 14, 1972.
t College of Science and Society, The University of Wisconsin, Parkside, Kenosha, Wisconsin
53140.
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by: (i) a careful decomposition of the surface S into patches S; of equal charge;
(ii) transforming the integral over each patch into an appropriate plane integral;
(iii) approximating each plane integral by appropriate values of the integrand
using a Gauss-type numerical integral rule. As necessary steps in this procedure,
we apply a result of E. Hopf (see [3]) to prove that u(y) > 0 everywhere on S.
Also, we use results of N. M. Giinter (see [2]) to demonstrate how the Holder
continuous differentiability of u is related to the same type of smoothness of S.

Asymptotically neutral families are useful in proving theorems which provide
approximations to harmonic functions in D by sums of potentials of unit charges.
For example, let D be a bounded, open, connected region with connected comple-
ment and boundary S which has a well-defined tangent plane at each point. If S
contains an asymptotically neutral family, then for every harmonic function f
in D we can find a family of finite sequences {y,1, Va2, -** > Yun}» B = n; = 0, Of
points on S such that

n

———+ C, > f(x) as n-o ©
k=1 1% = yudll

uniformly on every compact subset of D. This result is proved in [8]. We note as
a consequence, every field (gradient of a harmonic function) can be uniformly
approximated by fields due to unit charges on the boundary.

Results of this type in E* are by-products of much deeper theorems by
J. Korevaar (see [5]) where D is a bounded simply connected region with no restric-
tions on the boundary. New techniques are developed in this paper to construct
asymptotically neutral families on appropriately smooth boundaries S of D in E3.
The methods used here are adaptable to E", n > 3.

1. Notations. We restrict our consideration to E3, the points of which are
denoted by x, y. The Euclidean distance between x and y is denoted by ||x — y]|.
Integrals over 2-dimensional surfaces are denoted by | (-) do, do being the surface
element. Integrals over 3-dimensional regions are denoted by | () dx.

A Lyapunov surface in E* is a closed bounded 2-dimensional surface S
satisfying the following conditions:

(i) At each point of the surface there exists a well-defined tangent plane,
and hence a well-defined normal.

(ii) There exist constants 4 and A, 0 < 4 < 1, such that if 0 is the angle
between the normals at any two points x and y of S, then 0 satisfies a Holder
condition § £ Al|x — y||*.

(iii) There is a constant d such that for all points y of S, the portion of the
surface inside a sphere of radius d about y intersects lines parallel to the normal
at y in at most one point.

From condition (i) we can construct, at each point y of a Lyapunov surface,
a rectangular coordinate system (&, n, {) with the {-axis along the normal to the
surface at y. From condition (iii), the subregion of S contained in a Lyapunov
sphere about y can be represented by a function ®(&,#) over a region A in the
(€> ”)'plane'
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Lyapunov regions are regions bounded by Lyapunov surfaces. For interesting
properties of Lyapunov regions, see Giinter [2].

Let f(&,n), defined in a region A = E% be bounded and possess bounded,
continuous derivatives up to order k,

af
denon™|
t, +t,=t1t=0,1,2,---, k, such that the derivatives of order k are A-Holder
continuous with the same constant A (see [2]). The class of such functions is
denoted by H,(4, 1).

The surface S belongs to the class L,(4, 1), if ®(&, n)e H(A, ), where A and 4
are independent of the choice of y on S. Note Lyapunov surfaces belong to the
class L,(4, 4).

Let u be a function defined on S. If (¢,#, {) are the coordinates of a point y
of S, we may define u on a region A in the (, n)-plane by putting u(&, n) = w(®(&, 1))
= u(y). A function yu defined on S belongs to the class H(A4, 1) if w(&, n)e H(A4, A)
on A, where A and 4 are independent of the choice of y.

El

2. Equilibrium distribution. Let S be a Lyapunov surface, which separates
the bounded region D; and the unbounded region D,. For a continuous function u
on S the single layer potential

s llx =yl

and its normal derivatives at the boundary satisfy well-known properties (see [2]).
Specifically,

(2.1) 0U. _ Ui _ —4nu(y’),

ON, aN
where 0U,/ON, and 0U,/0ON, denote the limits of the directional derivative
0U(x)/ON,., as x approaches y'e€ S from the interior (xe D;) and the exterior
(x € D,) respectively, and

oU; _ cos(y' —y,N,)
22) N = )= [ == )

where N, is the free unit vector in the direction of the outward normal to S at y’
and (y' — y, N, is the angle between N, and the vector y’ — y.
The equilibrium distribution g, defined by the condition

uy)
sllx = yll

da(y) = C

for xe Dy, is established by setting dU,;/0N,. = 0 in (2.2) and solving the resulting
homogeneous integral equation

2.3) uy) = L r()K(y, y) da(y) = 0,
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where

’ COS(y( - Ny’)
K , = - -
. 2nlly’ — yi?

(The condition 0U /0N, = 0 for all y’ € S is sufficient to imply that U is a constant
in D;; see [2]). A continuous solution to (2.3) is given in Kellogg [4], where S has a
continuous curvature, and in Giinter [2], where S satisfies the Lyapunov conditions.

It is natural to expect that the continuous equilibrium distribution y will
reflect in some manner the boundary S. For example, if S is the unit sphere, we
would expect, and indeed it is the case, that the normalized distribution is the
uniform distribution u(y) = n/4. Generally, if S is a sufficiently smooth surface,
itis reasonable to expect that u(y) willinherit corresponding smoothness properties.
One of the first results of this type is due to Korn [7].

LEMMA 1. If S is a Lyapunov surface and ¢ a continuous function on S, then

o) = fs SOIK(, x)do(y)

satisfies a uniform Hélder condition on S.

Korn further proved the following lemma.

LEMMA 2. If S is a Lyapunov surface and ¢ is a Holder continuous function on S,
then the derivative of @ is Holder continuous.

Applying these two results to the continuous solution u of (2.3) shows that u
is in fact Holder continuously differentiable. Giinter [2] shows, more generally,
that the following lemma holds.

LEMMA 3. If Se L(B, A) and ¢ € H,_,(A,A) on S, then ®e H,_ (cA, A) on S,
where A’ is an arbitrary positive number satisfying 2’ < A and c¢ depends only on B
and A'.

Applying a “boot-strap” operation further, we obtain the following relation-
ship between the Holder continuous differentiability of S and .

THEOREM 1. If S€ L,(B, A) and u(y) is the (continuous) equilibrium distribution
on S, then ue H,_(A',A') for any ' < A.

To establish the strict positivity of the equilibrium distribution u, we shall
apply the following theorem of E. Hopf [3]—specialized to our situation.

Let R denote a connected open set in E, n = 3, and y denote a point on the
boundary dR. Assume that OR has the property that R contains a hypersphere H
centered in R and touching R only at y.

THEOREM 2. Suppose u is harmonic and u < 0 in D, with lim u(x) = u(y) = 0 as
x — y along the normal (x € D,). Then either the normal lower derivative (directed
inward)

Wi " =M
ON — y-—x

(Where x — y as before) or u = 0in D,.
We shall need the following.
LEMMA 4. The equilibrium distribution u is strictly positive.
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Proof. By definition, the equilibrium potential U satisfies 0U;/ON, = 0, from
which we derive (see [2]) 0U,/ON, = —4nu(y). Hence, it is sufficient to show
0U,/0N, < 0 for ye S. We assume, without loss of generality, U(x) = ¢ > 0 for
x € D;. Apply the maximum principle to the exterior region D, to observe U(x) < ¢
for xe D,. Define u = U — c. Wehave u =0on S and u <0 in D,. Let y be a
point in the boundary surface S. The Lyapunov conditions on S are sufficient
conditions for S to apply Theorem 2. Differentiating u = U — ¢ in the opposite
(outward normal) direction,

ou ou
ON,  ON

y y
Since 0U /0N, exist for all ye S, a simple application of the mean value theorem
establishes the equality
oU . Ux)y—Uy) .. oU . ou
—_—— = l —_— = l _ ) = l —_— =
ON, o5 x - y ‘maNy(x) xl—I}laNy(x)
where x — y along the normal N, and x’ lies on N, between x and y. We conclude
0U,/0N, < 0 and hence p > 0.

3. Partitioning the boundary. We now discuss the partitioning of the surface
S into patches of equal charge. The standing assumptions are: (i) S is a Lyapunov
surface with associated sphere of radius d, where Ad* < % (ii) the equilibrium
distribution y is continuous and normalized such that [ udo = 1.

Denote the intersection of the compact surface S and a finite covering of S
with open spheres of radius d/2 by S,,S,, ---, S,,. The surface patch §; can be
represented by { = @ (¢, ) on a domain A;. In fact, @ ; may be defined in a disk
about the origin of radius (7/9)d, while A; is contained in the disk of radius d/2
(see [2, p. 3]). Redefine the surface patches S;, j=1,2,---, m, to make them
nonoverlapping and share at most a common boundary. Let ¢; be the charge on
each patch §;, ¢; = fs,. udo. We have

< 0.

oU,
oN,’

y

VB

cjzjudo=1.
N

Since u is continuous on S and we have the freedom to expand or contract our
domain of definition of S;, we may assume without loss of generality that c; is

j=1

rational for j = 1,2, .-+, m. Write ¢; = pj;/I, where [ is the least common multiple
of the denominators of ¢;, j = 1,2, - -+, m. The charge on each patch §; is given
by
(1) pilt = [ wdo = [ wen T+ 07 + 07, dzan,

S; Aj

where ®@; ; and ®@; , denote the partial derivatives of ®; with respect to ¢ and 7,
respectively. We introduce a transformation Y from the (&, #)-plane to the (u, v)-
plane given by

v=rn,
. &
T'{u(é, n = fo 1+ ©2,(x,m) + ©2,(x, nu(x, ) dx.
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The Jacobian of this transformation has the value:
o(u, v

5(5’ ” = uél)" — unvé = mﬂ(és '7)

We can express (3.1) as | A du dv, where YA is the image of A; under the trans-
formation Y. Let A(YA)) denote the area YA ;. We then have A(YA)) = p;/L

Notice that the transformation Y is nonsingular since u > 0 (Lemma 3).
If we divide YA; into regions of equal area in the (u,v)-plane and map these
regions onto the surface S via the map ®;o Y~ ', we shall obtain a decomposition
of the surface patch §; into regions of equal charge, exactly as desired.

For each integer n we divide YA; into pjn2 regions, each of area 1/In?, by
constructing a mesh, with sides parallel to the (u, v)-axes adistance« = 1/,/Inapart,
over the area YA, LetQ;,,i = 1,2, ---, N;, denote the squares of the mesh which
lie inside YA; and have a distance 2« to the boundary of YA, Let I,
i = 1,2,---, M, denote the remaining squares and partial squares contained in
YA;. Form the unions

~

~

Clearly,
QUI =TYA;, AQ)+ A(IL) = AYA), AQ;) =o?,
A(Hj,l) é az,

where A is used to denote area.

Since the boundary of YA; is rectifiable, the number M ; of squares of the
mesh in I1;, which have a distance <o to the boundary,is O(n), M; = O(n)[5, p.460].
The number N; of squares in Q; is of order n*, N; = O(n?). Clearly A(Q)) = No*
and A(IT) = A(YA)) — AQ) = p;/l — N> = (pjn® — Na® = L;a’, where L; is
the integer p;-n*> — N;. Note that L; < M.

Decompose IT; into 4L; regions of equal area «?/4 and denote them by IT) ;.
Since the distance between the boundary of YA; and Q; is >a, a decomposition
can be easily made such that the diameters of IT;; are O(x) = O(1/n), i = 1,2,
oo 4L

Su;nmarizing, we have decomposed the plane region YA into N squares of
area 1/In* and 4L; regions of area 1/4In* with diameters O(1/n). Also, N; = O(n?),
L;=0(m),L;+ N;=pn*and [, dudv = pjl.

4. Numerical integration. In this section we develop, for use in § 5, sufficient
numerical integration rules to approximate integrals over the square regions Q;;
and the irregular regions IT/ ;.

In one dimension, a two-point Gauss numerical integration rule is exact for
polynomials of degree <3 [1, p. 35]. For the class of twice differentiable functions
with A-Holder continuous second derivatives, the error term

b —
B = [ sy =50 + s
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for the two-point Gauss integration rule is of order O(b — a)*>**. This can be seen
by expanding f(x) in the Taylor expansion,

J(x) = flxo) + (x — xo) f'(x0) + 3(x — x0)*f"(x) + O(x — x0)***.

The product of two 1-dimensional Gauss integration rules gives a four-point
numerical integration rule which is exact for polynomials p(x, y) of degree <3
in x and y separately. Again, an estimation of the error term, E(f), for a class of
functions in two variables can be carried out through a Taylor expansion of f.
As a result, for the class of twice differentiable functions with A-Holder continuous
second derivatives, 0 < 4 < 1,

O T ) + Sy

+/(x2,y1) +f(x2,2)] + E(f),

f f " fey) dx dy =

where E(f) = O(b — a)***.

Let B be a bounded region with diameter O(5) and area 6. Consider the
class of functions f (x, y) defined in the convex hull of B which are twice continuously
differentiable with uniformly bounded second partial derivatives. Expanding
f(x,y)in a Taylor series about (x,, yo) we obtain

j fx, ) dx dy = 8% (xo. o) + O(6%),
B
where

__[Bxdxdy __[Bydxdy
~ (odxdy’ Yo = dxdy
B B

This particular choice of x, and y, eliminates the 63 term.

X0

5. Construction of an asymptotically neutral family. In this section we construct
an asymptotically neutral family of points on S when Se E,(B, 1), k = 3, i.e., we
shall construct a family of finite sequences {y,;, Vn2, = » Ymn}> 1 = n; > 0, of

points on S such that
" 1
— 4+ C,—>0
k=1 1% = Yuell

uniformly on every compact subset K < D.
For each compact subset K, let %, denote the family of functions
! € K}
, X .
X — Y&, v), n(u, V)
The differentiability of F as a function ofu and vis determined by the differentiability
of the surface S and the equilibrium distribution u. For example, if Se Ly(B, 1),

F(u, v)is in the class H,_;(4’, A”) (see Theorem 1). Furthermore, since K is bounded
away from the surface S, there exist constants A” and A” such that

F(u,v)e H,_,(A",2") forall F in %.

{F(u,v) =
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We begin our construction with the normalized equilibrium distribution p
which satisfies

(5.1) f H(y) do(y) = 1,
S

and

(52) W=C
r—

for all x e D. Use the surface decomposition of § 3 to rewrite (5.2) as

M) _
(5.3) Z ST =l da(y) = C.

Transform each surface integral in (5.3) to a plane integral with the transformation
®;0 Y~ ! discussed in § 3. Accordingly,

uy) 1
. = dudv.
G4 5, Tx — y1 %V LMh—m@mmﬂmMHuv

Decompose YA; into N; squares of area o> = 1/In* and 4L; bounded regions of
area a%/4 (see § 3), where N ;= o(n?, L ; = O(n). Partition the integral (5.4) and
write it as

Ny 4L,
(5.5) F(u,v)dudv =Y, F(u,v)dudv + Y, F(u,v)dudv.
YA, i=1J0;, i=1Jmy,

To each integral jn F(u,vydudv we apply the four-point Gauss numerical
integration rule (§ 4) w1th F(u,v)e Hy(A", 1") to obtain

j Fu,v)dudv =
Qji
(5.6)

1
——[Fuy,v,) + F(uy,v) + Flup,vy) + Flup, 05)] + 0(—:::7)~
4in n

To each integral -[H} , F(u, v) du dv we apply the center of mass rule

1 1
5.7 Fu,v)dudv = —F(u,, —|.
(5.7) (u, v) du dv TP (uo vo)+0(n4)

I, l

Note. Although it is not indicated, the four points used in (5.6) and the point
in (5.7) depend on Q;; and IT}; respectively. Denote the corresponding points on
the surface S; by y;i1, Vji.25 Yj.i,35 Viia a0d yj 0.

CLAM. The family

I Cs

N;j 4Lj
{ U {yj,i,l,"‘ »yj,i,4} uu {}’j,i,o}}
i=1 i=1

j=1

is an asymptotically neutral family for D.
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Proof. Multiply both sides of (5.6) and (5.7) by 4In?. The error terms are now
of order O(1/n*>*%) and O(1/n?), respectively.
Sumoveri=1,2,---,Njandi=1,2,---,4L;:

J

5 N; Ny 1
4ln Fu,v)dudv = Y ———
igl Q. i;I X = yjixl
(5.8)
+ ! + ! + + O(N;/n***)
lx — ,Vj,i,z” llx — yj,i,3|| l[x — yj,i,4” J ’
4L; 4L; 1
(5.9 4in? Y, F(u,v)dudv = Y, + O(L;/n?).
i=1J1,; =11 = yjioll

Substitute (5.8) and (5.9) into (5.5), combine the error terms using N; = O(n?)
and L; = O(n), and sum over j = 1,2, ---, m, to conclude

m Nj 1 1 1
2, {Z N *

i=1llx — Vi lx — yj,i,z“ x — yj,i,3”

1 4L; 1 m
+ z } = 4Ip? Z F(u, v) du dv

x — yj,i,4|| i=1llx — yj,i,O” i=1J7A;
+ 0(1/n*) = 4ln>C + O(1/n%).

Note that the error term is uniform for x in K.
For integer n we abbreviate the sum in (5.10) to

Nn 1

)

v=1 “x - yv”
Define C, = —4In*C and let n —» o in (5.10) to conclude

Ny 1
(5.11) —+C,—»0 as n- 0.
vgl "x - yv"

Since the error term, O(1/n%), is uniform for x € K, the convergence in (5.11) is
likewise uniform.
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PROPERTIES OF SOLUTIONS OF u” + c(t)f(w)h(u’) = 0
WITH EXPLICIT INITIAL CONDITIONS*

C. M. PETTY?t anp W. E. JOHNSON}

Abstract. Conditions are stated, determining the behavior of a solution of the nonlinear equation
mentioned in the title, which are expressed wholly and explicitly in terms of the initial conditions and
the given functions h(s), f(s) and ¢(¢). Avoiding a priori assumptions that a solution is proper or possesses
some other property, the results illuminate the variety of behavior which can exist for a single equation
under various initial conditions. The basic restrictions imposed here on the defining functions are that
h(s) and ¢(t) have constant sign and sf(s) > O for s # 0. The method of proof for some of the results
involves the introduction of two Lyapunov functions which do not require that ¢(t) be monotone.

1. Introduction. The differential equation in the multiplicative form
(1.1) u" + ct)f(whw) =0

has been previously studied in the papers [2], (3], [4], (7], (9], [12], [14], [15],
[171-[201, [22]. An extensive bibliography of papers dealing with equations of a
related type can be found in [21].

In part, we generalize here some of the known results. However, the major
emphasis is placed on the determination of the behavior of a solution from its
initial conditions. This aspect of the theory, which is important in applications,
has been relatively neglected for this equation.

We assume that the functions defining the differential equation (1.1) satisfy
the following conditions:

(i) h(s) is positive and continuous for all real s;

(i) f(s) is continuous for all real s and sf(s) > 0 if s # 0;

(iii) c(t) is continuous for all ¢t = t,.

We shall adhere to the following terminology and notation throughout this
paper. If u(t) is a solution of (1.1) with initial conditions at ¢t,,t; = t,, then [t,, T)
will denote the maximum interval to the right on which u(t) is defined. The con-
ditions (i), (ii), (iii) ensure that this interval exists. The solution is said to be proper
or nonproper as T = oo or T < oo, respectively. The solution is said to be
oscillatory if it has an infinite number of zeros exceeding t;, whether or not it is
proper. The solution is said to be positive if it is ultimately positive, whether or
not it is proper. Finally, we define the functions

t t t
It) = J h™(z) dr, H(t) = f th~ (1) dr, F(t) = J f()dr.
0 0 0
We observe that results for negative solutions may be obtained from those for
positive solutions by considering
(1.2) u" + c(t)f*wh*w') =0,
where f*(s) = —f(—s), h*(s) = h(—3s).

* Received by the editors October 21, 1971, and in revised form February 8, 1972.
t Department of Mathematics, University of Missouri, Columbia, Missouri 65201.
} Lockheed Palo Alto Research Laboratory, Palo Alto, California 94304.
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As a point of reference, the reader may wish to apply some of the results
proved here to the much-studied u” + c(t)lu" sgn u = 0 and, as a special case, to
the Emden—Fowler equation for which ¢(f) = +1° (see [1, Chap. 7]).

2. Positive solutions. In this section we restrict our study to solutions u(¢)
with initial conditions

(2.1) u(ty) =oa, u(t)=24,, «a=20, =20, a+ >0,
for the differential equation

(22 u” — c(t)f(wh(w) = 0,

where

(iv) c(t) is positive and continuous for ¢t = t,.

Positive solutions to (2.1) which satisfy & > 0 and § < 0 have been studied in
great detail elsewhere, for example, [16] where other references are given.

LEMMA 1. Suppose conditions (i), (ii), (iv) are satisfied and u(t) is a solution of
(2.2) with initial conditions (2.1). Then u(t) is of one of the following four types:

Nonproper positive solutions, T < oo :

Type 1. u(t) > k,u'(t) > coast > T,a < k < o0.
Type 2. u(t) > oo, u'(t) > 0 ast - T.
Proper positive solutions, T = c0:
Type 3. u(t) — oo, u'(t) > 00 ast — co.
Type 4. u(t) - o, u'(t) > k ast » o0, f < k < 0.

Proof. A proof is obtained in a straightforward way by consideration of the
various possibilities under the conditions (i), (ii) and (iv). Consequently, the
details are omitted.

We shall give various conditions under which each of the four types is obtained.
Throughout the remainder of this section, if H(co) = oo we denote the inverse of
H(t),t = 0, by G(s),s = 0. '

LEMMA 2. Suppose conditions (i), (ii), (iv) are satisfied and let u(t) be a solution
of (2.2) with initial conditions (2.1).

(a) If H(oo) < o0, F(o0) = oo, then u(t) is of Type 1, 3, or 4.

(b) If H(o0) = oo, then u(t) is of Type 2, 3, or 4.

(c) If H(0) = o0 and

J‘ * dv o
1 G(kF(x))
Sor all k > 0, then u(t) is of Type 3 or 4.

Proof. Assume u(t) is of Type 1 or 2 and let 0 < k; < c(t) £ k, < o0 on
[ty, T]. Set V(t) = HW'(t)) — k;F(u(t)),t,; <t < T. Then Vi(t) 2 0,V5(t) <0 on
[t,, T) and the proofs of (a), (b) are obtained from this.

To prove (c) we may assume o > 0. Suppose u(t) is of Type 2 on [t,, T) and
c(t)y <k, on [ty,T]. Let k = max {k,, HB)F ~(«)}. Then, if V(t) = H(u'(t))
— kF(u(t)), we have V(t) < 0 on [t,, T) and consequently

® d
f = =T-—1t,,
. GkF(7))
giving a contradiction. This completes the proof of Lemma 2.
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Throughout the remainder of this paper, certain integrals need to be inter-
preted as Lebesgue integrals.

Let a(t), b(t) be any functions which are absolutely continuous on every
compact interval in [¢,, c0) and let u(t) be a solution to (2.2) with initial conditions
(2.1). From (2.2) we obtain for ¢, <t < T,

H(u'(t) — H(B) = a(©)F(u(t)) — a(t)F(e) — f a'(t)F(u(r)) dt
(2.3) "

+ f (D) f () [elx) — a(0)]d,

I(w'(t)) — 1(B) = b(t)F(u(t)) — b(t,)F(a) — f b'(1)F(u(r)) dt
(2.4) "

+ f @) [c(r) — u'(x)b(r)] d.

We shall frequently use functions a(t) such that 0 < a(t) < c(¢),a'(t) < 0 for
t = t,. All such functions may be constructed as follows. Let g(t) be absolutely
continuous on every compact interval in [t,,0) and 0 < g(t) < c(t). Define
g1(t) = min [0, —g(t)/g(t)] and set

t
(2.5 a(t) = g(t) exp ( f g1(v) dr), 2t
ty
LeMMA 3. Suppose conditions (i), (ii), (iv) are satisfied and let a(t) be given by
(2.5). If u(t) is a solution of (2.2) with initial conditions (2.1) and q(t) is absolutely
continuous on every compact interval in [t;, T) with 0 < g(t) < u(t), then, for
t, St<T,
(@) w()(w'(e) — 1(B)] = a(t)[F(u()) — F(ot)]
(b) Hw'(t)) — H(B) z a(t,)[F(q(ty) — F(@)] + [, q(va(t)f(q(x)) dz.
Proof. Since u'(f) > O on (t;, T) it is sufﬁment to prove the first inequality for
B > 0. Set b(t) = a(t)/u'(t). Then since b'(t) < 0 and F(s) is increasing for s = 0 the
first inequality follows from (2.4), where the last integral is discarded and the
inequality F(u(t)) = F(«) is used in the remaining integral.
The proof of the second inequality is obtained from (2.3) by omitting the last
term, using the monotonicity of F(s) and applying integration by parts.
THEOREM 1. Suppose conditions (i), (ii), (iv) are satisfied and u(t) is a solution of
(2.2) with initial conditions (2.1).
(@) If for some a(t) given by (2.5),

H(co) — H(B) < B f a0 f (B — 1) + ) dr < o0,

then u(t) is of Type 1 or 2. If, in addition, F(c0) = oo, then u(t) is of Type 1.
(b) If there exists k > 0 such that c(t) = k for t = t, and
H(o0) — H(p) < k[F(0) — F(o)] = 0,
then u(t) is of Type 1.
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(c) If for some a(t) given by (2.5), BI(B) = a(t,)F(x) and

I(oo)f F() J a(t)dr < o0,

then u(t) is of Type 1 if H(o0) < oo and of Type 2 if H(o0) =
(d) If f(s) is nondecreasing for s = 0 and

I(e0) — 1) < f " ) f (B - 1) + ) dr < o,

ty

then u(t) is of Type 1 if H(c0) < oo and of Type 2 if H(0) =
(e) If there exists k >0 such that c(t) 2 k for t = t,, H(o0) = oo, H(f)
= kF(a) and

f . GkF()~ ™

then u(t) is of Type 2.

Proof. Since u(t) is a convex function on [t;, T), u(t) = B(t — t,) + a, for
t, <t < T.To prove (a), we apply Lemma 3 with q(t) = (t — t,) + a and use the
fact that H(s) is increasing for s = 0. The second sentence in (a) follows from
Lemma 2(a).

The proof of (b) is obtained directly from (2.3) with a(t) = k.

The constraints in (c) imply, by use of Lemma 3(a), that u(?) is not of Type 3
or 4. The proof of (c) is then obtained from Lemma 2 since F(c0) = oo in this case.

The proof of (d) is obtained directly from (2.4) with b(t) = 0 and the use of
Lemma 2.

To prove part (e), we may assume a > 0. Then the result follows from Lemma
2(b) and the use of (2.3) with a(t) = k. This completes the proof.

The following theorem yields the solution type independent of particular
initial conditions (2.1). We first list some conditions:

A. There exists a(t) given by (2.5) and defined on [t,, o) such that

f a(t)f(kt)dt = o
to
for all k > 0.

B. For some a(t) given by (2.5) over [t,, o),

@ ® dz
a(t)dr = oo, — < 0.
J:o () 1 F(t)

C. The function f(s) is nondecreasing for s = 0 and

on c(t)f(kt)dt = ©

to

for all k > 0.
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D. There exists k, > 0 such that c(t) = k, for ¢t = t,, H(c0) = oo and for all
k>0,

, GkF() =%

THEOREM 2. Suppose conditions (i), (ii), (iv) are satisfied and u(t) is a solution of
(2.2) with initial conditions (2.1).

(a) If H(0) < o0 and at least one of the conditions A, B, or C holds, then u(t)
is of Type 1.

(b) If D holds, then u(t) is of Type 2. If B or C holds and H(o0) = o0, I{o0) < 0,
then u(t) is of Type 2.

(c) IfH(o0) = oo and either A or C holds, then u(t) is of Type 2 or 3.

Proof. Since a(t) is nonincreasing, condition A implies that F(oo) = oco. If
u(t) is of Type 3 or 4, then there exists k > 0 such that u(t) > kt for all sufficiently
large t. The proof of (a) and (c) for condition A now follows from Lemmas 2 and
3(b) since we may construct g(t) with q(¢) = kt for all sufficiently large ¢.

To prove (a) and (b) for condition B we may assume that « > 0, § > 0. Then
the proof is obtained from Theorem 1(c) since a(t) may be replaced by Aa(r),
0<i1=1.

The proof of (a) and (b) from condition C is obtained from Theorem 1(d)
since we may assume that § > 0. The proof of (c) from condition C is obtained
from Lemma 2(b) and (2.4) with b(t) = 0.

To prove (b) from condition D we may again assume that o > 0,8 > 0.
Choose k, kg = k > 0, such that H(f) = kF(«). Then the proof is obtained from
Theorem 1(e). This completes the proof.

THEOREM 3. Suppose conditions (i), (ii), (iv) are satisfied, H(oc0) = oo, and there
exist positive constants p, r such that G(t) = pt',t = 0, and

© dr <
. For =%

Let u(t) be a solution of (2.2) with initial conditions (2.1).
(@) If for some a(t) given by (2.5), H(f) = a(t,)F(x) and

2.6 f a(t)]" dt £ o0,
26) Ry <P s
then u(t) is of Type 2.
(b) Either u(t) is of Type 2 or u(t) is proper (Type 3 or 4) and for any given a(t)
expressed by (2.5),

Joirer e[ wore
for all sufficiently large t.

Proof. By Lemma 2(b), u(t) is of Type 2, 3, or 4. To prove (a) we shall show that
T < 0. A slight modification of the proof is needed if the hypothesis in (a) is valid
for « =0. By (2.3), Hu'(t)) = a(t)F(u(t)) for t, <t < T. Consequently u'(f)
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2 Gla(OF(u(t))) 2 pla(t))[F(w)])" and

*® dt T "
2.7) J FoT = pf“ la(t)] dt

and T < co. The inequality (2.7) gives an upper bound for T.

To prove (b) one may assume that« > 0, f > 0 and that u(¢) is of Type 3 or 4.
It follows from (a) that a(t) — 0 as t —» oo since otherwise a(f) may be replaced by
Aa(t),0 < A £ 1, to obtain H(B) = a(t,)F(x) while (2.6) remains valid. Conse-
quently, from (2.3), neglecting the second integral and replacing F(u(t)) by F(a) in
the first integral, it follows that H(u'(t)) — a(t)F(u(t)) = O for all sufficiently large ¢.
The result (b) is now obtained by the procedure used in the proof of (a).

Remark. Under the hypothesis of Theorem 3, one can choose positive a, f§
such that not only is u(t) of Type 2 but also such that the interval [¢,, T)is arbitrarily
small. One first chooses o sufficiently large so that both (2.6) and (2.7) are satisfied
with T — ¢, as small as desired. Then, since H(c0) = oo, one can choose ff such that
H(p) = a(t,)F(x). Consequently, Theorem 3(a) generalizes Theorem 1 in [5].
Theorem 3(b) does not wholly conform to our announced intentions since the
integral inequality involves the solution itself. Since this inequality places a
constraint on the growth of a solution of Type 3 or 4, to conclude that a solution is
actually of Type 2 we need a constraint from below. There is always available
u(t) = kt for sufficiently large ¢. This is valid for some k > 0 for Type 4 and for all
k > 0 for Type 3.

THEOREM 4. Suppose (1), (ii), (iv) are satisfied and there exist positive constants
ki, k, such that k, < h(s) < k, for s = 0. Then

© dr
(2.8) j ¥ okl

is a necessary and sufficient condition that all positive solutions of (2.2) be proper.

Proof. The hypothesis implies that there exist positive constants p,, p, such
that p,t'/? < G(t) £ p,t'/?. Since the only nonproper positive solutions must be
of Type 1 or 2, the sufficiency follows from Lemma 2(c) and the necessity follows
from Theorem 3(a) and the first part of the remark following this theorem.
Positive decreasing solutions are not covered by our initial conditions (2.1), but
such solutions are always proper.

Theorem 4 may be compared to Theorem 3 in [5], which considers a more
general equation, and may be obtained from the latter if f(s), s = 0, is increasing.

COROLLARY 1. If the hypotheses of Theorem 2(c) and Theorem 4 are valid and
(2.8) is satisfied, then the solution u(t) is of Type 3.

We conclude the study in this section by giving conditions under which the
solution is of Type 4.

THEOREM 5. Suppose (i), (ii), (iv) are satisfied and u(t) is a solution to (2.2) with
initial conditions (2.1). If either of the following conditions (a) or (b) is satisfied, then
u(t) is of Type 4.

(@) The function c(t) < k, t = t,, and k[F(c0) — F(a)] < H(c0) — H(f) < o0.
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(b) The function f(s) is nondecreasing for s = 0 and there exists K > 0 such
that

I(B) + on c(r) f(K(t — ty) + o) dr < I(K).

ty

Proof. To prove the result from (a), set a(t) = kin(2.3). Thenfort, <t < Twe
have H(u'(t)) — H(B) < k[F(u(t)) — F(@)] < k[F(o0) — F(2)] < H(o0) — H(B) and
it follows that u(t) is of Type 4.

To prove the result from (b), define T; = sup {t:t =2 t,,u(t) < K}, T, = T.
Fort; <t < T;,u(t) £ K(t — t;) + o and by (2.4) with b(t) = 0 we have

MM%J@§JdWMh—m+wM

ty

Consequently, limu'(t) < K as t — T; and therefore T; = T = oo and u(t) is of
Type 4.
Remark. From condition (b) and (2.4), it follows that

mw=m—fmmmm,

t

where e = limu/(t) as t > o0, f < e < K. By L’Hospital’s rule we may write
u(t) = tle + ¢(t)) for t > max(0,t,), where ¢(t) >0 as t - oco. For h(s) = 1,
s = 0, we obtain the estimate

() <t ! [loc — ety + f fw c)f(K(t — t;) + o) dt ds:I .

where, by L’Hospital’s rule, the estimate tends to zero as t — co.

3. Oscillation and nonoscillation. In this section we shall study the behavior
of the solutions to (1.1) subject to (i), (ii) and

(v) c(t) is positive and absolutely continuous on every compact interval in
[tO, OO)

Under these conditions we first develop some preliminary tools. Let

g1(t) = min [0, —c'()/c(0)],
g(t) = max [0, —c'(t)/c(1)].

Given t; = t,, we define (j = 1,2)

t
aj(t) = c(t) exp (f gi(v) dr) .
ty
Then aj(t) £ 0 Z aj(t)fort = t,. Set (j = 1, 2)
k; = limaft), K;=exp (f g1 dr).
t— t

Then0 < k; < 0,0 <k, £ 0,0 £ K; £ 1< K, £ w.Weobservethatk, < k,
with equality if and only if ¢(¢) is a positive constant on [t,, 00).
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Let u(t) be a solution to (1.1) defined on [¢,, T). We define (j = 1,2)
V{t) = aft)F(u(t)) + H(u'(t)) exp (f gi(v) dr) .

Then Vi(t) £ 0 < V5(t) on [t;, T) and V(t) > 0,j = 1,2, unless u(t) = u'(t) = 0.
It follows that if some t,,t; < t, < T,u(t,) = u'(t,) = 0, then u(t) = 0 for all
t = t,. Consequently, the zeros of a nontrivial solution are discrete.

Similar Lyapunov functions have been applied to (1.1), e.g., [14] and [18], but,
in general, their applicability is restricted to monotone c(t).

LEMMA 4. Suppose conditions (i), (ii), (v) are satisfied and u(t) is a solution to
(1.1) on [ty, T). Then u(t) is of one of the following types:

Proper solutions, T = o

A. Nonoscillatory.

Type 5. (a) u(t) > oo,u'(t) > b > 0,t —> 0.
(b) u(t) > —oo,u'(t) > b < 0,t — o0.
Type 6. (a) u(t) > oo, u'(t) > 0+,t - 0.
(b) u(t) > —oo, u'(t) > 0—,t — 0.
Type 1. (a) u(t)>a > 0,u'(t) > 0+,t > 0.
() u(t) > a<0,u(t) >0—,t > oo.
B. Oscillatory.
Type 8. (a) u(t) and u'(t) are bounded.
(b) u(t) or u'(t) is unbounded.
Nonproper solutions, T < o
Type 9. (a) u(t) »>a > 0,u'(t)> —oo,t > T.
(b) ut) > a <0,u'(t) > co,t > T.
Type 10. (a) u(t) > 0+, u'(t) > —o0,t > T.
(b) u(t) > 0—,u'(t) > oo, t > T.

Proof. The proof is straightforward except, possibly, for the nonexistence of
oscillatory nonproper solutions. Suppose u(t) is an oscillatory nonproper solution
on[t;, T), T < oco. By the above remarks, u(t) has a denumerable number of zeros
which converge to T and on which #/(t) is unbounded. For otherwise, u'(t) would be
bounded on [t;, T) and the interval would not be maximal. Since V(t) is non-
increasing on [t,, T) it follows from comments just stated that lim V,(f) > 0 as
t - T and consequently

0 < k = lim Vj(t)/exp (Jq 2.0 d’C)
t—-T

ty

= lim [c(0)F(u(t)) + H(u'(1))).

By considering the two subsequences of the zeros of u(t) at which u/(t) is positive
and negative respectively, we have k < min [H(c0), H(— o0)]. Now since c(t) is
bounded away from zero on [t,, T], by considering a sequence of relative maxima
of u(t) we have limsupu(f) = a > 0 as t - T. Let {t;} be an increasing sequence
such thatt; -» Tand u(t;) = a/2. Then lim H(u'(t;)) = k — ¢(T)F(a/2) < min [H(c0),
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H(— c0)]. Therefore, the sequence {|u'(t;)|} is bounded. But this is inconsistent with
lim sup u(t) = a. This completes the proof.
With initial conditions u(t,) = a, u'(t;) = S we set

V=ct)F@ + HPB), V=VWlt)="Vt).

LeMMA 5. Suppose conditions (i), (i), (v) are satisfied and u(t) is a solution to
(1.1) with initial conditions at t,,t, = to. If either H(—o0) = o0 or K, > 0 and
V < K H(— ), then u(t) is not of Type 9(a) or 10(a). If either H(co) = o0 or
K, > 0and V < K,H(0), then u(t) is not of Type 9(b) or 10(b).

Proof. Suppose u(t) is a nonproper solution on [t,, T). By considering V,(t),
t; £t < T, we obtain

T

V 2 H(u'(¢)) exp U g4(v) df) 2 Hw (1)K,

1

and the proof follows from this inequality.

The importance of the condition H(co) = H(—o0) = oo in connection with
the continuation of all solutions has been emphasized in [4]. This is also seen in
Theorem 6 below.

The initial conditions u(t;) = o, #'(t;) = f for a nontrivial solution u(t) may
be partitioned into 4 cases, viz.: Case .o 2 0, > 0. Case2.a > 0, B < 0. Case 3.
2 <0,8<0.Cased. o <0,8=0.Fort, t; £t < T,it will be convenient also to
speak of the pair u(t), u'(t) as belonging to one of these four cases.

We note, for t; <t < T, the relation

(3.1) 168) — 10(0) = f (o) (u(x) d.

t

THEOREM 6. Suppose conditions (i), (ii), (v) are satisfied. Let u(t) be a nontrivial
solution of (1.1) with initial conditions at t,,t, = t,, and suppose0 < k; < k, < o0,
where k,, k,, K, K, are as previously defined.

(@) If the initial conditions correspond to case j (as mentioned preceding the
theorem), then a test for the type of u(t) is obtained by starting with statement (j)
(as numbered below), and continuing cyclically, when permitted, until the first valid
hypothesis is encountered.

(1) If V > k,F(c0), then u(t) is of Type 5(a). If V = k,F(o0), then u(t) is of
Type 5(a) or 6(a) as k; < k, or ky = k, respectively. If V < k,F(c0) continue to (2).

(2) If V > K,H(— ), then u(t) is of Type 9(a). If V = K,H(— ), then
u(t) is of Type 9(a) or 10(a). In particular, if V = K,H(— ), u(t) is of Type 9(a)
unless K, = 1 and c(t) is constant on an interval which includes [t , T), in which case
u(t) is of Type 10(a). If V < K,H(— o0) continue to (3).

3) If V > k,F(— ), then u(t) is of Type 5(b). If V = k,F(—c0), then
u(t) is of Type 5(b) or 6(b) as k, < k, or k, = k, respectively. If V < k,F(— o0)
continue to (4).

(4) IfV > K,H(0), thenu(t) is of Type 9(b). If V = K,H(0), thenu(t)is of
Type 9(b) or 10(b). In particular, if V = K,H(o0), u(t) is of Type 9(b) unless K, = 1
and (1) is constant on an interval which includes [t,, T), in which case u(t) is of
Type 10(b). If V < K,H(o0) continue to (1).
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(b) If V < min [k,F(o0), K;H(— ), k;F(—00), K;H(0)] < o0, then u(t) is
of Type 8(a).

Proof. The condition 0 < k; < k, < oo implies that ¢(t) tends to a positive
constant as t - o0 and 0 < K; < 1 £ K, < o. Consequently, by (3.1), there is
no solution of Type 7(a) or 7(b).

Suppose that for some t,t = t,, the pair u(t), ¥'(t) corresponds to Case 1. If
V = k,F(o0), then by studying V,(t) one concludes that the solution remains in
Case 1 for all larger values of t. Consequently, the solution is of Type 5(a) or 6(a).
Again, if V = k,F(o0) and if u(t) is of Type 6(a), then it follows from V%(t) = 0 and

V=Vt = V() £ Vy(0) = kyF(o0) = V

that V,(t) = V = k,F(c0) for all t = t,. This implies, by the expressions for the
derivatives of a,(t) and V,(t), that c(t) is constant on [¢,, c0) and therefore k, = k,.
Also, if k, =k, and V = k,F(o0), then K, = K, =1 and V = V|(t) = V,(t) for
all t = t,. Consequently u(t) is of Type 6(a). On the other hand, if V < k,F(0),
then by studying V;(t) one concludes that the solution must pass to Case 2, i.e.,
there exists a larger value of ¢t such that u(t) > 0, u'(¢) < 0.

Now, suppose that for some t,t = t,, the pair u(t), u'(t) corresponds to Case 2.
If V = K,H(— o0), then by studying V,(f) one concludes that the solution remains
in Case 2 for all larger values of t on [t,, T). Consequently, the solution is of Type
9(a) or 10(a). Again if V = K,H(— o) and u(t) is of Type 10(a), then it follows as
before that c(t) is constant on [t,, T) and since ¥ g,(t) dt = 0, it follows that c(t)
is nondecreasing on [T, o0). Consequently, K, = 1, V = H(— ). Also, if K, =1,
V = H(— o) and c(t) is constant on [t,, T), then u(t) is of Type 10(a). On the other
hand, if V < K, H(— o0), then, by Lemma 5, one concludes that the solution must
pass to Case 3. The proof of part (a) is now completed by similar arguments.

If the hypothesis in part (b) is valid, then, by the above argument, the solution
passes cyclically from case to case and is therefore oscillatory. Since V;(¢) < V for
t 2 t,,it follows that both u(t) and /() are bounded and consequently the solution
is of Type 8(a).

Remark. If c(t) is a positive constant on [, 00), the above result gives a
definitive statement. However, in part, the theorem falls short of our announced
intentions due to the question of the decidability of the statement “c(t) is constant
on an interval which includes [t,, T').” In principle, however, this question may be
reduced to that of quadratures. For example, suppose K, = 1,k F(c0) > V
= H(—o0) and the initial conditions correspond to Case 1. We would then
conclude that u(t) is of Type 9(a) or 10(a). If u(t) is of Type 10(a), then c(t,)F(u)
+ H(u') = H(— o) for t; £t < T and one may calculate [t,, T) by two quadra-
tures over known intervals in the variable u. One may then compare [t,, T) to
intervals over which c(t) is constant.

A number of papers [4],[7], (9], [14], [17]-[20], [22] have dealt with bounded-
ness of solutions to (1.1). Using Lemmas 4 and 5 and V|(t) as in the proof of
Theorem 6(b), we obtain the following corollary which generalizes, in part, some
of the boundedness results in the above papers. In particular, it generalizes
Theorems 1 and 2 in [18].

COROLLARY 2. Suppose conditions (i), (i), (v) are satisfied and let u(t) be a
solution of (1.1) with initial conditions at t,,t; = ty.Ifk; > 0and V < min (k,F(c0),
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k,F(—o00)), then u(t) is bounded. If K, > 0 and V < min (K,;H(c0), K, H(— o)),
then u'(t) is bounded. If k, > 0, K; > Oand V < min [k,F(o0), k{F(— c0), K;H(0),
K H(—0)], then u(t) is Type 8(a).

COROLLARY 3. Suppose conditions (i), (ii), (v) are satisfied and k, > 0, K, > 0.
Then the zero solution of the system

’

x' =y,
V' = —ct)f(x)h(y)

is Lyapunov stable.
Proof. The result follows in the usual way by considering

V(x,y) = kF(x) + K{H(y),

t
Vi(x,y,1) = ay(t)F(x) + H(y) exp U g1(7) df)-
ty

Similar stability theorems are given in [4],[14], [18]. In particular, Corollary 3
generalizes Theorem 3 in [18], whereas [4] has essentially the same restrictions as
those imposed here.

LEMMA 6. Suppose conditions (i), (ii) are satisfied and c(t) is nonnegative and
continuous on [t, 00). Let u(t) be a solution to (1.1) with initial conditions correspond-
ing to Case 1 (as defined preceding Theorem 6). If either of the following conditions
(a) or (b) is satisfied, then u(t) is of Type 5(a).

(a) There exists g(s), continuous and nondecreasing for s = 0, such that
f(s) = g(s),s 2 0, and

0

106) > j c(gler + Bz — 1,) de.

ty

(b) There exists g(s), continuous and nonincreasing for s = 0, such that
f(s) < g(s),s = 0, and for some k > 0,

I(B) > I(k) + f c(t)gla + k(z — t,)) dr.
t
Proof. To prove the lemma from (a), let (¢,, t,) be the maximum open interval
to the right on which u(t) is positive. We shall show that ¢, = co. Forte(¢,,t,) we
have 0 < u(t) < o + P(t — t,). From (3.1) and the hypothesis we obtain

1640) 2 1) — f " gl + Blx — 1) dr > 0

for all te(¢,,t,). Consequently t, = oo and since u/(t) is nonincreasing, u(t) is of
Type 5(a).

To prove the lemma from (b), let (¢,, t,) be the maximum open interval to the
right on which f§ = u'(t) > k. We shall show that t, = co. For te(t,,t;) we have
u(t) = a + k(t — t,) and by (3.1) and the hypothesis we obtain

1640) = 1(B) — fw (o)l + ke — 1) de > I(k)

ty
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for all te(t,,t,). It follows that t, = co and u(¢) is of Type 5(a). This completes
the proof.

Under certain conditions, the finiteness of the integrals in Lemma 6 are also
necessary as is shown by Theorems 1 and 2 in [6].

For the following nonoscillation theorem we introduce an additional con-
dition:

(vi) There exists g(s), continuous and nondecreasing for s = 0, such that
f(s) = g(s),s 2 0, and

J c(t)g(kt)dt < 0
max[0,tp]
for all k = 0.

Suppose conditions (i), (ii), (v), (vi) are satisfied and set

F(k,t) = f c(t)g(k(t — t))dr.
t

Then F(k, t) is defined for k = 0,t = ¢,, and is nondecreasing in k. For a fixed

k > 0, F(k, t) is decreasing in ¢ and F(k,t) - 0 as t —» oco. We define

(k) = inf {t:t = ty, I(k) = F(k,1)}.

Then ¢(k) is defined and bounded on every compact subset of the positive real
numbers. For suppose 0 < k' £ k £ k” and for some t*, t* = t,, (k") = F(k", t*).
Then I(k) = I(k') = F(k", t*) = F(k, t*) and therefore ¢(k) < t*.

THEOREM 7. Suppose conditions (i), (ii), (v), (Vi) are satisfied. Let u(t) be a
nontrivial solution of (1.1) with initial conditions at t,,t, = t,.

(a) If ¢(k), k > 0, is bounded, then u(t) is nonoscillatory.

(b) If K; > 0,V < K, min (H(o0), H(— 0)) and lim sup ¢(k) < oo as k — 0,
then u(t) is proper and nonoscillatory. ’

Proof. To prove (a), let A > ¢(k) for all k > 0. Assume that u(t) is oscillatory.
Then, since u(t) is nontrivial and proper, there exists t* > A such that u(t*) = 0,
u'(t*) = B* > 0. Consequently, I(f*) > F(f*,t*) and by Lemma 6, u(f) is of
Type 5(a) contrary to assumption.

By the hypothesis of (b), one concludes by studying V;(t) that u(t) is proper and
u'(t) is bounded. Let u > ju'(t)],t = t,, and A > ¢(k) for 0 < k < p. Suppose u(r)
is oscillatory. Then, there exists t* > A such that u(¢t*) = 0,u'(t*) = p* > 0.
Consequently, I(f*) > F(f*, t*) and by Lemma 6 we obtain a contradiction. This
completes the proof.

Theorem 7(b), above, generalizes Theorem 3 in [19]. A nonoscillation theorem
involving solutions of Type 7 can be found in [8].

We conclude with an oscillation theorem. Some recent papers on oscillation
which are applicable to (1.1) are [10], [11], [13].

We may establish an oscillation theorem from a result which implies the
solution is not positive; for the corresponding theorem for (1.2) would then yield
conditions under which the solution is not negative.

If I(0) = o0, we denote the inverse of I(t),t = 0, by J(s),s = 0.

THEOREM 8. Suppose conditions (i), (ii), (V) are satisfied. Let u(t) be a solution to
(1.1) with initial conditions at t,,t; = t,, and suppose either H(—o0) = o0 or
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K, > 0and V < K H(— o0). If, in addition, at least one of the following conditions
is satisfied, then u(t) is not a positive solution :

1) ky > 0,V < k F(c0).

(2) [ c(t) dr = oo, lim inf f(s) > 0 as s — co.

(3) I(00) = oo and there exist positive constants p, r (r = 1) such that J(t) = pt’,
t = 0. There exists g(s), continuous and nondecreasing on [0, 00), such that 0 < g(s)
< f(s),s > 0, and

Jw Uw (1) dr )rdt = 00, Jw g7"(s)ds < 0.
to t 1

(4) I(c0) = oo and J(t) = pt, t = 0, for some positive constant p. There exists
g(8), continuous and nondecreasing on [0, o), such that 0 < g(s) < f(s),s > 0. If

0.(0) = f’g‘l(s) s, (200,

then Q,(c0) = oo and

Jw c(r)g(Ru( pf: J;w co(x)dx ds

fort = ty, o > 0 and where R,(s), s = 0, is the inverse of Q,(t),t = a.

Proof. 1t follows from the hypothesis and Lemma 5 that the only possible
positive solutions are of Types 5(a), 6(a), or 7(a). The conclusion of the theorem
follows readily from conditions (1) or (2) by studying V,(t) and (3.1).

Now suppose that u(t) is of Type 5(a), 6(a), or 7(a) and condition (3) or (4) is
satisfied. For sufficiently large t, say t = £, u(t) is positive and from (3.1) we obtain,
after some manipulations,

)d‘C=OO

(3.2) 164(0) 2 j " (glu() de., ‘

t

IV

If the remaining conditions in (3) hold, then

e p( [ a0 dr) g, =
t
and consequently, for a = u(f) > 0,

u(t) t © r
j g7 "(s)ds = pf (f c(x) dx) ds, t=1i,
a i s

which yields a contradiction.
If the remaining conditions in (4) hold, we obtain the estimate

u(t) = R,,(p Jq Jw c(x) dx ds) , t>t

-

and by use of (3.2) we obtain the desired contradiction.
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Remark. For the linear equation u” + c¢(t)u = 0, the condition (4) reduces to

J;w c(t) exp (f f:o c(x) dx ds) dt = o0.

For c(t) = kt~? we obtain, according to the above theorem, oscillation for k > 1
which is not far removed from the best condition k > 1/4.
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SINGULAR PERTURBATIONS FOR A NONLINEAR DIFFERENTIAL
EQUATION WITH A SMALL PARAMETER*

GEORGE C. HSIAOt

Abstract. This paper concerns singular perturbation problems such as those of slow viscous
flow past a cylinder. A nonlinear second order differential equation with a small parameter is used as
a model to discuss the validity of the method of inner and outer expansions (MIO) for treating such
problems. Based on a regular perturbation procedure by Finn and Smith, it is shown that the formal
asymptotic expansions constructed by MIO are indeed in some sense the asymptotic expansions for
the exact solution of the problem.

1. Introduction. It is the purpose of this paper to point out certain intimate
connections between the regular perturbation procedure developed by Finn and
Smith [6] for existence proofs in the theory of two-dimensional viscous flow
problems and the method of inner and outer expansions for treating such problems
[9]. As a model, we consider here the boundary value problem (P,) defined by

1
(1.1) Liy)=y"+ 1y =&y, 1 <x< oo,
(1.2) y=0 at x=1
and
(1.3) y—> —a as X — o0,

where ¢ is a small positive parameter and a is a positive constant. For this simple
model we can give a complete discussion which illustrates the ideas. These ideas
are extended to the viscous flow problem in [8] but the results there are less
complete.

The problem (P,) is singular in the sense that the linearized problem (P),

(1.4) Lly]=0

together with (1.2) and (1.3) has no solution. This is the analogue of the Stokes
paradox in fluid flow [1]. On the other hand, if we let y = —a + v, then (1.1)+1.3)
read

1
(1.1) Llo]=v"+ (; + aa)v’ = gavv’, 1 <x< o,
(1.2) v=—a at x=1,
(1.3 v>0 as x— o,

and it is easy to see that the corresponding linearized problem,

(1.4 Z[v] =0
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together with (1.2') and (1.3'), does possess a solution. In fluid flow (1.4") will
represent the Oseen equation [5]. That there exists a solution of the Oseen prob-
lem, (1.4) together with (1.2"y and (1.3"), is the basis for the procedure of Finn and
Smith. The solution y(x; ¢) of (P,), which we show exists (see Theorem 1), is then
sought as a regular perturbation of the solution v of the Oseen problem.

The singular nature of the linearized problem, such as (P), has the effect of
giving the solution y(x;¢) a nonuniform asymptotic structure for small ¢. This
leads to the construction of the inner and outer expansions for the problem (P,).
Although the method of inner and outer expansions has been used successfully in
a wide variety of problems (cf. [3] and [4]), the rigorous justification of this formal
procedure seems still in its infancy' and further clarification and development
are needed. In the present work, we first define what we mean by the inner and
outer expansions for the problem (P,) (Definitions 1 and 2, § 4), then we state, in
a precise way, the matching principle (§5). Finally, we justify the procedure by
showing that the formal inner and outer expansions obtained from the matching
principle are indeed the inner and outer expansions for the solution y(x, ¢). This
last task is really the major goal of this paper. It should be mentioned that in [4]
some partial justification of the method has been given for a problem similar to
(P,) (see (5.5)), but our results are much more complete than those given there.
From our results, the model (P,) may serve as another example in the class of
singular perturbation problems (such as those of slow viscous flow past a cylinder)
for demonstrating the validity of the asymptotic matching principle in [7]; there a
nonlinear fourth order ordinary differential equation was used.

The main results can now be summarized in the following three theorems.

THEOREM 1. There exists a solution y(x;¢) of the problem (P,) defined by
(1.1)+1.3) for ¢ sufficiently small.

Comment. A kind of uniqueness theorem is indicated in § 3.

In order to state the next theorem we need some notation. Notice that, if the
condition at infinity, (1.3), is relaxed the problem L[y] = 0, together with (1.2),
has a one-parameter family of solutions,

(1.5) y = Alogx,

which is uniquely determined by the parameter 4. We denote it by u,(x). Then,
we have the following theorem.

THEOREM 2 (Inner expansion). There exists a sequence of functions {y,(x)},
independent of ¢ and defined for x = 1, such that for any positive integer N, the
relation

2 o S yn(x) _ 1 . +
(1.6) y(x;e) — ngl (log ey — 0 (log 0" as ¢—0

holds uniformly in x on any compact set in [1, c0). Moreover, y,(x) = u, (x) for all
n = 1, where the constants a, can be obtained by the matching principle.

! With the understanding that boundary layer problems are excluded. In this case, a great deal
of work has been done in recent years; one is particularly referred to the book by Wasow [12] and the
article by O’Malley [11], where other references can be found.

2 Without loss of generality, here we may assume 0 < ¢ < 1, and hence (loge)" = (—|logel|)",
although the sign of log ¢ is immaterial, since ¢ is a positive parameter.
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Some further notation is needed. We define the function Ey(x;a) by

o ,—al

dt, o =ea,

(1) Eoxio) = |

X

and let

Vix;a; f) = fwe;atdtfwse“f(s)ds

X

denote the particular solution of the problem,

L] =[f(x), 1=x<oo,

v—-0 as x— .

(1.8)

Here & is the operator defined in (1.1°) and f(-) is some given function.
Remark. The function E, in (1.7) is a solution of (1.8) for f(x) = 0.
THEOREM 3 (Outer expansion). There exists a sequence of functions {Y,(X)},
independent of ¢ and defined for all X > 0, such that for any positive integer N, the
relation

X ¢ LA _ 1 v
(1.9) y(z,s) { ; (o 8)”}_0[(10g8)”’] as ¢—0

holds uniformly in X on any interval I;:X = 6 > ¢. Moreover,

(1.10) m@=m%€my
V(%) = d.,Eo(%;a) + V(z;oc;f,.) for nz2,

where f,(X/¢) = e ZZ LY (X)Y,_ (X)/dX, and the constants d, can be obtained by
the matching principle.

The proof of Theorem 1 is given in § 3 and uses estimates for solutions of
the linearized problem. These latter are obtained in §2. Section 4 contains a
constructive scheme for obtaining the asymptotic expansion of the solution
y(x;¢) in Theorem 1. Based on this scheme, Theorems 2 (1.6) and 3 (1.9) are estab-
lished. In § 5, we establish the remaining statements of Theorems 2 and 3.

2. A priori estimates for the linear equation. We consider the problem:
Lwl=ady, 1=x<o0,
Q) w=0 at x=1,

w—->0 as x - o0,
where . is defined in (1.1) and o = ¢a. Here it is assumed that

2.1 $peC¥(1,0), |¢| = AEo(x;0),
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and

e—ax

(22) YyeCl(l,©), Wl=B o
where A4, B are constants and E, is defined in (1.7). Then the theorem is as follows.

THEOREM 4. Let w = w(x;o;ady) be a solution of the problem (Q). Then
there exists a constant H, independent of o = ¢a, such that

wl < ABHEq(x;a), | < ABH‘"X ,
(2.3) L
w| < ABex (1 + o)H + aEo(x;a)}.

The following result will be needed to prove Theorem 4 and is easily verified
by direct computation.
LEMMA 2.1. There exists a constant s independent of o such that

2.4) J Eot; ) dt < 2 forall 0<x.
The solution w(x; o ; ayy) of (Q) can be written as

(2.5) wx; o ady) = M(x; o5 ady) + N(x;o;agy),
where

0 —oat 0

M(x;o; apy) = f ; dtf ady et dr

X t

and
Eq(x;a)

N(x;osapy) = —M(1; 05 ady)

Eo(1;0)
The proof of Theorem 4 follows easily from (2.4) and (2.5).

3. Existence theorem. In this section we shall establish the existence of a
solution of the problem (P,) defined by (1.1)-(1.3) for ¢ sufficiently small. Our
method follows that in [6].

We consider the family of problems,

L] = ot 1 <x< o0, o = éea,
(R) v=1 at x=1,

v—>0 as x— o0,
for 0 < © < 1. Let us denote the solution of (R,) by v(x;a; ) (if it exists). Let
(3.1) Y(x;0;1) = —a+ atv(x; ;7).

Then y(x;a; 1) is a solution of (P).
We can now state the main results of this section.
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THEOREM 5. For « sufficiently small there exists a solution v(x; ;1) of (R,) for
0 < 1 £ 1. The solution can be represented by a convergent expansion
e o)

(3.2) o(x;057) = Y v,x; ),

n=0
where v,(x; o) is the solution of the following problem :

0, n=0,
Lvl=) _,
o« vl nzl, 1 <x< o,
k=0
(33)
1, n=0,

v(1;0) = {0 .> 1

v(x;0) >0 as x—->o0 forall nz0.

COROLLARY 1. For ¢ sufficiently small, there exists a solution y(x;e¢) of (P,),
and the solution can be represented as

0

(34) yx;e)= —a+a ) v(x;q).

n=0
THEOREM 6. There exists a constant T such that for sufficiently small ¢, the

solution y(x; ¢) of Corollary 1 satisfies

Ey(x:o)
Eo(1;0)

(3.5) x;e) +a =T

where Ey(x; a) is defined in (1.7).
Our first task in proving Theorem 5 is to obtain some estimates for the
v,’s in (3.2). We see that,

v Eolx;)
(3.6) volx;a) = Eyl:a)
Hence if Cq = 1/E(1; a), we have
e~azx
loolx; o) = CoEolxs ), loo(x; )l = Co——
3.7 ~
e ax

lo(x; 0l = Coll + a)——,
uniformly for x = 1.

An immediate consequence of Theorem 4 and equations (3.6) and (3.7) is the
following.

LEMMA 3.1. Let the sequence {C,} of constants be defined by

1
 Eo(1;0)

(3.8) Chvr=H Z CCois Co
0

k=
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Then

e—ax

i @ = CuEolxs ), ;) < Ci——,

and

e—ax

- {(1 + ) +%Eo(x;a)},

lon(x; )] = C,

uniformly for x = 1.
It follows from Lemma 3.1 that the series

(3.9) Clt;a) = (z Ck‘c) (1;0)

will dominate (3.2). Our next result concerns the convergence of the series in (3.9).
LEMMA 3.2. The series in (3.9) can be written as

. & (2HC0)"
(3'10) C(‘C’a) nz YII'*‘I(n + 1)'
where
1, n<l,
={nt+1
Tt [1@k=3), nx1.
k=2
Consequently (3.9) will converge for
(3.11) T < (4HC,) 1.

Proof. 1t is easy to see that the convergence of the series (3.9) implies that
C = C(r;a) satisfies the equation

(3.12) EoC = C,E% + H1C2.

The solution of (3.12) has a branch which is analytic in 7 in a circle about the
origin. Then (3.10) follows from Taylor’s theorem, and (3.11) follows from (3.10)
by the ratio test.

Remarks. 1. From (3.10) we obtain

| |<Yn+1(2HC0)"
= o (m+ 1)

where v, , is defined in (3.10).

2. Since Cy = 1/Ey(1;0) and Eq(1;a) — o0 as ¢ — 07, the inequality (3.11)
holds for all t€[0, 1] for ¢ sufficiently small. Consequently the series (3.2) con-
verges uniformly and absolutely.

We now return to the proofs of Theorems 5 and 6. Observe that the series
(3.2) is formally a solution of (R,) and thus it remains only to check the con-
vergence.

Completion of the proof of Theorem 5. If we collect all the results (3.9)(3.11),
we find that for ¢ sufficiently small and for all 7 € [0, 1] the series (3.2) converges
uniformly and absolutely. Similarly it can be shown the series may be twice

(3.13) Co,
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termwise differentiated with respect to x. Hence the sum o(x;a;t) defined in
(3.2) is a solution of (R,) for T €[0, 1]. This completes the proof of Theorem 5.

Proof of Theorem 6. From Corollary 1 of Theorem 5 and Lemma 3.1, we
obtain

o8]

Y vlx;0)

n=0

[

< a( Y C,,)Eo(x;oc).

n=0

y(x;¢) +a|l =a

Then it follows from (3.13) that

y(x;¢) + al < a

n

2 9,4 1(HCo)" Eofx;a)
i+ DI Egl50)

It follows from Lemma 3.2 that the series az;"; o Wu+1(2HC)"/(n + 1)!) con-
verges and we set I" equal to this series. This completes the proof of Theorem 6.

The techniques of [6] can also be used to establish the following uniqueness
result. We omit the proof.

THEOREM 7. Let S, denote the class of functions y(x; ¢) such that
[y(x;€) + a] < avEy(x;a), o= ea,

uniformly in 1 £ x < 00. Let v be any given number 0 < v < (2H)™', H as in
Theorem 4. Then there exists at most one solution y of (P,) such that ye S, .
Remark. The solution y(x; ¢) of Theorem 6 satisfies

Eq(x; )

: <T -
bx;a) +al < T8

Since I'/Ey(1;a) can be made arbitrarily small by choosing ¢ small, we see that
the solution of Theorem 6 is in S, for ¢ small.

4. Asymptotic structure. In this section we shall investigate the asymptotic
behavior of solutions of (P,) for small &. Our aim is to develop asymptotic ex-
pansions of the exact solution y(x; ¢) in (3.4), which we shall define to be the inner
and outer expansions of the solution.

We introduce the outer variable X = ¢x, and set

@4.1) n&a:%%%, V@@:vemu)am V(%6 = o,

x
- al,
€

where v and v, are the functions appearing in (3.2) and a = ea. We use dots to
indicate differentiations with respect to X and set

-~ 1 ~ 1

Then the development can be stated in the form of the following theorems.
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THEOREM 8. There exist two sequences {Y,(X)}, independent of e, defined for
all X > 0, and {V,(X;¢)} defined for X = ¢, and having the following properties :

(@) Y(X) = A, logX + B, + O(XlogX)as X - 0%,
(b) V(%) > 0as X - oo,
(4.3) _"( :
(©) VX;e)=0)ase— 0 uniformlyonx =6 >0,

(d) V,(%;€) = O(loge) as ¢ » 0" uniformly on X = ¢

and such that if y(x;e) is the solution of (P,) defined by (3.4) and m is any positive
integer, then

m Y .
(44 o) = —a+ § A, BB

Remark. This theorem needs some explanation. It yields a kind of asymp-
totic expansion for the solution but reflects the nonuniformity of this expansion.
Observe that by (4.3) (c) of the theorem we have

= T
() s {_H ~ (1329:))“} = flogay®t = 700

if x = d/¢ for any 6 > 0, where I, < oo is a constant. Thus the expansion can be
used in a straightforward way for large x. However, suppose one wishes to cal-
culate y for small values of x. Then (4.3) (d) yields a result of the following type:

ngen))|
k=1 (log e = (log &)"

L.

4.6) as x—0".

y(x;e)—{—aJr

Thus in order to have accuracy up to a given power of 1/logeé, one must keep
one extra term.

As a consequence of Theorem 8 and the fact that y(1;¢) = 0 we have the
following corollary.

COROLLARY 2. There exists a constant M < co such that

4.7) a— Y Ye)(loge) ¥lloge)"| <M as e¢-0".
k=1

The next theorem concerns the differentiability of the expansion in (4.4).
THEOREM 9. The expansion in (4.4) can be differentiated termwise. Moreover,
we have

(a) [ XY (X)| £ A, < o0, A, a constant independent of %;

@3) (b) Y(X) = A,/%X + O(log X) as X — 0, where the A,’s are the constants in
(4.3)(a);

(©) =XV (X;¢) = O(1)as & — 0, uniformly on % = ¢.
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Remark. Observe that these estimates would enable us to calculate an
approximation to y'(x;¢) for x near 1, in fact, even at x = 1. We have

nooA D
4.9 ‘(156) — Ll
( ) y( ’ 8) k;] (lOg S)k = (lOg 8)m+1’

as ¢ > 0, where D < oo is a constant.

The proofs of the above results require that we obtain more detailed in-
formation about the function V,(X;¢) which we derive from the v,(x;a) of § 3 by
substituting X/¢ for x (see also (4.1)). The essential fact is that the V,’s are of
increasing order in 1/log e. More precisely we have the following results.

LemMA 4.1. Let V(X;¢) and V,(X; ) be functions defined in (4.1). Then, for any
integer m = 0, the relation

1 +
(410) x 8) Z V (W) as ¢—0

holds uniformly for X > .
Proof. By Lemma 3.1 and (3.13), we obtain

4.11) [o,(x; )] £ A(Eo(1;0))” " VEy(x; ), x 21,
where
n+1
H 2k = 3)QHY/(k + 1)!, n=1,
A = <{Kk=2

n

QHY/n+ 1!, 0=n=1.

H is the constant in Theorem 4, and E,(x;a) is defined in (1.7). Since Eq(x; o)
= E(ex; a), we obtain, by (4.1) and (4.11),

x
v, z,Ba

V(X;e) — ZV(xs

(4.12) V(X5 0l =

v
™

< A(Eole; a) ™" VEo(%; a), x

Hence we have

I

A(Eq(e; @)™ " DEo(%; a)

I/\
M

(4.13)
A, (Eo(e5 @) (Eole; @)™ " PE(X; a)

I\
i M 8

= (Eo(ﬁ;a))—(MH) Z A~n+m+l(E0(8;a))~n

n=0

Since E(¢; a) is dominated by |log ¢| for small ¢, the series on the right-hand side
of (4.13) will converge for ¢ sufficiently small and thus Lemma 4.1 follows.
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Remark. From (4.13) it follows that for ¢ small there exists a constant M
such that

. i - 1\7IE0(>~c;a)
4.14 V(X:e) — V(x; < O,
( ) ( 98) n;o n( 98) = I(lOg 8)m+2‘

Also this inequality may be differentiated with respect to X. This follows from the
uniform convergence of the derivatives of the infinite series (3.4).

LemMMA 4.2. For each fixed j Z O, there exist two sequences {V(X)}, indepen-
dent of ¢ and defined for all % > 0, and {V,,(%; ¢)}, defined for % Z ¢, having the
following properties :

(a) Vi(X) = aj log% + by, + O(Xlog %) as X — 0", where aj, and bj, are
constants,

(b) V(%) > 0 as % — oo,
4.15) (© fo Vil dt < Ay, Ay < 00, a constant,
(d) Viu(%;€) = O(1) as ¢ > 0" uniformly on X = 6 > 0, for any 6 >0,
(€) Viu(X;€) = O(loge) as ¢ > 0" uniformly on % = ¢,
() on |Vinlt; €) dt < A}, as & — 0" uniformly on X 2 ¢,
%
and such that if V{(X;e) is the function defined in (4.1) and m is any integer, then

+1 % V. (%
N AR AT
(4.16) Vix;e) = HZ.H (logef* ' (loge)"*?

Moreover, the expansion (4.16) can be differentiated termwise and we have :

(a) |ij()~<) e¥X| < Cjx < 00, a constant independent of X,

(b) Vi(®) = au /% + O(log %) as X — 0, where the a;’s are the same con-
(4.17) stants as in (4.15) (a), and

() Izm(i ;€) e*X| < ¢, < 0 as & > 0, where ¢, is a constant independent
of eand X.

Remark. This lemma is the key to Theorems 8 and 9 and again it requires
some explanation. Observe that the lemma does not say that the difference between
the V;’s and the finite sums on the right of (4.16) are uniformly O((loge)~™*?).
The reason is that the error terms ij, like the V},(X)’s, contain expressions which
become arbitrarily large as X becomes small. Thus, (4.15) (¢) is the best that can be
said about the V,,’s. On the other hand, the singularities which appear for small X
are integrable, both for the V},’s and the V},’s, and hence one obtains the uniform
estimates (4.15) (c) and (f) for the integrals.

The proof of the lemma, an induction argument, is tedious. Instead of pre-
senting all details we indicate the idea in the Appendix by examining the first two
terms in the series (3.4).
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Theorems 8 and 9 follow readily from Lemmas 4.1 and 4.2, and a rearrange-
ment of terms. The Y,;’s are defined by

k-1
(4.18) V(%) =a ) Vi®), k=1,
j=0

and from (3.6) it is not difficult to verify that
4.19) Y,(X) = aVy(X) = —aEy(X; a).

We can now give the definitions of the inner and outer expansions of y(x; ¢).
DEerINITION 1. Let {y,(x)} be a sequence of functions such that for any N,
the relations

4.20 1 g) — =
@20 Y059~ 2 Gog oy~ “\log
hold uniformly in x on any compact subset of [1, 00). Then the expansion in
(4.20) is called the inner expansion of y(x;¢).

DEFINITION 2. Let {Y,(X)} be a sequence of functions such that for any N,
the relation

g 20 ( ! ) as ¢—-0%

£\ X y® _ 1 .
4.21) y(;, 8) - ngo ogey — 0((log g)N) as ¢—0
holds uniformly in X on any set X = 6 > 0. Then the expansion in (4.21) is called
the outer expansion of y(x; ¢).
If we compare (4.21) with (4.4) and use (4.3) (c) we see immediately that the
Y,’s of (4.4) yield the outer expansion for the solution y. We can also produce the
inner expansion. Observe that (4.18) and (4.15) (a) yield

k-1
(4.22) Yi(ex) = a ), {a;(logx + loge) + by} + O(cloge)
j=0
uniformly on any compact subset of [1, c0). Thus we have
(4.23) Yi(ex) = dy(x) log e + Yi(x) + Ofelog¢),
where

k-1

k—1
dlx)=a ) jis Ylx) =a ) (aplogx + by).
j=0 j=0
We substitute (4.23) into (4.4) with m = N + 1 and obtain, from (4.3) (d),
N+1 1
dux)log s + y(x) 0( ! )

y(x,8) = —a +

k=1 (log eff (log S)N 1
(4.24)
IR N
n=o (log &) (log &)/’
where

yO(x)= —a+¢1(x), yn(x)= lpn(x)+¢n+l(x)7 n= 1,2,3,"',N.

Comparison with (4.20) shows that the y,’s yield the inner expansion.
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Remark. One may question the desirability for replacing the convergent
series (3.4) with the two asymptotic series (4.20) and (4.21) since the terms in the
latter surely decrease very slowly unless ¢ is very small. The reasons for this
replacement are related to the fact that our procedure here is supposed to serve
as a model for an analogous one in fluid flow. In the hydrodynamic situation of [6]
the calculation of the v,’s in (3.4) requires the solution of inhomogenous Oseen
problems in the exterior of an obstacle and this is very difficult. On the other
hand the quantities corresponding to the y,’s and Y,’s can be calculated from
Stokes flows and special solutions of Oseen’s equations without boundary con-
ditions as indicated in [9]. These calculations are much simpler but they are
based on an analogue of the matching principle of the next section. The point of
our model is that it lends credence to these calculations by showing that in the
present simplified context they yield the correct asymptotic terms for the exact
solution.

5. Matching principle. According to the method of inner and outer expansions
[9], [10], a formal matching procedure can be established to obtain two asymp-
totic expansions of (P,) similar to those defined in (4.20) and (4.21). The basis for
this procedure is the so-called matching principle which will be stated later. We
refer to these expansions as the formal inner and outer expansions respectively.
However, we shall show later these are indeed the inner and outer expansions of
the actual solution y(x; ¢). In this section we shall describe this formal procedure
(matching principle) by computing the first few terms of the formal inner and
outer expansions. The results here will be needed in the proof of Theorems 2
and 3.

We begin with the formal inner expansion. This has the form

o Ua(X)
D kgl (log &)*’

where the functions u,,, k = 1, are solutions of the problems

Llu,]=0 for x>1,
(5.2)
U, =0 at x=1, u,(x)— alogx=0(1) as x— 0,

where the a,, k = 1, are constants to be determined by the matching principle.
Recall that the problem defined by (5.2) has a unique solution, namely,

(5.3) U, (x) = a, log x

for every fixed constant q,.
Now we formally substitute (5.3) into the expansion (5.1) and rewrite the
functions a, log x in terms of outer variable X = ex. This yields the series

& G logX — ap,y
54 —ay + —_—
©4 ' kgl (log &)*
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Next we construct the outer expansion. Observe first that in the notation of
(4.1) equation (1.1) becomes

(5.5 E[Y]=Y+%Y=YY, e< X< o0,

and conditions (1.2) and (1.3) become, respectively,

(5.6) Y=0 at X=c¢
and
(5.7) Y- —a as X- .

The outer expansion is of the form

o UX)
(5.8) —a+ NI
k; (log &)

This expansion is required to satisfy the equation (5.5) and the condition (5.7),
but not (5.6). Formally substituting (5.8) into (5.5), (5.7) and equating coefficients
of like powers of (log €)™ !, one obtains the conditions for the functions U,(%); that
is,

] 0, k=1,
PUL=TU, + (:+a)Uk= k=1
X a Uka—va k :>—_ 2a
(5.9) v=1

U,»0" as X—> oo forall k=1.
The general solutions of (5.9) have the following forms:
Uy(X) = d1Eo(X; a),
(5.10) . . k=1 poo ,at
UX) = diEo(%;a) + a ).

v=14¥x t

dtf eU U, dt, k=2,
t

where the d,, k = 1, are constants to be determined by the matching principle.
In order to formulate the matching principle we need the following lemma
which yields information about the U,’s as X tends to zero.
LEMMA 5.1. Let ¢(X) and y(X) be functions defined for X > 0 and such that

(5.11) |p(X)| < AEo(X;a),  W(X)| < BX" e ™
for some constants A and B. Define y(X) by
(5.12) 15 = L e‘t“ dt f, (o) de.

3 This is a variant of the Lagerstrom model for the incompressible low Reynolds number flow
[2], [31, [10]; the original form can be obtained with Y replaced by — Y. A calculation of the first three
terms in the formal inner and outer expansions for this Lagerstrom model is given in [2], [3]. The
calculation in [3] is carried out by introducing an intermediate limiting procedure; while in [2], the
method of limit process expansions is used with different inner and outer variables than those used
here.
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Then we have, for some constant H and for all X > 0,

(5.13) [xX)| < HABE(X; a),

(5.14) (%) < HABX 'e %%
Moreover there exist constants M and N such that

(5.15) x%) = MlogXx + N +o0(1) as X—-0".

The proof is a straightforward computation.
Now (1.7) yields

(5.16) Ey%;a) = —logX + § + O(XlogX) as X-0%,

where ¥ # 0 is a constant. Then, (5.15) and (5.16) show that the functions U, of
(5.10) satisfy estimates of the form

(5.17) U®) = 4, log % + b, + O(%log%) as % — 0%,
where
= —d + Midy, -+, dy—y), by = dj + Nydy, -+, dy_1);

M, and N, are certain functions with M; = N; = 0.

MATCHING PRINCIPLE.* Determine the constants a, of (5.1) and d, of (5.10)
so that the coefficients of log X and the constant terms for corresponding powers
of (log &)~ ! are equal. That is, a, = a and

a = —dy + My, -, d_y) = 4y,

(5.18) ‘ )
_ak+1=dky+Nk(d1>"'>dk—1)=bk’ k§2

Equations (5.18) and a, = a clearly determine the g, and d, recursively in the
order a,,dy, a,,d,, as, d;, - -- . It follows that the functions u,, of (5.1)and U, of
(5.8) are well-determined. The final assertion of Theorem 2 is that the u,,’s are
identical with the functions y, in the inner expansion (4.20) of the exact solution.
Similarly the final assertion of Theorem 3 is that the U,’s are identical with the
Y,’s of the outer expansion (4.21). We saw in the sequence of formulas (4.22)-
(4.24) that the inner expansion can be obtained from the outer expansion so that
if we prove U, = Y, it will follow easily that y, = u,, . Thus we need only prove
U, = Y, and this we do now.

The proof is by induction. For k = 1 we have, by (5.18),d, = —a and hence,

(5.19) Ui(X) = —aE(X; a),

and by (4.19) this is the same as Y;(X). Next we need the following lemma.
LeEMMA 5.2. The functions U, constructed by the matching principle satisfy
the recursive relations :
"o UX)

(5.20) U,(%) = {a - k; m}(log "+ 0(1) as %0,

foranym = 1.

4 See comment at the end of this section.
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Proof. By (5.17) and the matching principle (5.18), we have
Ul%) = alog % + b, + O(% log %)

(5.21)
=aqlogX —a,,, + O(Xlog%) as X—0".
Equation (5.21) yields
Ay = alogx — U X) + O(XlogX) as X—-07
and

(522)  U,®) = a,_,(log%?* - U,_,(®)(log %) — a,,., + O(F log ¥2).

Repeated applications of these formulas yield

U, (%) = a,_(logX)*t —
(5.23) (X) «(log X) l

— Gyt + OF(logX)*!) as X —-0".

U,-(%)(log %)

k
=1
Then the result (5.20) follows from (5.23) with k = m — 1, since by the matching

principle we have a, = a. This completes the proof of Lemma 5.2.
Assume now that

(5.24) U (%) = Y(%), 1skm-—1.

If we let W(X) = U,(X) — Y,(X), then W(X) is a solution of the problem,
PW]=0, et<X<ow; W-0 as X—- 0.

Then, it follows that

(5.25) W(X) = dEy(X; a),

where d is some constant.

Assume d 3 0. Then we obtain, by (5.25), W(e) = U, (e) — Y, (e) = dE,(c; a)
= O(log¢) as ¢ > 0*. But Corollary 2 of Theorem 8 and Lemma 5.2 with X = ¢
imply that

U,e) — Y, (e) =0() as ¢—0%,

which is a contradiction. This concludes the proof of Theorem 3 and thus of
Theorem 2.

Remark. The considerations above show that for the problem studied in this
paper there occurs important simplification. This is as follows. Not only can the
y,’s in the expansion (1.6) of the exact solution be obtained from the matching
procedure, but they are in fact precisely equal to the leading terms in U, of the
outer expansion for small X. This simplification will not be present in general [8].

Comment. The matching principle (cf. (5.18)) presented in this section may
be considered, at least for the model (P,), as a simplified version of what is called
the asymptotic matching principle in [7]. With the notation there, as will be seen,
(5.18) can be rewritten in the form:

(5.26) H,E,y = E,H.y
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for any integer p = 1 and q = p — 1. Here E, and H, denote, respectively, the
outer and inner expansion operators.® In view of the definitions of E, and H,,
we obtain from (5.8) and (5.17),

p -~
HE,)y=H,_ 1{—a + Y, [a(loge + log x) + b, + O(ex log ex)]/(log .«3)"}
k=1
(5.27) -
=(—a+a)+ Y (4, + alogx + by/loge).
k=1

Similarly, we obtain from (5.1) and (5.3),°

p—1
EHy = Ep{ Y [a(—log e + log X)]/(log s)"}
(5.28) .

p—1
= Y (a,logx)/(loge).
k=1

Thus, a comparison of (5.27) and (5.28) shows that the result (5.26) follows indeed
from the matching principle (5.18).

Appendix. Proof of Lemma 4.2. We consider first the leading term in the
series (3.4), that is,
E .
Ey(1;ea)
by (3.6). By definition (1.7),

[ee] e"sal [o 0] e_t
Ey(x;ea) = f . dt = J —t-dt.
P £xa

For simplicity, we set

(A1) Eacx) = f T gt = Ey(x: ea).
Then

S — E _ Eo(afc)'
(A.2) Vo(X;¢e) = vo(g,sa) = Eyar)

* For convenience, the definitions of the operators E, and H, in [7] are cited here. Given asymptotic
sequences {a,,(¢)}, m =0, ---, p, and {B,(¢)}, m =0, ---, g, the outer expansion operator, Ep, on a
given function f(x;¢) is defined by the relations

) ) —E,_

Eof =0 lim i, Epf = Ep_.f + a, lim Lﬂ,
ifixad %o xfixed o
s

g0t "

m=1---,p,
and the inner expansion operator H, is defined similarly with the outer variable X replaced by the
inner variable x and a,,(¢) by B,.(¢).

6 Strictly speaking, it is used here in the asymptotic form lim u,,(x) which turns out to be the
same as u,,(x). o
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A simple calculation yields
(A.3) Eq(ae) = —loge + Iy + O(t) as e¢—-0%,
where I, is a constant. Hence,

1 _ m+1 l-l(c)—l 1
(A4 Eyad ~ & Gogar ((

log 8)"'”) as om0

Therefore, we see that

"l VolX) Vom(i ;8)

(A.5) Vo9 = 2 Gog of t (log ey 2
where

Vor = — ¥ 1E(aX), k=1,2,---,m+1,
(A.6)

. ” 1 o
Vom(X;€) = {Fo“ + O(I_OE)}EO(GX)'

It remains to check that the V,,’s and V},, defined in (A.6) satisfy the properties
in (4.15). This is a straightforward calculation except perhaps (4.15) (c) and (d).
But these follow from Lemma 2.1 with x = X/¢ in (2.4). Hence we have established
the lemma for j = 0 (in sharper form).

Now we investigate the term v,(x; ¢a) in the series (3.4). The analysis proceeds
in the same manner, in general. By the definition of v,(x; ¢) in (3.3) and formulas
(2.5), it is not difficult to see that

. )“C' N 0 at 0 .
(A7) Vi(X;e)=v, (;, sa) = ¢ Eq(ax) + af ET- dt f esVy(s;€)Vo(s; e)ds,

where

a ooe'at [eo] .
;= —— dt assV. .
1 B )J; J: e*sVyVy ds

Hence if we substitute the function V,, in the form defined in (A.5) and the cor-
responding V, into (A.7), we shall obtain terms of the form:

1 o0 e—at 0 .
Il = (—lag—g)lTkaJ‘ —t—d[f e“SSVOIVOk dS,
(A.8) 1 ¥ o )
™ pmat . \Eg(a%
L=|——a| “—ar| ewsy S8
2 ((loga)'”“fs ] e °’V°"dS)Eo(ae)’

and similar terms involving ¥, and ¥,,,. Observe that I, is a function of X only
times a power of (log ¢). Thus, terms of this form can be collected and rearranged to
yield contributions to V,,, ifl+ k <m + 1 or V,, if k + [ > m + 1. One need
only check that these contributions satisfy the various estimates in Lemma 4.2
and this is an easy computation which we omit.
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The term I, is more complicated since ¢ appears in a nontrivial way. Consider
the terms,

0 —at 0
(A9) 1'2=f e[ dt J sV, Vo, ds.
& t

We have
, *®d ® .
I, = —f —E(at) f sV Vo ds| dt.
. dt t
An integration by parts yields

I, = Eo(as)f e®sVy, Vo ds — f E(at) e”tVy, Vo, dt

(A.10)
= MEyae) + M, + %,

where

M, = f e®sVy, Vo, ds,

0
M, = —f Eqat) etVy,V,, dt
0

and

R = —{Eo(ae)f e®sVy, Vo ds + J Eo(at)e“'tVOkVo,dt}-
0 0
By the properties in (4.15) and (4.17), we can show that both M, and M, exist
and we note that they do not depend on ¢. On the other hand, we have
R = O(g(loge)?) as e— 07,
Consequently we write, by (A.8) and (A.10),

aM aM, Ey(aXx) a#  Eq(aXx)

AID Lo = g oyt ol ¥ (g 7 Eo(ag) T (log o™ Eolas)

The first terms can be summed and rearranged again to contribute to V;,, or V,,,.
Moreover, since all these terms are dominated by a constant times Ey(aX), it is
clear that the estimates in Lemma 4.2 are satisfied. Finally we observe that all the
terms involving ¥, and V,,, will only contribute to V;,, since all of these involve
powers of (log¢)~” for p > m + 1. Calculations similar to those just given show
that these contributions all satisfy the estimates of Lemma 4.2. This concludes
the proof of Lemma 4.2.
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LIPSCHITZ BEHAVIOR AND CHARACTERISTIC FUNCTIONS*

K. SONI anDp R. P. SONIt

Abstract. Let F be a distribution function. Its characteristic function belongs to Lip o, 0 < « < 1,
if and only if F(—x) and 1 — F(x) are O(x~%) as x — oo (see Boas [1]). The n-dimensional Fourier
transform of a radial function reduces to the Hankel transform of a function in one variable. Results
similar to those given by Boas are obtained for this transform. The problem, however, is discussed in
a rather general form. The class of functions @, ®(x) = jg’ k(xt) dF(t), is considered. It is assumed that
k is essentially bounded and has a nonzero Peano derivative of some definite order at zero, whereas
F(t) is nonincreasing but not necessarily bounded.

1. Introduction. It is well known that if /(x) and xf(x) are absolutely integrable
in (— 00, o0), then ¢(x), the Fourier transform of f(x), has uniformly continuous
derivative. The converse is not true. If, however, ¢(x) is a characteristic function
corresponding to some distribution function F(x),

(L1) $lx) = f ¢ dF (),

there exists a definite relationship between the Lipschitz behavior of ¢(x) and the
asymptotic behavior of F(x) near + oo. This relation was given explicitly by Boas
[1] as follows.

THEOREM A. If 0 < y < 1, then ¢ € Lip y if and only if

(1.2) F(x) = F(+00) = 0(x|77), x| = 0.

The condition (1.2) is to be read as F(x) = O(|x|”") as x » —oo and 1 — F(x)
= O(x ") as x » oo. If y = 1, the theorem fails. This problem is related to the
existence of ¢'(x) at x = 0. Zygmund [12] proved that if
r
(1.3) lim tdF(t)
T- w0 -7
exists, then ¢'(0) exists if and only if ¢(h) + ¢(—h) — 2¢(0) = o(h) as h — 0. Later,
Pitman [8] showed that if the limit in (1.3) exists, then ¢'(0) exists if and only if
F(x) — F(+o0) = o(1/x) as x — co. In this connection, a result of Boas can be
stated as follows.
THEOREM B. F(x) — F(+ o0) = O(1/|x|) or o(1/|x]), |x| = oo, if and only if

(1.4) O(x + h) + d(x — h) — 2¢(x) = O(h) or o(h)

uniformly in x as h — 0.

Thus the conditions given by Pitman and Zygmund regarding the existence
of ¢'(0) are equivalent.

We consider the general class of transforms defined by

(1.5) D(x) = f * kxt) dF (),
0

* Received by the editors March 20, 1972.
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where k(t) is uniformly bounded and F(¢) | 0 as t — co. Many integral transforms
used in applications have this form. A characteristic function (1.1) can also be
studied with the help of such integrals [9], [10]. A particularly interesting special
case of (1.5) is the Hankel transform because the Fourier transform of radial
functions in several variables becomes the Hankel transform of a function in one
variable [3, p. 69]. Some Abelian-type results pertaining to this transform are
given in [7].

Our object in this paper is to determine a set of necessary and sufficient
conditions so that the transform ®(x) may have properties similar to those given
in Theorems A and B. We note that the kernel ¢ is bounded and satisfies Lipschitz
condition of order one uniformly in — o0 < x < o0, yet the significance of these
properties is not obvious from the results. We prove that in general the Lipschitz
behavior of ®(x) depends not only on the asymptotic behavior of F(x) as x — oo
but also on the Lipschitz behavior of the kernel k(x). A theorem of the type A
fails when 7y equals the order of the Lipschitz condition satisfied by the kernel.
Whenever the kernel has suitable behavior at x = 0, this can be avoided by con-
sidering the symmetric difference of ¢(x) as in (1.4) since the effect is the same as
that of replacing the kernel k(x) by the kernel k*(x) = k(x) + k(—x).

2. Main results. Let ®(x) be the transform of the function F(¢) defined by

(2.1) d(x) = f k(xt) dF (1), x =0,
0

where F(t) and k(t) satisfy the following assumptions:

22) k() = M, 0=t<oo,

(2.3) k(t) = k(0) + Bt* + o(t*), t—-0,B#£0,4>0,

(2.4) F(t) isnonincreasingin 0 <t <o and F()—0 as t— .

The function F(t) is not necessarily bounded. In what follows, it is under-
stood that these assumptions are satisfied.

THEOREM 2.1. If
(2.5) < 0,

f 1 k(t) dF(t)
0

then ®(x) exists for all x = 0. Furthermore,

(@) o> 0,00 % B, F(t) = Ot~ ), t — oo, implies that D(x) — D0) = O(x™in=,y,
x—0;

(b) 0 <a < B, F(t) = o(t™%), t » oo, implies that ®(x) — O0) = o(x*), x — 0;
(c) o > 0, k(t)e Lip (y) uniformly in 0 < t < o0, a # y and in case k(0) = 0,

< 0.

fl t" dF(t)

0

Under these conditions F(t) = O(t™ %), t — oo, implies that ®(x) € Lip (min (o, y))
uniformly in 0 < x < 0.
THEOREM 2.2. Let 0 < a < B.If

(2.6) D(x) — D0) = O(x%), o(x*), x—0,
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then
2.7 F(t) = 0(t™%), o(t™®, t— 00,

provided that the kernel k(t) satisfies either one of the following conditions:
(a) k() assumes its absolute maximum or minimum at t = 0;
(b) there exists a nontrivial function w(x) such that

(1) w(x) =0, w(x)e L0, 1),

1

(i) k*(x) = f w(t)k(xt)dt assumes its absolute maximum or minimum at
0

(2.8)

x = 0.

We shall need the following results which we state as lemmas. The first one
is due to Sz.-Nagy [11].

LemMA 1. Let ¢(x) and y(x) be two monotone functions (1, ]) defined in
0 < x < a such that $(0+) = 0. If either one of the two integrals [§ $(x) diy(x) or
[6W(x) dp(x) exists, then both integrals exist and lim,_, o, ¢p(x)(x) = 0.

LemMA 2. Let F(t) be nonincreasing in 0 < t < oo, F(t) >0 as t > c0; and
let t*~'F(t) be integrable into t = 0. If 0 < a < f, then

y
(2.9) f t* dF(t) = O(y* ™), y — oo, implies F(t) = O(t™%, t— 0.
0
In (2.9), O can be replaced by o provided that 0 < a < f3.
Proof of Lemma 2. Let
y
A(y) = f t* dF (1), y > 0.
0
By Lemma 1, A(y) exists for all y > 0. Also |A(y)| is a nondecreasing function of y.
Since
F(x) = — f t~ B dF (1)
= x"PA(x) — [if t P YA dt,

the conclusion is obvious.

Proof of Theorem 2.1. By (2.3) we can choose 6 > 0 such that |k(t) — k(O)|
< 2|B|tf for 0 < t < 4. If k(0) # 0, F(0) is finite by (2.5) so that ®(x) exists for all
x = 0. If k(0) = 0, ®(0) = 0 and by (2.5) again,

1
(2.10) f t dF(t)| < .

0
For x > 0,

0 d/x oo
f k(xt) dF(1)| < f +f k(xt)dF(t)‘
(2.11) 0 0 ;ix
< 2IB|x"f t# dF(t)‘ + MF(§/x).
0

Hence ®(x) exists for all x = 0.
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To prove (a), let x > 0. By similar reasoning as above,

|D(x) — ©O0) = f [k(xt) — k(0)) dF(t)
0
2.12) .
< 2IB|x* J % dF(0)| + 2MF(8/x).
0
F(d/x) = O(x*) as x — 0. By (2.10) and Lemma 1, *F(t) - 0 as t — 0. Integrating
by parts,
d/x d/x
f Wdﬂn=%wm%wmy—ﬁf = UF(t) dt
0 0
1 d/x
< O(x**# F-1F(t) d
<o+ ]+ [0
2.13 x
( ) =0(x""%+ 0Q1) + 0(.[6/ tﬁ_l—adt)
1
= 0(1) + O(x*"¥), x—0.
Hence by (2.12) and (2.13),
|D(x) — D(0)] = O(xmin®£), x—0.

This completes the proof of (a). The proof of (b) is similar. In (c), we consider
|O(x + h) — O(x)|, h > 0, x — h > 0 and again complete the proof as in (a).

Proof of Theorem 2.2. First we note that ®(x) is defined in some interval
0 < x < 0. This implies that ®(x) is defined in 0 £ x < co. (If ®(0) # 0, then
k(0) # 0 and so F(0) is finite. If ®(0) = 0, then k(0) = O unless F(t) = 0 and the
argument can be completed in the same manner as in the proof of Theorem 2.1.)
Without loss of generality we may assume that B > 0 in (2.3). Determine § > 0
such that

(2.14) k(t) — k(0) = (B/2)t*, 0<t<é.

Let k(t) satisfy condition (a). By (2.14), k(t) — k(0) = O for all ¢ > 0. Since

O(x) — D(0) = f " Thxt) — KO)] dF ()
0
(2.15) = 0(x%), x -0,
it follows that

félx [k(xt) — k(0)] dF(t) = O(x%), x—0.

0
By (2.14),

fé/x (xt) dF(t) = O(x"), x—0,
0
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or

f t# dF(t) = O(xP ™), X — 0.
0

The proof is now complete by Lemma 2. If k(t) satisfies condition (b), then by
(2.14),

k*(t) — k*(0) = jl o(x) [k(xt) — k(0)] dx
0

(2.16) |
> Ef o(x)(xt)? dx 0=t£96)
2Jo

= ctt 0<t<9)

for some constant ¢ > 0. Hence k*(t) — k*(0) = O for all ¢ > 0. From (2.15) we
obtain

| ks — ko aF () = 0, xy =0,
0
and in particular for 0 < x < 1, y — 0. Hence,

fl (x dxf [k(xyt) — k(0)] dF(t) = "’)f x)x* dx .

0

The interchange of the order of integration is easily justified and we obtain

fow (k*(yt) — k*(O)] dF(r) = O(y"), y=0.

With the help of (2.16), the proof can now be completed as before.
The proof is essentially the same when O is replaced by o.

3. Remarks. Theorem 2.2 gives the Tauberian counterpart of Theorem 2.1.
The function w(x) in (2.8) is such that for some constant ¢, ¢T ™ 'w(x/T) is a regular
summability kernel [6, p. 50]. Obviously the kernels e * and x™*J,(x), v = —1/2,
satisfy the condition (a) of Theorem 2.2. The special case v = —1/2 when
x"J(x) = (2/m)*/? cos x is essentially contained in Boas’s results [1]. A kernel
which satisfies condition (b) but not (a) is k(x) = \/;ch(x), v> —1/2. Let

tTR1 -2 0<t< 1,
w(t) =
0, t>1.
By [5, p. 24, (22)],

k*(x) — k*(0) = f 01 o(t)(xt)' 2 J (xt) dt

= (m/2)x'2[J,(x/2)}* 2 0.
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If v = 1/2, k(x) = (2/m)"/? sin x. In this case, we can consider the following simpler

expression for w(t),
1, 01,
o(t) = o
0, t>1,

so that k*(x) — k*(0) = (2/m)"?x (1 — cos x) = 0, x > 0.

For v > —1/2, the kernel x'/2J (x) illustrates nicely how the behavior of a
kernel at zero influences the behavior of the transform ®. We note that
x'2J(x)eLip(v + 1/2) at x = 0. The two theorems together imply that if
0<a<v+ 172 Ox) = 0(x%, o(x*), x > 0 if and only if F(t) = O(t™%), o(t™),
t — oo. It is immaterial whether v + 1/2 is greater than, equal to or less than 1.
On the other hand x'/2J (x) e Lip y, 7 = min (v + 1/2, 1) uniformly in 0 < x < oo.
Hence if 0 < a <y, ®(x) e Lipa uniformly in 0 < x < co if and only if F(t)
= 0(t™%), t - oo. It is not difficult to find examples to show that the behavior of
®(x) may be significantly better locally or uniformly than that indicated in
Theorem 2.1. For example, let

0, 0=<t<I;
k(t) =

1, t>1,
and
F(t)={1’ 0<t=l,
1/t, t>1.
Then
0, x=0,
D(x)={—x, O0<x<1,
-1, x=1.

®(x) € Lip 1 uniformly but k() is discontinuous. The following examples, however,
show that Theorem 2.1 (a) and (c) are the best possible.
1. Let

B(x) = Jm sin xt d(t™ '/?)

0
= —(nx/2)}2.
Here a = 1/2,y = f = 1, ®(x)e Lip (1/2) at x = 0.
2. Let k(t) = t~'2J,(t), and
23)(1 — 3%, 0t
F(t)z{(/)( ) 0SS,
0, t>1.
By [5, p. 18, (1)],
D(x) = —x 7321 — Jy(x)].
Here y = ff = 1/2, « can be taken arbitrarily large but ®(x) e Lip (1/2) at x = 0.
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Finally, since ®(x) is defined only for x = 0, it would be meaningless to con-
sider the symmetric differences [12] of ®(x) at x = 0. However, we can still con-
sider the behavior of @ in an analogous manner. For example, if k(t) = sin ¢,

D(2x) — 20(x) = on (sin 2xt — 2 sin xt) dF(t).
0

The kernel sin 2x — 2 sin x is uniformly bounded and belongs to Lip (3) at x = 0.
It can easily be verified that

1
k¥(x) — k¥(0) = J (sin 2xt — 2sinxt)dt =0 forall x > 0.
0
Hence, if 0 < a < 3, ®(2x) — 2d(x) € Lip («) at x = 0 if and only if F(¢) = O(t™%),
t — oo. Results like this can take the place of the one in (1.4).
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A COMPLETE SET OF ORTHONORMAL HARMONIC FUNCTIONS*
A. S. FAROOQUIt

Abstract. A complete sequence of orthogonal harmonic functions on a domain is constructed.
The boundary values of these harmonic functions are found to be the eigenfunctions of a certain integral
operator.

Introduction. It is a familiar fact that the set of functions 1;cos 0, sin 6;
cos 26, sin 26; - - - is orthogonal as well as complete in the space of all square
integrable functions defined over the interval (0,27). On the other hand, the set
of harmonic polynomials 1; r cos 6, rsin 0; r* cos 20, r? sin 26, - - - (defined over
the unit circle with center at the origin) is orthogonal in the usual sense of the
inner product for a domain as well as complete in the space of all harmonic
functions defined on the unit circle with continuous boundary values. Moreover,
the former set is clearly the boundary values of the latter. An analogous situation
is found to hold for an arbitrary simply connected domain bounded by a simple
smooth closed contour.

For expedience, an inner product for functions defined and continuous on
the boundary is introduced. Two functions orthogonal in this inner product
space are then termed orthogonal on the boundary. Incidentally, for the unit
circle, this inner product coincides with the usual inner product for the interval
(0,2m). It is established that there is a sequence of functions, harmonic in the
interior and continuous on the closure of the domain, which is orthogonal as
well as complete in the space of all harmonic functions with continuous boundary
values. Moreover, the boundary values of this sequence form a complete ortho-
normal set on the boundary.

1. Notation and terminology. Let D be the interior of some simply connected
domain bounded by a simple closed contour dD. The positive direction of the
contour is taken as counterclockwise. The symbol v(Q), Q € dD, is designated for
the unit normal at Q directed into the interior of D. We assume, of course, that
oD is smooth enough to have a meaningful normal.

The line integral §,, f(Q) dl, is defined in the usual way. By the area integral
{fpf(P)dP, we mean [, f(x,y)dxdy. In terms of these integrals the following
inner products are introduced :

(L1) g = 35 £(Q)g(Q)dl,
and
(12) [f.g] = j fo(P)g(P) dp.

* Received by the editors October 28, 1971, and in revised form May 22, 1972.
+ Department of Mathematics, Simon Fraser University, Burnaby 2, British Columbia, Canada.
This work was supported by the National Research Council of Canada.
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The inner product defined by (1.1) is referred to as the inner product on the
boundary. Two functions are said to be orthogonal on the boundary if their
inner product vanishes. Similar remarks apply for the inner product defined on
the domain by means of (1.2).

We say that the system of functions W; defined and continuous on the
boundary is orthonormal on the boundary if

(13) <lP,‘ale>=5i’ja la}= 1a2a3a""

where J, ; is the Kronecker delta. The system is said to be complete if, for any
function f defined and continuous on the boundary, the relation {f, ¥;> = 0 for
all ¥; implies that f = 0. Similar remarks apply for the system of functions defined
on a domain, of course, using the appropriate inner product defined on the same
domain for such functions.

The symbol G(P, R), P, Re D, is reserved for the Dirichlet-type harmonic

Green’s function.

2. Generalized Poisson’s kernel. Associated with the domain, there is a
function which plays an important role in this investigation. It is termed as the
generalized Poisson’s kernel. More precisely, we have the following definition.

DEerFINITION 2.1. The function G(P,Q),PeD, QedD is defined as the
generalized Poisson’s kernel for D.

Incidentally, when D is the unit circle, G (P, Q) reduces to the well-known
Poisson’s kernel. Several properties of the Poisson’s kernel are also valid for the
generalized Poisson’s kernel. For example,

.1) G,P,0) >0, PeD,

(2.2) G/(P,Q)dl, =1, PeD,
oD :

or, in the language of inner product:
(2.3) 1,6(P,0)) =1, PeD.

Functions defined and continuous on the boundary may be extended to the
closure of the domain in several meaningful ways. One extension, however, has
proved quite useful. It is termed the Dirichlet extension and is prescribed by the
following.

DEFINITION 2.2. Let f be a continuous function defined on the boundary. The
Dirichlet extension of f on D is given by

fP)=0¢ f@QG,P,Q)dl,
(2.4) oD

=<{f(Q).G6,P, Q).

The extended function is harmonic in D and of class C on D.

3. Poisson’s kernel of the second kind. Another function, this time defined on
0D x 0D, is also found quite useful in the sequel. For expedience, we introduce
it now.
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DEerFINITION 3.1. The Poisson’s kernel of the second kind is defined by means
of the formula

K(Q.S) = f f G(P, Q)G (P, S) dP
(3.1) D
=[G,(P,Q),G(P,S)], Q,SedD.

Many properties of this kernel are quite interesting and can be easily
established. For the purpose of this investigation, the following are listed :

(i) The kernel is symmetric and square integrable. The symmetry is, of
course, obvious from the definition. Upon a closer examination, one notices that
K(Q, S) is continuous on dD x 0D except when Q coincides with S where it has
a weak (logarithmic) singularity.! Consequently, K(Q, S)€ L,(0D x dD).

(i) The kernel is positive definite.

In order to prove the assertion, we let f(Q), Q € D, be any function of class C.
Then, if f(P) is its Dirichlet extension, it follows that

 § K©Q.9)@1S)dlgds = [ [ trnzar.
@D v éD D

The left-hand side vanishes only if f = 0, which proves the proposition.
Let {y,} be the normalized system of eigenfunctions and {4;} be the corre-
sponding eigenvalues for the kernel K(Q, S) so that

(32) viQ) = A.g@ K(Q. S)U(S) dis
oD

and

(3.3 Wi, W,> = 5ij-

Since the kernel is positive definite, it follows that the set {y;} forms a
complete orthonormal system in the space of all continuous functions defined on
the boundary. This completeness may be extended to all L,-functions on the
boundary by means of the triangular inequality in the Hilbert space generated
by this inner product. Furthermore, all 4, are positive.

With each eigenfunction ¥,(Q) defined on 0D, we consider its Dirichlet
extension (P) defined on D. Clearly, y(P) is harmonic in D and coincides with
¥{(Q) on 0D.

We are now ready to state and prove the principal result of this investigation
in the following form.

THEOREM 3.1. The sequence {y(P)} forms a complete orthogonal set of harmonic
functions in the space of all harmonic functions defined on D with continuous
boundary values.

! For details, see Appendix.
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Fortunately, the theorem is quite easy to establish. Let us consider

51’1‘ = {Y;, W,)
= ljj Y{SK(Q, SW Q) dl, dls,
oD Jop
by (3.2). Using (3.1), we have

b5=1,9 § [ [ GP.QIGP W SHQ digdls P

-3, f Y AP (P)dP.

which proves the orthogonality. Moreover, the system {ﬂiwi(P)} forms an
orthogonal set with respect to the inner product defined for D. To prove complete-
ness in the space of all harmonic functions on D, with continuous boundary values,
we consider any function f(P) which is harmonic in D and of class C on D. Then
by (2.4), (3.1) and (3.2),

(34 3l Lf(P)wi(P) ap = LJ(S)MS) dls.

Hence, [ f, ;] = 0 implies that (f;,> = 0 for all ;. The completeness of y; on
oD implies that f = 0 on dD. Hence its Dirichlet extension f(P) vanishes on D
identically, which proves the theorem.

In order to illustrate the theory, we take the simplest possible example,
namely, when D is the unit circle » = 1. The generalized Poisson’s kernel is then
the ordinary Poisson’s kernel :

1 —r?

G(r,0;1,0) = 2n{l — 2rcos (6 — o) + r*}

(3.5)
= QE; &,r" cos n(f — o),
where ¢, = 1, ¢, =2,n=1,2,3,---. The kernel of the second kind is therefore
given by
1 2n
Koo = [ [ 60.0:1.906,0.0:1. prdr do

(3.6) 0 Yo

I U _

C4n%n + lcosn(ﬁ %,

giving the expansion of K(a, f) in terms of its eigenfunctions. The series may be
summed into a closed form if desired. Comparing (3.6) with the usual bilinear
expansion for K(o, 5), namely,

(3. Ke.p =y HOD
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one finds that the complete set of orthonormal eigenfunctions for K is

&osnoc 8—”sinnoc
21 "% 2

with eigenvalue 4, = 2(n + 1). The corresponding complete set of orthogonal
harmonic functions obtained by means of Dirichlet extension (using (2.4) and

(3.5)) is
&y . o &, " in
2nr Cos na, 2nr sin no .

Theorem 3.1 can now be verified immediately. Incidently, one notices the multi-
plicity two of each eigenvalue after the first one because there are two eigen-
functions cos na, sin no corresponding to each eigenvalue 4, n > 1.

Appendix. Proof of the fact that K e L,(0D x 0D). We first show that the
integral (3.1) representing the Poisson’s kernel of the second kind is convergent
whenever Q does not coincide with S. For any point RedD, let the symbol
D(R, 6) denote the common intersection of the domain D and the neighborhood
of R with radius é. For a small 6 > 0, this domain is approximately a semicircular
region with its diameter along dD. For Q not coinciding with S, we can choose o
so small that D(Q, §) and D(S, d) are disjoint. For expedience, the position of a
point P € D(Q, d) is represented by the polar coordinates (r, 6) with pole at Q and
the initial line being the tangent line at Q. It is now easily seen that

G,(P,Q) = SIn0 4 o), PeD(Q.0).
(P.0)= S 0.9)
The dominant singular part of K(Q, S) over D(Q, J) in absolute value can therefore
be majorized by

sin 6
(A1) H SO 40 dr,
D(Q.6) n?|PS|

where a factor similar to sin 6 has been dropped in the numerator. The expression
(A.1) in turn is dominated by 8/(n(h — J)), where h = |QS|. The same result is also
valid for the integral over D(S, d). Consequently, the integral in (3.1) converges
absolutely. Moreover, the convergence is uniform for h = k > 0.

Next we consider the behavior of K(Q, S) as h — 0. The point S may now be
considered on the diameter of D(Q, d) at a distance h from Q where h < d. The
dominant singular term of the integral over D(Q, ) corresponding to (A.1) is

1o sin 0 d0 dr 1
A2 — -
(A.2) n? L fo S+ r? = 2hrcos 0} n?

Thus the kernel becomes logarithmically singular as h — 0 which proves the
assertion (i) in § 3. Moreover, the eigenfunctions are continuous on the boundary.

)
1+ log—].
gh)
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SYMMETRIES OF DIFFERENTIAL EQUATIONS.
THE HYPERGEOMETRIC AND EULER-DARBOUX EQUATIONS*

WILLARD MILLER, Jr.t

Abstract. A general technique is introduced which uses the symmetry group of a linear homo-
geneous partial differential equation to obtain solutions of the equation and transformation properties
of these solutions. As an application it is shown that the Euler-Poisson—Darboux equation
Uyx — Uy, — (k/y)u, = 0admits the symmetry group SL(2, €) and, if k-changing operators are admitted,
the group SO(5,€). Certain quadratic transformation formulas for hypergeometric functions are
related to the SO(5, €) symmetry. Similarly it is shown that the Euler—Darboux equation u,, + (£ — 1)~ !

(au, — Pu,) = 0 admits the symmetry group SL(2, €) and, if («, f)-changing operators are admitted,
the group SL(4, €). The transformation formulas for the hypergeometric functions and the 24 solutions
of Kummer are related to the SL(4, €) symmetry.

Introduction. The notion of the symmetry group of a partial differential
equation has proved useful for the construction of symmetry adapted solutions of
the differential equation. This is particularly true for the nonlinear equations of
hydrodynamics (see [1)).

A number of papers have appeared recently which show how one can com-
pute the symmetry group G of a given equation and then use various one-param-
eter subgroups K of G to find solutions of the equation which are invariant under
K (see [2]-[5]). We make particular mention of [4] in which the authors show that
the heat equation in two variables admits a six-parameter Lie symmetry group.
These papers follow the geometric approach of Lie himself [6] and contribute to
a static theory of symmetry in the sense that they are concerned primarily with
solutions invariant under one-parameter transformation groups.

In this paper we exploit the elementary fact that the solutions of a linear
homogeneous partial differential equation form a vector space. Thus, the action
of the symmetry group G on the solution space defines a representation of G and
we can use representation theory to study the transformation properties of
solutions under the action of the full group rather than limit ourselves to one-
parameter subgroups. In this sense the theory presented here is dynamic.

As an application of the method we show that if parameter-changing operators
are allowed, the Euler-Poisson-Darboux (EPD) equation u,, — u,, — (k/y)u, = 0
and the Euler-Darboux equation u,, + (1/(¢ — n))(eu, — Pus) = 0 admit the Lie
symmetry groups SO(5, €) and SL(4, €), respectively. Certain of these symmetries
have already been exploited to solve boundary value and initial value problems
for the above equations [10], [13, Chap. 1], but it appears that the full symmetry
groups have not been computed until now.

We show also in this paper that SO(5, €) and SL(4, €) are intimately related
to the hypergeometric functions ,F,(a, b, ¢, z). (Indeed, one can consider SL(4, €)
as the dynamical symmetry group of the ,F;.) A detailed study of this relationship
will be undertaken in another publication.

A dynamic treatment of the heat equation can be derived from [12] in which
Weisner treats an equivalent equation.

* Received by the editors June 28, 1971, and in revised form April 3, 1972.
T School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. This work was
supported in part by the National Science Foundation under Contract GP 29321.
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1. The general method. Let Qu = 0 be a linear homogeneous partial dif-
ferential equation where u = u(x, ¢) and

02 2 2

o 0
. a2 v B vl Dy EL L
(1.1) Q=Aga+Byg +Copt Dot E5+

Here A, B, C, D, E, F are analytic functions of (x, t) in some common domain 2.
We are interested in obtaining families of solutions u of Qu = 0 defined in some
common subdomain of 2. (To be explicit we have chosen Q to be a second order
differential operator in two independent variables. Actually the order of the
operator and the number of variables are immaterial.)

Consider the set ¢ of all linear differential operators

(1.2) L = X(x,t)% + T(x, t)a% + Ulx, 1)

with analytic coefficients such that QLu = 0 whenever Qu = 0. Thus, % consists
of all operators L which map the solution space § of Q into itself. Clearly, L € ¥
if and only if

(1.3) [L,Qlu=LQu — QLu =20

for all ue &, where [L,Q] = LQ — QL is the commutator of L and Q. It follows
from (1.3) that L € ¢ if and only if

(1.4) (L, Q] = R(x,1)Q,

where the analytic function R depends on L.
It is easy to check that % is a (possibly infinite-dimensional) Lie algebra.
That is, if L, L, € %4, then

(1.5) a,L, + a,L, €%, [L,,L,]e9,

for all constants a,, a, (see [7]). We can associate with ¥ the local Lie group G
consisting of all finite products exp («,L,) - - - exp (o,L,) of operators

(1.6) expaL = ¥ %L", Le®,
n=0 """

defined for the constants o; sufficiently close to 0. The operators exp aL can be
explicitly computed and take the form

(1.7) lexp (aL)f](x, 1) = v(x, 1, 2) f (x(a), 2(o0)),

where f is any analytic function and x(«), t(«), v(x, t, o) are uniquely determined
by the equations
dx(o) di(x)

(1.8) = Xxle), @),

o T(x(e), 1)),

@ (.20 = vl £V, 1),
x(0) = x, t0) =t, v(x,t,0)=1
(see [8]). Here L is given by (1.2).
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Since L, and L, in ¥ each leave § invariant, so does their product L,L,.
Similarly L" leaves & invariantfor Le ¥andn =0, 1,2, - - - . Finally exp oL leaves
& invariant for Le % and o sufficiently small so any element of G maps § into itself.
Indeed § is the basis space for a representation of the Lie group G and the Lie
algebra ¢. Thus, we can use the techniques of representation theory to study .
With this in mind we designate G as the symmetry group of Q.

We first describe a method for computing special solutions with a minimum
of effort. Let L,,---, L, be a linearly independent set of pairwise commuting
operators in ¢ which is maximal with respect to these properties. Since these
operators are commuting and leave § invariant, it is possible that they have a
simultaneous eigenvector in &, that is, a nonzero u such that

(1.9) Lu=7u, 1<j<k, Qu=0, 1eC

If such a u exists it can often be computed rather easily from (1.9). Indeed the
extra information Lu = Au frequently reduces the problem to one of solving a
series of ordinary differential equations rather than a partial differential equation
[11-[5]. (See § 2 for some examples.) These remarks relate our approach to the
static theory mentioned above. Note that the eigenfunction u satisfies (L; — 4;)u = 0,
where L; = L; — ;€ 4. Thus exp (aL})u = u for all « and u is invariant under the
one-parameter subgroup of G generated by L;.

We remark that G may be a trivial one-dimensional Lie group in which case
our method yields no information about the solutions of Qu = 0.

Ovsjannikov [16] has constructed a general theory of symmetries of (non-
linear) partial differential equations which essentially includes the above as a
special case. However, for computational purposes the author’s formulation is
superior.

2. The Euler—Poisson-Darhoux equation. We apply the method of § 1 to the
EPD equation

— U, —-u, =0

u yy yy

XX

by computing all linear differential operators
2.1) L= X(x,y)0, + Y(x, )0, + U(x,y)

such that [L, Q] = R(x, y)Q, where

(2.2) Q=0 — 0y v

k
— -0
y
and R(x, y) is a function depending on L. The results are
k
(23) X =a(x* + y?) + bx + ¢, Y = 2axy + by, U =axk + b§ +d,

a,b,c,deC.
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Thus the EPD equation admits a four-dimensional symmetry algebra with basis

(2.9) L, = —(x* + y»)0, — 2xy0, — kx, L, = x0, + yo, + g

Here
(2.5) (L,,L,]=1L,, [Lp,L3]=—L3, [Ly,L3]=2L,

so the symmetry algebra % is isomorphic to si(2,€) @ {E}. (In the exceptional
cases, k = 0, 2, the symmetry algebra is infinite-dimensional and contains (2.4) as
a subalgebra. For these values of k the EPD equation is equivalent to the wave
equation.) Neglecting the trivial symmetry group generated by {E}, we can con-
sider SL(2, €) as the symmetry group of the EPD equation. The group action of
SL(2,€) is given in terms of the Lie algebra action by

(2.6) T(g) = exp (_SLI) exp (—cdL;)exp(tL,), e?>=d !,
where

a b
2.7) g= ( d) eSL22,€), ad-—bc=1

c

(see [8, p.21)). A straightforward computation yields

[T(@)f1(x,y) = [(d — bx)* — b2y*]7*?
(2.8) 7 ab(y* — x?) + x(1 + 2bc) — cd y
' (d — bx)? — b?y? " (d—bx)2 — by

2], ad —bc=1.

Thus, for any solution f of Qf = 0 and any ge SL(2, €) we have Q(T(g)f) =0
whenever expression (2.8) makes sense. In the special case

’o ( 0 1)

( . ) €0 = 10 ’

we find

(2.10) [T(eo) f1(x,y) = [x* — yz]""’zf[ 2_x 32 Y 2]
X —y*x*—y

is a solution of the EPD equation whenever f(x, y) is a solution.

We can obtain special solutions of the EPD equation by requiring that these
solutions be invariant under one-parameter subgroups of SL(2, €). For example,
it is easy to show that the space of solutions of the simultaneous equations

(2.11) 0f=0, Lyf=@+k2)f
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is spanned by
Silx,y) = (x — pYoF (=, k251 — p = k/25(x + y)/(x — y)),
(212)  folx,y) = (x — )72 + ) TE2F(k + p,k/2;
L+ p+ k25 (x + p)/(x = y),

where ,F;(a,b; c;z) is a hypergeometric function [9]. Furthermore, the space of
solutions of

(2.13) Qf=0, Liyf=4f
is spanned by
(2.14) fx,y) = y(l_k)/2 eli:t(k— 1)/2(/1)’),

where J (z) is a Bessel function. We could use the SL(2, €) symmetry to derive
identities for hypergeometric and Bessel functions, and transformation formulas
for solutions of the EPD equation. However, very similar derivations are given
in [8] and [14] so we shall not reproduce them here.

Next we look for transformations which map solutions of the EPD equation
for one value of the parameter k into solutions for another value of k. In particular
we study the operator
(2.15) QW =0,-0

yy e

.,
y

The solutions fi(x, y) of Qf, = 0 correspond to solutions f(x, y,t) of QVf =0
such that f(x, y, t) = fi(x, y)t*.

In analogy with our previous problem we compute all linear differential
operators

(2.16) L = X(x,y,00, + Y(x,y,00, + T(x,y,1)0, + Ulx, y, 1)

such that [L,Q"W] = R(x, y,t)Q'V. A tedious computation yields an eleven-
dimensional symmetry algebra ¢ with basis

L, = —(x* + y%)d, — 2xy0, — xt0,,
L, = x0, + yo, + 3t0,, L3 =14,,

t? 12
L,=—0,, Ls=t,+ XTQ,

y
y xy x x
L a + tz 6}1 tat - t_2 )
2.17 1 1
@D o ve e L e,
t t t
2 2
Ly = 2t?x0, + (x—+y)t26y + t%0,,

2xy? x2 + 2 x?
L= ’:Zyax+y{ ty a+—a+yt ., E=1.
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Here ¥ ~ 4’ @ {E}, where ¥’ is a ten-dimensional Lie algebra with basis
Ly,---, Ly,. Explicitly computing the commutation relations of the L; one can
verify that ¢’ is a simple Lie algebra. Thus 4’ = so(5, €) since so(5, €) is the only
simple algebra of dimension ten [15]. The generators {L,, Ly} form a basis for a
Cartan subalgebra of 4.

The generators L; of so(5, €) map solutions of the EPD equation into solutions,
either fixing the parameter k or changing it by +2. Indeed, denoting a general
solution of the EPD equation by fi(x, y) or h(x, y) we see from (2.17) and the
remarks following (2.15) that

1 .

SOh = feen 3L = D= fis
x2+ 2

2%, f, + ‘f“ayfk k= foran

2.18
@15) 2xy?0, fi + Vx4 ¥20, fi + (kx* + ¥* = X)) fy = fics,

= + V)0 — 2x¥0, fi = kxfe = hy, O fi =My,

X
Oxfic + ;ayﬁc = firas  VOSi + xy0,fi + (xk — X)fi = fies.

(Each of these eight relations is independent of the remaining ones.) In his study
of boundary value problems for the EPD equation, Weinstein [10] made use of the
first recurrence relation.

To determine the group action of SO(5, €) we note that each of the triplets

{J+,J_,J3}E{L1,L3,L2}, {LS»LGa%LS}’

(2.19) 1 1 1 1 1 1 1 1
{3Ly, —3L,, 3L, + Lg}, {3Ly0, —3L4, 3L, — 3Lg}

satisfies the commutation relations
3,05 = +J*, [JJ1=2J°

and forms a basis for a subalgebra of so(5, €) isomorphic to si(2, €). It is easy to
show that each triplet generates a Lie subgroup of SO(S, €) isomorphic to SL(2, €)
and that the four subgroups so obtained suffice to generate the full group SO(5, €).

A straightforward computation [8] shows that {L,,L;, L,} generates the
group action

[Ti(g)f1(x, y, 1)

_Jab(y? —x?) + x(1 4 2bc) — cd y t
@20) =1 [ (d—bx)* —b2y? "(d —bx)* — b2y? ' [(d — bx)? — b* y2]1/2] ’

geSL2, G).

(For f(x,y,t) = f(x, »)t*, (2.8) and (2.20) agree.) The triplet {Lg, Lq,3Lg}
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generates the group action

[n@ﬂm»o=%hﬁm%‘”j”?PHJMFﬂw—wﬁ,

t? t*
(2.21) 2t2 t*p2\ 12 2xac  c?y?\1? 2xac c 2\ /2
y d? _—_;Z—de —yi— a? — t2 + vy ,t a2
geSL(2
If g = e, (see (2.9)) and f(x, y, 1) = fi(x, y)tt, then (2.21) simplifies to
(222) [Ty(eo) f10x, p, 8) = ¥~ fu =x, p)e>7*

or ¥ fi(—x, ) = fo_4(x, ). The triplet {Lo, —%L,, 4L, + 1Lg} generates the
group action

[T3@f10x, y,1) = [a + ¢/t*]" 12

(MQ' x  yla+ c/th'? mm+mw2
d+t?b’ d + bt? T (d + t2h)12

(d + br*(1 = x*/y?))

and the triplet {3L,,, —3L,, 3L, — +Lg} generates the action

[Ti(2)f1(x,y, 1) = [d + b(y* — x?)/t*]" 12
lx bt - ey
d + byi?’ d + by*i2

[+ b(y? — x?)i?)!7
d + by )r |

(a+ ct?/y?)'2,

(2.24)

The operators (2.20), (2.21), (2.23), (2.24) determine the action of SO(5, €).
In addition the operator Q¥ admits certain non-Lie symmetries. The most
important are

(225) Slf(xay’t)zf(_xayat)a Szf(xay’t)=f(x’ _y’t)'

(In fact, SO(5, €) and the reflection S, generate a symmetry group isomorphic to
0(5,€) and S, € O(5, €).) The transformation S, T(e,) or y*~ ! fi(x, y) = f, (%, y)
was used by Weinstein in [10].

As with the ordinary EPD equation, we can obtain special solutions of
QW f = 0 by requiring that these solutions be invariant under one-parameter
subgroups of SO(5, €). In particular, the space of solutions of the simultaneous
equations

(2.26) QWf =0, Lgf=(k—1f, Lyf =(u+k2)f
is spanned by
filx, y, 1) = (x — PV F (= p, k251 — o — k/25(x + p)(x — y)),
— (x — v)—k/2 n+k/2 4k
(227) fz(x’ y’ t) (X y) (X + y) t
ik + p,k/251 4+ o+ k25 (x + y)(x =)
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(for 1 + k/2 not an integer). Another basis is
Salx,p,0) = (x =yt F (= p, k/25 k5 = 2p/(x = ),
(2.28) falx,y,0) = (x — yyHe (=2t 4t
P ==k 1= k/2;2 — ki =2y/(x = y)

(for k not an integer). By applying Weisner’s method [11], [14], [8], we can use the
SO(5, €) symmetry to derive a variety of generating functions for the , F,. This will
be carried out in another publication. Here, we merely show the intimate relation-
ship between SO(S5, €) symmetry and the quadratic transformation formulas for
hypergeometric functions. From (2.23) and (2.28),

T3(e0)f3(xa y, t) = h(W, Z, t)

K—19- —4
(2.29) = k1] — etk k = f g
w=x—y, z=(x+))/[x=y).
Now h is a solution of
QWh =0, Lgh=(—k—2wh, Lyh=(—pu2—k2+ Hh,

which is bounded for general u,k at z = 0. Hence h is a constant multiple of
Sy, ) (fork =1 —k — 2u, p = ):

—4 1k 1k
2300 (1 —\/)Z”ZF( — \\;:)2 cozFl(—ﬂ,E*‘z—,u;E"'i;Z)'

Letting z = 0 we find ¢, = 1 and (2.30) yields a quadratic transformation formula
for the ,F,. Similarly, Ty(ey) fi(x, y, t) leads to the identity

($)Z”2ﬂ(‘ K1 _k(ii‘ﬁ—?ﬁ))

.u’i H E,
(2.31)
p= 551 —2u— k;v), v=—=2y/(x =),

1
= F|—u. - —
2 1( H, 3
and Tj(e,) f5(x, y, t) leads to

2 —k=2u ‘4\/7
(1_\/;) (1—2)7* 2F1( l‘a ’k 1_\/‘)2

ko1 1
=F ~ A ;_ = °
2 1(;14—24—2u+k2+2z)

(2.32)

Additional formulas of this type can be derived from (2.23) and (2.24) by making
use of the transformation formulas for the ,F,.

Note added later. Just as in the remark preceding (3.23) in the next section one
can easily show that the equation Q'*)f = 0 is equivalent to the partial differential
equation obtained from (3.23) by setting ¢ = a — b + 1 and replacing a and b by
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differential operators. In this sense O(5,€) is the natural symmetry group of the
ultraspherical functions. Past studies of these functions have used only SL(2, €)
symmetry [8], [17].

3. The Euler-Darboux equation. The Euler-Darboux equation

(3.1) Ugy + (ot — Butg) = 0

1
¢—n
is a generalization of the EPD equation. In fact, if the constants «, f are chosen
so that o« = f = k/2 and new variables x, y are introduced so that { = y — x,
n = —y — x, then (3.1) becomes the EPD equation. To find the symmetry algebra
of (3.1) we look for all linear differential operators

such that [L, P] = R(&, n)P, where

o B
(3.2) P=0, +——-0, — —0,.
AR
The results are

X =aé +bE? — ¢, Y=an+ by? —c,
(33) a
V=§(oc+ﬂ)+b(éfx+nﬁ)+d, a,b,c,de@.

Clearly the Euler-Darboux equation admits a four-dimensional symmetry
algebra with basis

4 L, = &%, + n*d, + o + Pn, L, = &0; + nd, + (@ + P)/2,
' Ly=—-0,-0,, E=1.

The commutation relations of the L; are
(3-5) [Lz,LJ = Ll, [Lz,Ls] = _L3a [L1’L3] = 2Lz

so the symmetry algebra is again isomorphic to sl(2, €) @ {E}. The group action
is given in terms of the Lie algebra action by (2.6) and (2.7). A standard com-
putation yields

at+c an + ¢
d+b&d+ by

(3.6) [T@SUE,n =+ bd)"d + bﬂ)_”f[ ] ad — be = 1.
Thus, if Pf = 0, then P(T(g)f) = 0 for any ge SL(2,€) such that (3.6) makes
sense. An interesting special case is obtained for g = e,: If f(&, %) is a solution of
the Euler—Darboux equation, then so is ¢~ ff(—¢&7 1, —n™1).

It is easy to show that the space of solutions of the simultaneous equations

(3.7) Pf =0, L2f=(u+°21+§)f, LeG,
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is spanned by
[i&,m) = &5 Fy(—p, Bs 1 — = a5m/d),

faEom) = E P F o 4+ o+ B 1 4 p+ o n/é)

for 4 + o not an integer. Indeed, the second equation implies f = E*h(n/¢).
Substituting this result in Pf = 0 we find h must be a solution of the hyper-
geometric differential equation. It is clear from this result that the hypergeometric
functions are intimately related to the Euler—Darboux equation. Indeed the partial
differential equation introduced by Weisner [14] in his group-theoretic treatment
of hypergeometric functions is just the Euler—-Darboux equation (to within a
change of independent variables). Thus, detailed applications of SL(2, €) symmetry
to obtain solutions of the Euler—-Darboux equations and transformation properties
of these solutions are already contained in [8], [14] and need not be repeated here.
Here we concern ourselves with transformations which map solutions of the
Euler—Darboux equation corresponding to (a, ) into solutions of the equation
corresponding to (o', #'). To find such transformations we study the operator

(3.8)

1
(3.9) P = aé,, + 2——_}1(t6m - uaué).

The solutions f, 4(&, n) of Pf, ; = 0 correspond to solutions f(¢, 7, t, u) of PVf =0

such that (&, n, t,u) = £, 4 me*uP.
To find the symmetry algebra of P)f = 0 we determine all linear differential
operators

(3.10) L=X0,+ Yo, + To,+ Ud, +V

such that [L, PY] = R(&, n,t,u)PV. Here, X, Y, T,U and V are functions of
¢, n, t, uto be determined. A tedious computation shows that the symmetry algebra
% is sixteen-dimensional with basis

Ly = %3, + n*d, + &td, + nud,,
L, = &0, + nd, + 3(t0, + ud,), Ly=—0;— 0,
L, =13, — 1%, Ls = ud, — 4, Lg = t0,, L, = ud,,

Lg = &to, + t*0,, Ly = und, + u*d,,
— t 1
Lyo =ua¢+‘at+au——,
u u u
(3.11) _ .
Lll = (11 6)6” + at + Eau -,

2 2

t t u u
L12 = —';(f] - é)aé - —u—ata L13 = ?(é - 71)5', - Tau’

¢ &
Lia= (=m0 + 20, + 10, — 1,

u
Lis =" - 90, + 0, + Mo, -5 E=1
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Computing the commutation relations, we find that the operators L; form a basis
for a simple fifteen-dimensional Lie algebra, necessarily isomorphic to si(4, €)
[15]. The operators {L,, L4, Ls} span a Cartan subalgebra of si(4,€). Thus,
4 ~ sl4,€) ® {E} and we can consider si(4,8) as the symmetry algebra
of P,

The operators L; map solutions of the Euler-Darboux equation for (a, )
into solutions (x + ¢, § + p), &, p = 0, +1. Indeed from (3.11) and the remarks
following (3.9) we find

(E20; + 1?0, + Lo + nP)foyp = hayp,
—(65 + an)fa,ﬂ = ha,B’ 6§f;z,ﬁ = fz+ 1,85 anf;z,ﬂ = fa,p+1’
(€0: + O forp = farrps 0y + B)fap = faps1s
B12) (€ —moe+a+ B —Dfyp=Sup-1
((n =80y + o+ B — Doy =Lam1,p5
(& = m0e + ol + B — 0)fop = fup-15
(n — &0y + ol + B — O fop = Ja-1.5>
where f, 5(&, 1), h, 4(¢, 1) are general solutions of the Euler-Darboux equation.

(Each of equations (3.12) is independent of the remaining ones.) In addition, the
operators L,,, L, induce the coupled equations

(3.13) (& - ’T)ar, - B)fap = fa—l,ﬂ+1a ((n — é)ag - a).f;z—l,ﬁ+1 = Bla — l)faﬂ-

It is interesting to note that the so(5, €) operators of the EPD equation do
not form a subalgebra of the above sl(4,€) operators even though the EPD
equation is a special case of the Euler-Darboux equation.

To determine the group action of SL(4, €) we remark that each of the triplets

7,3 ={L,, Ly, Ly}, {Le»Lys, —3L, + 3L4 + L5},
(314) {L7a L14’ _%LZ + %LS + %L4}7 {LB’ _Llla%LZ + %LS + %L4}’
{Lo, —=Lyo,3L; + L4 + 3Ls}, {Ly3, Lyas3Ls — 3Ly}
satisfies the commutation relations
3 J*]=+J*, [JHJT]=2P
and forms a basis for a subalgebra of sl(4, €) isomorphic to s/(2, €). Furthermore,
each triplet generates a subgroup of SL(4, €) isomorphic to SL(2, €) and the six

subgroups so obtained generate the full symmetry group SL(4, €).
A routine calculation shows that {L,, L,, L,} generates the group action

(3.15) [Tl(g>f](¢,n,r,u>=f[““c“’7” S ]

d+b&d+by’d+bEd+ by
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For f(& n,t,u) = f, 4 nt*u?, expressions (3.6) and (3.15) agree. The triplet
{L¢,Lys, —3L, + 3L, + %L} generates

[T3(e) 1, n,t,u)

(3.16) [ nt ulat — c)
=(a—cE)y Y| dé —bt,———— at —c&,—
N = éat—C(é—n)}
while {L,, L4, —3L, + 3Ls + £L,} generates
[T3(g)f}(éa 1’], ta u)
(3.17) L Eu tlau — cn)
=(a—-cnu Y —————,dn — bu,——————,au — cn |.
( "/)f[au—cm—é) T -9 "]
The triplet {Lg, —L,,,3L, + L5 + 3L,} generates the action

[T4(g)f}(é’ n, L, “)

3.18
G.15) =(a + c/t)” ‘f[

t+ ¢
d+ bt’

it bt,n(a + ¢/t) — éc’/t

and {Lo, —L,,, 3L, + 4L, + 3L} generates
[TS(g)f](éa 1’], ta “)

=(a+ c/u)” lf[é(a + ¢/u) — nefu, y -:-1bu’ tla + c/u),3“++b;].

u(a + c/t) ]

(3.19)

Finally, {L,, L,,,3Ls — 3L,} generates
aué — cty dtn — bué  tu tu ]
u

au —ct ~ dt —bu ‘au —ct dt — b

(3:20)  [Ts(e)S1(&,n,t,u) =f[

Operators (3.15)+3.20) generate the group action of SL(4, €).

As usual we can determine symmetry adapted solutions of P*"'f = 0 by re-
quiring that f be invariant under various one-parameter subgroups of the complete
symmetry group. The most important example is the system

POf=0, Lyf=@—-2f, Lsf=@-2/
Lyf = (u+ o2 + B/2)f,

whose solution space is spanned by

fl(éa r’atau) = éﬂ 2F1(_Ha ﬁal il a;r’/é)t“uﬂ’

[, tou) = E7 " T F (o, i + o+ B3 1+ p+ o/’
for u + o not an integer. The significance of the twelve recurrence relations (3.12),
(3.13) when applied to these special solutions is revealing. The relations correspond
exactly to the twelve differential recurrence relations which raise and lower the

parameters a, b, ¢ of ,F,(a,b;c;z).
Remark. If the parameters a, b, ¢ in the hypergeometric equation

2
dj;+[c—(a+b+ )z}%—abf=0

(3.21)

(3.22)

(3.23) (1 — 2)
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are replaced by g0, rd,, s0, as in the Euler-Darboux equation, then the resulting
partial differential equation is equivalent to P‘Vf = 0. In this sense the ‘““natural”
symmetry group of the hypergeometric equation is SL(4, €). Past group-theoretic
treatments of the ,F, have used only SL(2, €) symmetry. Use of the full invariance
group leads to a variety of new identities via Weisner’s method. In this paper we
have expressed our results in terms of the Euler—Darboux equation. For the
purpose of applying Weisner’s method and SL(4, €) symmetry to derive identities
for the ,F, it is more convenient to start with (3.23). Except for a single example,
this study will be undertaken in another publication. Here we present some
properties of the ,F; which follow immediately from equations (3.15)—3.20).
From (2.9), (3.15) and (3.22),

[Tl(eo)fl](éanatau) = h
= (—1pE bz h R (—p, B 1 — p— oz He?, z =n/E.
Here, h is a solution of

PYh=0, Lsh=(x—3h, Lsh=(B—Hh,

o
L2h=(—,u—§-§)h,

(3.24)

(3.25)

that is, « and 8 are unchanged while u changes to —u — o — . Since f}, f, form
a basis for the solutions of (3.25) there must exist constants ¢,, ¢, such that

—2) P F (=, Bl —p—ayz7Y)
(3.26)( ) P F (=, B o
=c Fi(u+o+ B, B+ pu+ B2 +c(—2)* P F (e, —us 1 —p—B;2).

The constants are easily computed :
T —p — I8 + 1) T —p =l (—p - p)
G =" reri-a TNl -p-a-p

where I'(x) is the gamma function [9, vol. I, p. 108]. Similarly, evaluation of
Ty(eo)f, shows that ,F;(—u, f; 1 — u —a; 1 — z) is a linear combination of
(= B0+ Biz)and z @ AL Rl —p—a =B, 1 —a;2 —oa — B 2).

The function

[Ts(eo) f11(E,m, 8, u)-=h

(3.28)

= &1 — Z)“zFl( —H Bl = i 1)t"‘ul"““"“’, z=n/¢,

is a solution of (3.21) with « = o, $ =1 — u — a — f, p = pu. Furthermore, h is
analytic in z at z = 0. Therefore, h = ¢f; and setting z = 0 we see that ¢ = 1:

z
(3.29) “_”Zﬂtﬂﬁ”‘“—GQTﬂ

=,F(-p,1 —pu—o—p;1—p—ua;z).
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This is one of the transformation formulas for the hypergeometric functions [9].
Similarly, Ty(e,) f, leads to the transformation formula

(330) (-2 F|-pupl—p—a =,Fi(l —o,f;1 —p—a;2)

_Z
21
and Ti(eo) Ty(eo) f1 leads to

(1 —2f" P F (= p, Bs1 — p— a5 2)
(331) 2Fi(—p, B I
= Fl—ol—p—a—p;1 —p—asz).

Combining these results we can obtain Kummer’s 24 solutions of the hyper-
geometric equation [9, vol. I, p. 105].

There are also non-Lie symmetries of the equation P®)f = 0. For example,
the transformation formula (3.31) suggests the symmetry transformation

(3.32) [SF)E . £, 1) =£ﬁf gl N e

u t

which can easily be verified directly. The action of S on f; leads to an identity
equivalent to (3.31). If f = f,,t*u”, application of S yields

(3.33) Si-pa-o&om) = (& = n) P TIfHE ).

This transformation appears not to be a direct consequence of SL(4, €) symmetry.

In conclusion we present an example of the use of Weisner’s method and
SL(4,€) symmetry to obtain generating functions for the ,F, which are not
consequences of SL(2, €) symmetry. (A systematic derivation of possible generating
functions will be carried out in another publication.) We follow the method
described in §1 and [11]. Let f(&,n,t,u) be a solution of the simultaneous
equations

(L, — 3L, — %Ls)f =(y + 1f, (Ly + %L4 - %Ls)f = pf,

(3.34)
POf =0, (Liop + Lis)f =0,

which is analytic at # = 0. The first two equations imply

f = ureen| ”)

S

Substituting these results into P'Vf = 0 we find

and the third implies

y 1L —y9 o —dzw

(335) f= (1—z)V2F1(2, SRR T

)t”u‘y, z= ué/t,w=g,
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unique to within a multiplicative constant. Since f can be expanded in a power
series in z, (3.21) and the methods of [11] imply

_y.p|zr oy A
(3 36) (1 Z) ZFI( 2 ’ 2 s 1 p9(1 _ Z)Z
=Y 2" Fi(—=n,n—y;1—p;w), 2] < 1.

n=0

Setting w = 0 in (3.35) we find

)
c, = .
n

(Another group-theoretic derivation of (3.36) is given in [11].) We can obtain more
identities by applying the group operators of SL(4,€) to f and expanding the
resulting function as a series in the functions f;. Similar methods applied to the
equation Qf = 0 enable one to derive generating functions for certain sub-
classes of the ,F, via SO(5, €) symmetry.

Acknowledgment. The author wishes to thank the referees for several helpful
suggestions.
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CAPACITY AND THE NONLINEAR NAVIER-STOKES EQUATIONS*

VICTOR L. SHAPIROY

Abstract. A classical result concerning capacity theory and removable sets for harmonic functions
of finite energy is extended to solutions of the nonlinear Navier-Stokes equations. The theory of
multiple trigonometric series is used in proving the basic lemma, and a new theorem concerning capacity
theory and removable sets for first order systems is also established.

1. Introduction. Let Q be a bounded domain in Euclidean N-space, Ej,
N =2 andlet f = (f}, -, fy) beafixed vectorin L,(Q). Also letu = (uy, - - -, uy)
and p represent respectively a vector in W3(Q) and a function in L,(Q) (where in
W{(Q) the j corresponds to the number of derivatives).

We shall deal for the most part in this paper with the nonlinear stationary

Navier—Stokes equations [4, p. 115],
w VAu; — u;0u;/0x; — O0p/ox; + f; =0, i=1,---,N,

where v is a constant. (In § 5, we deal with the nonlinear nonstationary Navier—
Stokes equation.)
From a classical point of view the system (1.1) is equivalent to the following
system:
W) vAu; — 0[uu;l/0x; — dp/ox; + f; = 0, i=1,---,N,
ou;/0x; = 0.

Consequently, and in view of the fact that u is in W}(Q) we shall say (u, p) is a
distribution solution of (1.1) in Q,, an open subset of Q, if the following holds:

vuAd + uu,0/0x; + pod/ox; + ¢fldx =0, i=1,---,N,
Q
(1.2)

J [u0¢/0x;]dx =0 forall¢in Cg(Q,).
Q,
By capacity in this paper we shall mean ordinary capacity. In particular, if

Z is a relatively closed set in Q, we shall say Z is of capacity zero (or sometimes
of ordinary capacity zero in Ey) if

[ = sp ¥ durdu) = o0 for N 23,
zZYZ

f f log|x — y|” 'du(x)du(y) = +o© for N =2
zZvZ
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for all nonnegative Borel measures in Q having their support in Z with u(Z) = 1.

We shall say (u, p) is in class .2/(Q) if u and p are as described above, that is,
u; is in Wi(Q) fori=1,---, N and p is in L,(Q).

We shall say a relatively closed set Z < Q is a removable set for the nonlinear
stationary Navier-Stokes equations with respect to the class /(Q) if the following
holds:

If (u,p) in Q) is a distribution solution of (1.1) in Q — Z, then (u,p) is a
distribution solution of (1.1) in Q.

Motivated somewhat by [2] (which was in turn motivated by [3]), by [1],
and by [6], we intend to establish the following result.

THEOREM 1. If Z = Q is a relatively closed set of capacity zero, then with
respect to the class /(Q), Z is a removable set for the nonlinear stationary N avier—
Stokes equations.

With H(Q) designating the subclass of vectors in W3(Q) defined in [4, p. 115],
we shall obtain as a corollary to Theorem 1 the following result.

COROLLARY 1. Let Z < Q be a relatively closed set of capacity zero. Also let
u be in H(Q), p be in L,(Q), and f satisfy a Hélder condition in Q. Suppose that
(u, p) is a classical solution of (1.1) in Q — Z. Then (u, p) is a classical solution of (1.1)
inQ for N =2or3.

To be quite explicit, when we say (u, p) is a classical solution of (1.1) in Q,, an
open subset of Q, we mean that u; and p are respectively in C%(Q,) and CY(Q,) for
i=1,---, N and satisfy (1.1) at each point x in Q,.

We shall say that Q is a cylindrical domain in Ej if there exists a domain Q*
in Ey_; and an open interval (a, b) of the real line such that Q = Q* x (a,b).
Similarly, we shall say Z is a cylindrical set in Ey if there exists a set Z* in Ey_,
such that Z = Z* x (a, b).

If f is the identically zero vector, we shall refer to (1.1) as the nonlinear
stationary Navier—Stokes equations with zero external force.

As a corollary to Theorem 1 and [1, p. 88], we shall also obtain the following
result.

COROLLARY 2. Let Q be a bounded cylindrical domain in Ey, N = 3, and let Z
be a relatively closed, cylindrical set contained in Q. Then a necessary and sufficient
condition that Z be a removable set with respect to the class </(Q) for the nonlinear
stationary Navier—Stokes equation with zero external force is that Z be of capacity
zero.

We shall deal with the analogue of Theorem 1 for the nonlinear nonstationary
Navier-Stokes equations in § 5.

We shall use the standard summation conventions in §§ 1, 2, 4 and 5. In § 3,
which deals with multiple trigonometric series, we shall not use the convention
when dealing with Fourier coefficients.

2. Proof of Theorem 1, Corollary 1 and Corollary 2. We first state Theorem A.
THEOREM A. Let Z < Q be a relatively closed set of capacity zero. Let b¥%(x),
v,(x), and F(x) be respectively functions in C YQ), locally in L,(Q), and locally in
L) forj=1,---,Nandq=1,---, Q. Suppose that (vy, - - - , vg) is a distribution
solution of
(2.1) biov,/0x; + F =0

inQ — Z. Then (v, - -+, vy) is a distribution solution of (2.1) in Q.
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To be quite explicit, when we say (vy, - -, vg) is a distribution solution of
(2.1) in Q,, an open subset of Q, we mean

2.2) f [0,8(b%¢)/x; — F$ldx =0 forall pin CF(Q,).
Q

Using multiple trigonometric series, we shall prove Theorem A in § 4. Theorem
A is strongly motivated by our previous theorem [6, p. 604].

We now deduce Theorem 1 from Theorem A.

First of all we observe from the fact that u; is in W5(Q) fori = 1, ---, N that
both of the following facts hold :

f [u;0¢/0x;]dx = —J [pOu;/0x ;] dx
Q Q

(2.3)

forgin CPEQ) and i,j=1,---, N,
and
(2.4) O(uu;)/0x; isin  L,(Q)

and furthermore
f [uu;0¢/0x;] dx = —f [PO(u;u;)/0x;] dx
Q Q

for¢gin CPQ) and i=1,.--,N.

Consequently on setting
(2.5 v = u/ox;,

we see from (1.2), (2.3), (2.4), and the hypothesis of the theorem that for fixed i,
(v, -+, vly, p) is a distribution solution of

(2.6) vovh/ox; — Op/ox; + [ fi — O(uu,)/0x;] = 0

in Q — Z. But from (2.5) and the hypothesis of Theorem 1, we see that vj. and p are
in L,(Q) and [ f; — O(uu;)/0x,] is in L,(Q). We consequently conclude first from
Theorem A that (v}, - -, v}, p) is a distribution solution of (2.6) in Q; and in turn
from this last fact, (2.3), and (2.4) that

f Db + uadbjox; + pdd/ox, + ¢fldx = 0
2.7) Q
forall¢in C¥EQ) andi=1,-.--,N.

Next we obtain immediately from Theorem A that since (ug, ---, uy) is a
distribution solution of du;/0x; =0 in Q — Z, it is a distribution solution of
0u;/0x; = 0 in Q. Consequently,

(2.8) f u0¢/ox; =0 forall¢in Cg(Q).
Q
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But (2.7) and (2.8) together give Theorem 1, and the proof of Theorem 1 is complete.
To establish Corollary 1, we observe from (1.1), (1.1), and (1.2) that (u, p) is
a distribution solution of (1.1) in Q — Z. Consequently, we obtain from Theorem 1
that (2.7) and (2.8) hold.
Next, let ® = (¢,, -, ¢y), Where ¢; is in CF(Q), j = 1,---, N, and where

(2.9) 0¢;/0x; = 0.

Observing from (2.9) that [, pd¢;/0x;dx =0 and also that [,uAd,dx
= — [ [0u;/0x ; 0¢;/0x;] dx, we conclude from (2.7) and (2.9) that

(2.10) J;! [vOu;/0x; 0¢p;/0x; — uu;0¢;/0x;] dx = f ¢, f dx.
Q

We consequently conclude from (2.10) and [4, p. 115] that u is a generalized
solution of (1.1) in Q. But then it follows from [4, Theorem 6, p. 131] that u; can be
defined at the points of Z so that itisin C%(Q)fori = 1, ---, N. Now Z is of capacity
zero. Since dp/dx; is in C%Q — Z), it then follows from (1.1) that dp/0x; can be
defined at the points of Z so that it is a continuous functionin Q fori =1,---, N.
But this implies that p can be defined at the points of Z so that it is in C'(Q).
Consequently (u, p) is a classical solution of (1.1) in Q, and the proof of Corollary 1
is complete.

The sufficient condition of Corollary 2 follows immediately from Theorem 1.
We establish the necessary condition of Corollary 1 by showing that it is a corollary
to [1, p. 88]. To do this, we suppose that Q = Q* x (a,b) and Z = Z* x (a,b),
where (a, b) is a finite open interval and Z* is a relatively closed subset of the
bounded (N — 1)-domain Q*. Also we suppose that Z is of positive ordinary
capacity in Ey. Then, as is well known, this implies that Z* is of positive ordinary
capacity in Ey_,. Consequently, there exists a subset of Z*, call it Z¥, which is
compact in Q*, of positive ordinary capacity in Ey_,, and of (N — 1)-dimensional
Lebesgue measure zero. It follows from [1, p. 88] that there exists a function
vN(Xy, -+, Xy—,) With the following properties : vy is in W3(Q*), v is harmonic in
Q* — Z*, vy is not a distribution solution of Laplace’s equation in Q%*, that is,
there exists a Y in Cg(Q*) such that [, vyAY dx, - - dxy_; # 0.

We define the vector u = (u;, ---, uy) in Q as follows: u; =0 for j =1,

oo, N — 1, upy(xq, -+, Xy) = vp(Xq, -+, Xy_1). Also we set p = 0 in Q. Then it
follows that (u, p) is in &/(Q) and in C*(Q — Z). Furthermore, with Z, = Z¥
x (a, b), it is easy to see that with f = 0 in (1.1), (u, p) is a classical solution of
(1.1) in Q — Z,. Consequently, (u, p) is a distribution solution in Q — Z of the
nonlinear Navier—Stokes equations with zero external force. If (u, p) were also a
distribution solution in Q of this set of equations, it would follow in particular
that uy(x) would be a distribution solution of Laplace’s equation in Q. But this
would imply from Weyl’s lemma and the fact that uy is already harmonic in
Q — Z, that vy could be defined in Z¥ so that it would be harmonic in Q*. But
since Z¥ is of (N — 1)-dimensional Lebesgue measure zero, this in turn implies
that vy was originally a distribution solution of Laplace’s equation in Q*, which
is a contradiction. The necessary condition of Corollary 2 is consequently
established.
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3. Fundamental lemmas. In order to establish Theorem A, we shall need
some results in multiple trigonometric series.

We shall use the following notation: Ty = {x: —n < x; <m, j=1,---, N};
m will designate an integral lattice point; for a function U in L(Ty), we shall set

(3.1 Um) = (2n)_NJ U(x) e dx.

Tn
Also (x, y) will designate the usual inner product x,y; + --- + Xxyyy, and (x, x)'/?
will be designated by |x|.

Given U in L'(Ty), we shall say U is extended by periodicity to all of Ey if
U is defined in all of Ey and is periodic of period 2= in each variable.

We first state some well-known facts in the theory of multiple trigonometric
series. (In this section we shall continue to use the summation convention only
when dealing with partial derivatives. In particular, we shall not use it when
dealing with Fourier coefficients. The situation will be clear from the context.)

LEMMA 1. Let.U be in L'(Ty) and set

(3.2) AU, x,t) = Y. O(m) emo=Imt - for ¢ >0.

Then [, |A(U,x,t) — U(x)|dx - Oast — 0.

For a proof of Lemma 1, we refer the reader to [7, p. 76].

Next, we designate the open N-ball with center x and radius r by B(x, ) and
state the following lemma.

LEMMA 2. Let U be in L(Ty) and extended by periodicity to all of Ey. Define
A(U, x,t) for x in Ey and t > 0 by (3.2). Suppose that U is equal almost everywhere
in B(x°, ry) to a function which is harmonic in the ball B(x°, r), where 0 < ry < 1.
Then lim,_,, AA(U, x, t) = O uniformly on compact subsets of B(x°, r°).

Fora proof of Lemma 2, in two dimensions, we refer the reader to [6, Lemma 5,
p. 609]. A similar proof prevails for N = 3.

Next, we establish the following fact.

LEMMA 3. There are functions A(x),j=1,---, N, which are in C*(Ey),
periodic of period 2m in each variable, and such that 0A{x)/0x; = 1 for x in B(0, 1).

To establish Lemma 3, choose a function A(x) which is in C*[B(0, 2)], equal
to one in B(0, 1), equal to 0 in B(0, 2) — B(0, 3/2), and is such that | B(0,2) Ax)dx = 0.
Set A(x) = 0in Ty — B(0, 2) and continue A(x) to all of Ey by periodicity of period
27. Clearly A(x) is in C*(Ey) and has an absolutely convergent Fourier series with
2(0) = 0. In particular,

(33) /'L(x) = Z Z(m) ei(m,x)’
m#0
where
(34) Y Jm)jmt < 0 for k=1,2,-.
m#0
For x in Ey, define 4,(x) as follows for j =1,.--, N:
(35) )’j(x) = Z — lmjj.(m) ei(m,x)/lmlz‘

m#0
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From (3.4) and (3.5), it follows that A(x) is in C*(Ey) and periodic.
Also it follows from (3.3), (3.4) and (3.5) that
(3.6) 0A(x)/0x; = Y. A(m) ™) = )(x).
m#0

But A(x) =1 in B(0, 1), and Lemma 3 is established.
Next, for j=1,---, N we introduce the functions H(x) defined in
E as follows:

(3.7) Hix)=1lim Y im,etmImt)m2,

=0 mzo
From [7, p. 72] we obtain that the following properties prevail :
H{x) isin L'Ty) and

(3.8) Hm) = im;/|m* for m#0,
H{0) = 0.
In a similar manner, we introduce the function H(x) defined in Ey as follows:
(39) H(x) = }LIEI mgo elmx) = imit |2

From [7, p. 72], we also obtain that the following properties prevail :

H(x) isin LYT,) and

~

(3.10) H(m) =|m|~2 for m#0,
H(0) = 0.

Using (3.7) and (3.8), we next establish the following lemma.

Lemma 4. Let U;, j=1,---, N, and V be functions in L'(Ty) and extended by
periodicity to all of Ey. For t > 0, define A(U;,x,t) and A(V,x,t) in a manner
analogous to (3.2). Suppose (U, ---, Uy) is a distribution solution in B(x°,r,),
0 < ry < 1, of the equation 0U;/0x; + V = 0. Then

lim [0A(U;, x, t)/0x; + A(V,x,t)] =0
=0
uniformly on compact subsets of B(x°,r,).

To establish Lemma 4, we first observe that with no loss in generality we can
suppose that x® = 0. Next we set

V'(x) = V(x) — P(0) and Uj(x) = Ufx) + V(0)Ax)
for j=1,---,N,

(3.11)

where the functions A(x) are defined in Lemma 3. It follows from Lemma 3 and
the hypothesis of Lemma 4 that

(3.12) (U}, ---, Uy) isdistributionsolutionof 0U’/0x;+ V'=0 in B(,r).
Now from Lemma 3, we have that

(3.13) 7(0)lim 0A(A;, x, t)/dx; = V(0) uniformly in B(0, 1).
t—0
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We conclude from (3.11) and (3.13) that the lemma will be established if we
show
lim [0A(Uj, x, t)/0x; + A(V',x,t)] =0
(3.14) =0
uniformly on compact subsets of B(0, ry).
To establish (3.14), let ¢ be a function in CJ[B(0, r,)]. Extend ¢ to all of Ty
by defining it to be in zero in Ty — B(0, r,). Then ¢ and all its partial derivatives

have absolutely convergent Fourier series, and it follows from (3.11) and (3.12)
that

N
(3.15) Y [Z im;U’(m) + V'(m):|d3(—m) =0.
m#0|_j=1

Next, using (3.7), (3.8), (3.9) and (3.10) we define U(x), a function in L!(Ty),
as follows:

(3.16)  Ulx) = (2n)~ L [Z = NHY) + Vix - y)H(y)] dy.

j=1

We obtain from (3.8), (3.10) and (3.16) that

O(m) = [Z im;U’(m) + V'(m)] / Im> for m#0,

(3.17)
0(0) =
In particular from (3.15) and (3.17), we have that
(3.18) Y. Om)lm|*¢(—

We conclude from (3.18) that | ry UX)AP(x) dx = 0. But the support of ¢ is
contained in B(0, r,). Consequently,

(3.19) L(O ) U(x)Ap(x)dx =

Since ¢ was an arbitrary function in C&[B(0, 1)], we conclude from Weyl’s
lemma that U(x) is equal almost everywhere in B(x° r,) to a function which is
harmonic in B(0, r,). But then it follows from Lemma 2 that

(3.20) lim AA(U,x,t) =0 uniformly on compact subsets of B(0, ;).
t—0
From (3.11) and (3.17), we see that

(3.21) —AA(U, x, 1) = 0A(U', x, 1)/dx; + A(V', X, 1).

Relations (3.20) and (3.21) together give (3.14), and the proof of the lemma is
complete.

LEMMA 5. Let V be a function in Ly[B(x° ry)], 0 <ro <1, and let U;,
j=1,---, N, be functions in L,[B(x°, r,)]. Also, let Z be a closed set of capacity
zero contained in the interior of B(x°,r,). Suppose that U, ---, Uy and V vanish
outside of a compact subset of B(x°, r,). Also, suppose (U, --- , Uy) is a distribution
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solution in B(x°, o) — Z of the equation
(3.22) U, Jox; + V = 0.

Then (U,, ---, Uy) is a distribution solution of (3.20) in B(x°, r).

With no loss in generality, we can suppose from the start that x° = 0. Next,
we extend V and Uy, ---, Uy to all of Ty by defining these (N + 1)-functions to
be zero in Ty — B(0, ry). We then extend them by periodicity of period 2z in each
variable to all of Ey.

Next, we set for t > 0,

AU, x,t) =Y, U (m) eim~Imit

(3.23) and
AV, x,t) = Y, V(m) em)~Imlt,
and observe from Lemma 4 and the Heine-Borel theorem that the following fact
holds:
If B is an open set with Z < B < B(0,1), then
(3.24) }Lr{)l [0A(u;, x, t)/0x; + A(V,x,1)] =0

uniformly in Ty — B.

Next, with H(x) defined by (3.9), we see from [7, p. 72] that we can find a
positive constant #, such that

(3.25) H(x)+ny=1 forxin Ey.

We define G(x) to be
(3.26) G(x) = H(x) + ny forxin Ey

and observe from [7, p. 72] that G has the following properties :
(327 () GisinC*[Ey—U {2nm}],
(i) AG(x)=1inEy — L"_'J {2nm},
(i) there are positive constants oy and Sy such that for x in Ty — 0,
1G(x) — oylx| "™~V =y for N =3
and
|G(x)—oylog|x| | < By for N =2.

In particular, it follows from (3.27) that a closed set Z' < B(0, 1) is of capacity
zero if and only if

L' L Glx — y) du(x) du(y) =

for all nonnegative Borel measures p having their support in Z’ with w(Z’) = 1.
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Let D be a bounded domain, and let D designate its closure. Following
[5, p. 24], we say D satisfies the condition of Poincaré if each point on its boundary
is the vertex of a cone of revolution whose interior lies in D. Using the techniques
in the theorem given in [5, p. 33], it follows from (3.25), (3.26) and (3.27) that the
following fact holds:

(3.28) Let R, = B(0, 1) be the union of a finite number of closed domains each
satisfying the condition of Poincaré. Then there exists a unique non-
negative Borel measure p, having its support in R, with u(R,) = 1 such
that W(x) = fp G(x — y)du,(y) is a continuous periodic function in Ey
and W(x) takes a constant value in R,. This constant value is equal to

T v, G = y) du(x) dp(y) = I(y).

Now let Z be the set of capacity zero in the hypothesis of the lemma. Then,
using (3.28) and standard capacity theory [5, pp. 50-52], it follows that there
exists a sequence of closed sets {R,}; with the following properties :

(3.29) Each R, is the union of a finite number of closed domains each of which
satisfies the condition of Poincaré.

(3.30) Each R, is contained in the interior of B(0, 1).

(3.31) R,o> Ry, for k=1,2,---.

(3.32) Z is in the interior of each R,.

(3.33) If xisin Ty — Z, there is an R, such that x is not in R,.
(3.34) For each R,, (3.28) holds. In particular, W(x)/I(y,) = 1 for x in R,.
(3.35) ,}Lrgl(uk) = +0.

(3.36) 0 < Wx)/I(w) =<1 forxinTy andallk.

(3.37) ’}Lrg W(x)/I(p) =0 forxinTy — Z.

Next, we set fi(m) = 21)"" [, ™" dp,(x) and observe from (3.26) that

G(m) = |m|~? for m#0,

(3.38) .
G(0) = ny.
It then follows from (3.28) that
(3.39) Wym) = Gm)fy(m)(2m)"
and that
(3.40) YAGm)| | am)* = I(w)/2m)*

m

From (3.23), (3.39) and (3.40), we next observe from Schwarz’s inequality
that for t > 0 and fixed m°,

@0 [ 0AW,,x, 0/ox; Wx)e ™ dx (cont)

Y
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i Z iijj(m)Wk(mO —m) e~ Imlt

j=1m

(3.41) =

< i [ lomrimlems - m)l) .
To establish the lemma, it is sufficient to show that
N

(3.42) ,-; im;U (m) = —V(m).

For suppose that (3.42) is established. Then it follows from (3.23) that
(3.43) 0A(U;, x,t)/0x; = —A(V,x,t) for t>0.
Next, we have from Lemma 1 that as ¢t — 0,

f |A(V,x,t) — V]dx -0,

(3.44) "

J |A(U;,x,t) — Ujldx -0, j=1,.--,N.
Twn

Let ¢ be a function CF[B(0, 7,)]. Then from (3.43) and (3.44) we have

J P(x)V(x)dx = lim P(X)A(V, x, t)dx
B(0,ro) t=0 JB(0,ro)
= lim — P(x)0A(U;, x, t)/0x; dx
=0 B(0,r0)
= lim 0¢/ox; A(U;,x,t)dx
t=>0 JpB(0,ro)

B(0,ro)

and the lemma is established.

It remains to show that (3.42) holds. Let m® be a fixed lattice point. We shall
show that (3.42) holds with m replaced by m°.

Let ¢ > 0 be given. Since U; is in L*(Ty) for j = 1,---, N, it follows from
(3.38) that the last sum on the right in (3.41) is finite. Consequently, it follows from
(3.35) and (3.41) that there exists a k; > 0 such that

/ ]

(2n)—N 3A(UJ, X, t)/axj [/Vk(x) e—i(mo,x) dx

Tn

(3.45)
<¢ for k=zk, and t>0.
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Since Z is of capacity zero and consequently of N-dimensional Lebesgue
measure zero, it follows from (3.36) and (3.37) that there exists k > 0 such that

(3.46) (2n)"”f VW) dx/I[y] < & for k= k,.
T~
Now set
(3.47) ky = max (k,,k,).

Then it follows from (3.36), (3.44), (3.46) that there exists t; > 0 such that

(2n)" f AV, %, O] Wi ()| dx/ Tt ]

(3.48) Q| AWV, x,t) — V(x)dx + ¢

Tn

=2 for O0<t=ty.

Next, we observe from (3.24), (3.29), (3.30), (3.32) and (3.44) that there exists
t, > 0 such that

(3.49) f [0A(U;, x,t)/0x; + A(V,x,t)| dx <¢ for 0<t=1t,.
TN~ Rij
Next we set
(3.50) t; = min(t,,t,)

and observe from (3.23), (3.49), (3.34), (3.36), (3.45), (3.47), (3.48) and (3.50) that
for0 <t =<t

o Imole

@y

i im0 (m°) + V(m°)

[0A(U;, x, t)/ox; + A(V,x, )] e” ™™ dx

T~

<e¢+

f [aA(Up X, t)/axj + A(V, X, t)] e—i(mo,x) dx
Ry

Se+

j [0A(U;, x, t)/ox; + A(V, x, )]W; (x) e~ """ dx
R

k3

/ I [ﬂk3]

<2+

f [0A(U,, x, t)/0x; + A(V, x, 1)]W,(x) e~ 1" dx
Tn

/ Iw,]

S22+ Q)" + U AV, x, )W, (x) e ) dx /I (4]
Tn

<2+ 2r)Me + (2n)N2e.
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We conclude that
N
(3.51) Y imdU,(m°) + V(m®)| < 4e™Ve for 0 <t <ty
j=1

Since ¢ was an arbitrary positive number, we obtain immediately from (3.51) that

7:1 imYU (m°) = — V(m°). Consequently, (3.42) is established, and the proof of

the lemma is complete.

4. Proof of Theorem A. Letting Q, designate an open subset of Q (and
returning to the summation convention), we first observe that (v, ---, vy) is a
distribution solution of (2.1) in Q, if and only if (v, -+, vy) is a distribution
solution in Q, of

4.1) obv,)/ox; + F' =0, where F' =F — v,0b4/0x;.

Next we observe that b, is locally in L*(Q) and that F — v,0b%/0x; is locally
in L'(©). We conclude that Theorem A will be established once we establish the
following theorem.

THEOREM A'. Let Z <= Q be a relatively closed set of capacity zero. Let u;(x)
be locally in L*(Q) for j =1, ---, N and let F(x) be locally in L*(Q). Suppose that
(uy, -+, uy) is a distribution solution of

4.2) du;/ox; + F =0

inQ — Z. Then (u,, - -, uy) is a distribution solution of (4.2) in Q.
To establish Theorem A’, we see, using the notion of partitions of unity, that
from the start we can suppose that

4.3) Q= B(0,ry), where 0<ry<Il.
Next, let ¢ be a function in CY[B(0, ry)]. In particular, suppose
(4.4) ¢(x) =0 for BO,r,) — BO,r,), where 0 <r, <r,.

Theorem A’ will be established if we show
4.5) f [u;0¢/0x; — Fpldx = 0.
B(0,ro)

To establish (4.5), we introduce r,, r,, and r; such that
(4.6) O<r,<ry<r,<r <ry<l,
and choose a function A(x) in C¥[B(0, r,)] satisfying the following conditions:
@7 ) = {1 in  BQ,r,),
0 in B(0,r,) — BO,r,).
Next, in B(0, ry) we define the functions U; and V as follows:
= A, j=1,--,N,

4.8)
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Also, we define the set
4.9) Z =ZNBoO,r),

where B(0,r,) designates the closure of B(0,r,), and consider the following
equation:

4.10) oU;/ox; + V = 0.

We next establish the following:
4.11) (U,,---, Uy) isa distribution solution of (4.10)in B(0,r,) — Z.

To see this fact, let £ be a function in C3'[B(0, r,) — Z]. Then A¢ is a function
in C3[B(, r,) — Z], and from (4.2) and the hypothesis of Theorem A’ we obtain

0= J [u;0(A8)/0x; — ALF] dx
B(0,ro)
= f [Au;08/0x; — (AF — u;04/0x;)¢] dx
B(0,ro)

= f [Uo¢/ox; — VE] dx.
B(0,ro)

Consequently (4.11) is established.
Next, we see that

4.12) (U,,---, Uy) isadistribution solution of (4.10) in B(0,r,) — Z'.

To establish (4.12), select a function y in C*[B(0, r,)] which has the following
properties :
1 in B(0,r,),
(4.13) Ylx) = { .
0 in BQ,ro) — BO,(ry + r)/2),

and let ¢ be a function in CY[B(0, r,) — Z']. Then it follows immediately from

(4.9) and (4.13) that &y is a function in CZ[B(0, r,) — Z]. Consequently, we have
from (4.11) that

(4.14) f [U a(Ep)/ox; — VEp]dx = 0.
B(0,rp)

But from (4.5), (4.7), (4.8) and (4.13) we have
U (x)0(EP) (x)/0x; — V(x)E(x)p(x)

4.15
@19 = U;(x)0¢(x)/0x; — V(x)é(x) almost everywhere in  B(0, r,).

But then from (4.14) and (4.15) we have

J [U0¢/ox; — VE]dx = 0,
B(0,ro)

and (4.12) is established.
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Next, we observe from (4.5) and (4.9) that Z’ is a closed set of capacity zero
contained in the interior of B(0,r,). Also, we see from (4.7) and (4.8) that
(Uy, -+, Uy) and V meet the conditions in the hypothesis of Lemma 5. We con-
sequently conclude from Lemma 5 that

4.16) (U, ---, Uy) isadistribution solution of (4.10)in B(0, r,).

Letting ¢ be the function in CJ[B(O0, r,)] described in (4.4) and (4.5), we have
from (4.16) that

4.17) L [U0¢/0x; — Vldx = 0.
(0,ro)

But from (4.4), (4.6), (4.7) and (4.8), we obtain
U(x)0¢(x)/0x; — V(x)p(x)
= u;0¢(x)/0x; — F(x)¢(x) almost everywhere in B(0,r,).

Relations (4.17) and (4.18) together give us (4.5), and the proof of Theorem A’
is complete.

4.18)

5. The nonlinear nonstationary Navier-Stokes equation. In this section, Q
will be a bounded domain in Ey, ;, where we now write ¢ for xy, ;. Throughout
this section we shall assume f; is in L'Q),j=1,---,N.

We shall say (u, p) is in the class 8(Q2), where u = (uq, - - - , uy) if the following
holds:

p and u; are in LY (Q)forj=1,---, N.Alsou ; has first order distribution
derivatives in Q which are such that du;/0x, is in L*(Q)fork = 1,---, N
and du;/0t is in L(Q).

Classically the nonlinear nonstationary Navier—Stokes equations are given
by

Ou;/0t — vAu; + u;0u;/0x; + 0p/ox; — f; = 0, i=1,---,N,

(5.1

where v is a constant (see [4, p. 141]).
As a consequence, we shall say (u, p) in Z(Q) is a distribution solution of (5.1)
in Q,, an open subset of Q, if the following holds:

[u,0¢/0t + vu,Ad + uu;0¢/0x; + pdp/0x; + ¢f;]dx

Q

(5.2) =0 for i=1,---,N,

j uj[0¢/0x;]dx =0 forall ¢in CF(Q,).
Q

We shall say a relatively closed set Z < Q is a removable set for the non-
linear nonstationary Navier—Stokes equations with respect to the class #(Q) if



NONLINEAR NAVIER-STOKES EQUATIONS 343

the following holds:

If (u,p) in BQ) is a distribution solution of (5.1) in Q — Z, then (u,p) is a
distribution solution of (5.1) in Q.

The following theorem holds.

THEOREM 2. If Z = Q is a relatively closed set of capacity zero, then with
respect to the class B(Q), Z is a removable set for the nonlinear nonstationary
Navier-Stokes equations.

The proof of Theorem 2 is very similar to that of Theorem 1; namely, it follows
from Theorem A. We leave the details of the proof to the reader.

REFERENCES

[1] L. CARLESON, Selected Problems on Exceptional Sets, Van Nostrand, Princeton, 1967.

[2] R. H. DYEr AND D. E. EDMUNDS, Removable singularities of solutions of the Navier—Stokes
equations, J. London Math. Soc. (2), 2 (1970), pp. 535-538.

[3] J. SERRIN, Local behavior of quasi-linear equations, Acta Math., 111 (1964), pp. 247-302.

[4] O. A. LADYZHENSKAYA, The Mathematical Theory of Viscous Incompressible Flow, Revised 2nd.
ed., Gordon & Breach, New York, 1969.

[5] O. FROSTMAN, Potential déquilibre et capacité des ensembles avec quelques applications d la théorie
des fonctions, Comm. of the Math. Lund, 3 (1935), pp. 1-118.

[6] V. L. SHAPIRO, The divergence theorem for discontinuous vector fields, Ann. of Math. (2), 68 (1958),
pp. 604-624.

, Fourier series in several variables, Bull. Amer. Math. Soc., 70 (1964), pp. 48-93.

7



SIAM J. MATH. ANAL.
Vol. 4, No. 2, May 1973

SINGULAR PERTURBATION OF AN IMPROPERLY
POSED PROBLEM*

L. E. ADELSONY

Abstract. In this paper we compare the solution of an improperly posed Cauchy problem (assumed
to exist) for an elliptic operator having a small coefficient ¢ multiplying the highest order derivatives
with the solution of the appropriately defined Cauchy problem for the elliptic operator resulting from
setting ¢ equal to zero. We prove that if the two solutions belong to the appropriate spaces of functions,
then their difference in the #?-norm over some appropriately defined subdomain is of order ¢ to some
positive power.

1. Introduction. There has been much work done in recent years on singular
perturbation for properly posed problems, both in ordinary and partial differential
equations. Nearly all of the published papers on this subject investigate the struc-
ture of boundary layers and make use of asymptotic expansions in establishing
convergence (in some norm) of the solution of the perturbed problem with a small
parameter to the solution of the unperturbed problem as the parameter goes to
zero. For work in this area see for instance [10], [18]-{22].

The techniques used in studying singular perturbations for well-posed
problems do not carry over to improperly posed problems. In fact such problems
have been largely ignored in the literature. One result in this area is due to Payne
and Sather [14]. They studied a specific case in which a Cauchy problem for an
elliptic equation reduced to an initial boundary value problem for the backward
heat equation and used a convexity argument to obtain the desired results. As-
suming the existence of solutions for the family of “perturbed’ problems, these
authors have shown that one obtains convergence in #2 of the perturbed solution
to the unperturbed one. Their result is, however, somewhat impractical precisely
because of the assumption of existence of solutions for all values of the parameter
less than some fixed number. Their results, however, do prove that one may
compare the solution of the perturbed problem for a fixed value of the parameter
with the solution of the unperturbed problem (parameter = zero).

The question of existence of solutions for all values of ¢ (the small parameter)
in the interval 0 < ¢ < g, presents no difficulty in most reasonable well-posed
problems for partial differential equations or ordinary differential equations.
Thus, in those cases one may actually allow ¢ to go to zero and prove that the
perturbed solution converges to the unperturbed solution in some suitable norm.

On the other hand, in improperly posed problems for given data the solution
may well fail to exist for some or even all values of ¢ in the interval. This difficulty
can be at least partially overcome by allowing for small variations in the data
over the range of values of ¢ under consideration.

These existence questions are extremely complicated and we do not attempt
to answer them in this paper. Our main goal will be to compare the solution of
an improperly posed Cauchy problem (assumed to exist) for an elliptic operator

* Received by the editors July 22, 1971, and in revised form February 22, 1972.
t Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506.
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with a small coefficient ¢ multiplying the highest order derivatives with the
solution of the appropriately defined Cauchy problem for the elliptic operator
resulting from setting ¢ equal to zero.

One such perturbed problem we consider is

ebLv + v =u,
Lu = E(x,¢,v,u),

in an N-dimensional domain D. Here b is a constant which may be positive or
negative. On X which is a piece of the boundary of D we specify Cauchy data for
v, grad v, Lv, and grad (Lv). We require that L be a uniformly elliptic operator
and that E satisfy a uniform Lipschitz condition in its last three arguments. We
also pose the corresponding unperturbed problem

Lw = E(x,0,w,w)

in D with w and grad w specified on X. Of course, there are certain compatibility
conditions the data must satisfy.

It is well known (see, e.g., Hadamard [5]) that solutions of such improperly
posed problems even if they exist will not in general depend continuously on the
data. It has been shown, however, by John [6], Pucci [15], Laurentiev [7], [8],
and others that if the class of admissible solutions is suitably restricted, then
solutions of the type of problem indicated above will in fact depend Holder
continuously on the data. The precise restrictions will be spelled out in the next
section.

We prove that if v and w belong to the appropriate spaces of functions, then
their difference in the #?-norm over some appropriately defined subdomain
D, of D is of order ¢ to some positive power depending on the sign of b and the
size of the subdomain. To achieve the result, we use the triangle inequality

lo = wllp, = llo — ullp, + llu = wlp,

and treat the two terms on the right separately. In fact we use more or less standard
techniques on the first term and logarithmic convexity arguments on the second.
This is somewhat reminiscent of the methods used by Schaefer [16] in studying
a different class of problems.

It is obvious from our results that if we were assured of existence of the solution
v (in the appropriate space) for a range of values of ¢ satisfying 0 < ¢ < ¢, and
if in addition the corresponding solution w existed, then v would actually converge
tow in #*D,) as ¢ — 0.

In this paper we also generalize our result to include the case in which we
allow the function E to depend also on grad v and grad u. This assumption essen-
tially cuts the exponent of ¢ to half of what it is for the corresponding case without
the extra dependence.

2. Notation and statement of the problems. Let D be an N-dimensional
domain bounded by a closed surface C, and let X be that portion of C on which
Cauchy data are prescribed. The complement of X with respect to C is denoted
Y. For the purpose of this paper we shall assume X (the closure of X) is a C!-
surface.
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Let L denote the elliptic operator:
Lu = (aijuai)’j,

where we have adopted the summation convention over repeated indices and
the comma denotes partial differentiation. We also assume that the a;;’s are C'-
functions of the space variables x = (x, -+, xy).

Let the operator L be symmetric and strongly elliptic, i.e., the matrix a;;
is symmetric and there exists a positive constant a, such that for all vectors ¢;
the inequality

1 N N
(2.1) - Z 5;2 = aijéiéj = dag Z 5;2
Ao i=1 i=1
holds at every point in D.
We shall compare solutions v and w of the following set of improperly posed

Cauchy problems.
PROBLEM A.

ebLv +v=1u
} in D
Lu = E(x,¢&,v,u)
with
Lv = hx,¢), grad (L") = g(x,¢)

on X, i =0,1. (L' denotes i applications of L.) Here b is a constant and gy(x, ¢)
denotes for each i a vector-valued function.

We assume that E satisfies a uniform Lipschitz condition in its last three
arguments, i.e., there exist constants 4., A,, and A5 such that

2.2) |E(x,&,v,u) — E(x,0,0,d) < A¢¢ + Aq|v — 0| + A3lu — @l.

Furthermore, we assume that
2.3) f E*(0)dx < P2,
D

where E(0) = E(x,0,0,0) and P is a constant.
ProBLEM B.
Lw = E(x,0,w,w) in D
with
w = hy(x,0), gradw = gy(x,0) on ZX.

On X we require the Cauchy data h(x, ¢) and g(x, ¢) to satisfy
24) [massme, [epdsse
z z

for known constants IT; and y;, i = 0, 1, independent of &. Also we assume

(2.3) ho(x, &) — ho(x, 0)] = O(e)
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and

(2.6) 8o(x, &) — 8o(x, 0)| = O(e).

To determine the boundary data for u and grad u, we substitute the data for
v and its derivatives into the first equation of Problem A. In this way we always
know that

hu— ol = ( f - v ds)”z = 0)

and
lgrad (u — v)llz = 0(¢).
Similarly,
llu — wiz = Ofe)
and

lgrad (u — w)[z = Ofe).

We note that if instead of the boundary conditions prescribed for v we im-
posed

lv = ho(x, &)l = Ofe),

lgrad v — go(x, e)llz = Oe),
ILv = hy(x, €)llz = 0(1),
lgrad (Lv) — g:(x, &)l = 0(1),
W = ho(x,0)[lz = Ofe),

lgrad w — go(x, 0)[z = Ofe),

in addition to (2.4), (2.5) and (2.6), our results would remain unchanged. One can
construct examples where this relaxation is necessary in order that each of the
two problems A and B have a solution. As mentioned in the Introduction such a
relaxation might result in Problem A having a solution for a range of values of the
parameter &.

We now introduce a class of functions M as follows: a function ¢ will be
said to belong to M if

f @?rdx < M?
D

for some prescribed constant M. In addition a function i will be said to belong
to M, if

J Yy2dx + J lgrad /|2 dx < M?
D D

for some prescribed constant M,. We shall be concerned with solutions v of
problem A and w of problem B which belong either to M or M,. We assume
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throughout that for the particular value of ¢ under consideration these solutions
exist and belong to the appropriate spaces. We assume further that these solutions
are sufficiently differentiable for carrying out the indicated operations. In each
case sufficient conditions can be readily found in the literature. Note that we do
not require a priori that ue M or M,.

We propose to prove that if v and w belong to M, then the difference of v
and w in the #?-norm for some subdomain of D is of order ¢ to some positive
power. The power depends on the constant b and also on the size of the subdomain.

We shall not be able to compare v and w over all of D, but only over a class of
subdomains D, = D. We define these subdomains as follows:

Let f(x) = const. define a set of (not necessarily closed) surfaces. This set is
to be so chosen that for each o satisfying

(2.7) O<a=l

the surface f(x) = « intersects D and forms a closed region D, whose boundary
points consist only of points of £ and points on the surface f = const.

We require that f(x) have continuous second derivatives in D, . We prescribe
further that if f satisfies (2.7), then

(2.8) B=y=Dyc=D,, O0<f=y=l,
2.9 lgradf| >0 >0 in D,,
(2.10) Lf<0 in D,
(2.11) ILf| < apé*d in Dy,

where 6 and d are positive constants.

We assume that the surfaces have been so chosen that for « satisfying (2.7),
D, has nonzero measure, but that D, has zero measure.

We compare the solutions v and w in the following sense. We show that

lo— w3, = | (0 —w?dx=0e®),
Do
where y(«) is a positive function of « for 0 < « < a; < 1 and y(a;) = 0. Thus for
0 < a < a; <1 our inequality will show that if ¢ is sufficiently small, v will be
arbitrarily close to w in #? over D,.

3. Inequalities and bounds. In this section we shall introduce the mathematical
arguments and tools which are required for handling this problem and even more
complicated problems, but without the involved detailed arguments required for
these other problems. It is hoped that this will permit us to put across the ideas
more efficiently. In treating a generalization of this problem, we shall merely
have to extend the arguments of this section in various directions. The essence of
our methods for handling the indicated classes of singular perturbation will thus
be contained in this section.

3.1. Our first objective will be to show that for 0 < a < 1 the quantity
lu — v|3, is of order ¢ in general and under certain conditions is of order ¢?.
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We first consider the function 7(x) defined in D, as
1 in D,UZX,
1 - f(x)

1 -«

(3.1) 1(x) =
Dl - (Daz U Za)a

where X, is the portion of £ which lies on the boundary of D,, and S, will denote
the portion of the surface given by f(x) = a so that the entire boundary of D,
is £,US,. Clearly ©(x) =0 on S, and |t(x) £1 in D,. Since feC*D,),
|10l £ M and |t,;7,; < M, in D, for constants M; and M.

Thus we have

(3.2) lu—vl}, = j (u—v)?dx < J (u — v)? dx,

o« D,

where s is a positive integer to be chosen so large that all subsequent integrals
over S, vanish.

We now state and prove some lemmas which will allow us to compute the
desired results more readily.

LEMMA 3.1. If b is less than zero and v e M is a solution to Problem A, then

(3.3) f (U — v)? dx £ 0(e?) + ROSJ 7 2(u — v)*dx

Dy

for a computable constant R,,.
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