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NAYLOR TRANSFORMS OF MELLIN TYPE*

W. J. HARRINGTON AND K. A. PATELf

Abstract. Some transforms introduced by Naylor (1963) are characterized in terms of Mellin
transforms. This facilitates the analysis of transform properties. A problem of steady-state heat in a
finite circular sector (or wedge) is considered to illustrate the use of one of the transforms and its
properties.

1. Introduction. In 1], Naylor introduced several Mellin-type integral trans-
forms related to boundary value problems involving the Laplacian differential
operators in polar and spherical coordinates. The transforms were generated
through an integral representation of solutions in terms of suitable Green’s func-
tions.

In this paper, it is shown that each of these Naylor transforms can be identified
as an ordinary Mellin transform by considering an extended domain of definition
of the function involved. This interpretation enables one to obtain a variety of
useful properties of the Naylor transforms directly from properties of the Mellin
transform. These include the inversion integral, operational properties, and con-
volution formulas.

Although Naylor defines the transforms on the domains 0 < r < a and
a < r < it is sufficient, and more convenient for our purposes, to consider
scaled radial variables r on (0, 1) or (1, ) respectively.

2. Naylor transforms on 0 < r < for plane polar coordinates.
2.1. Definitions and relationships to Mellin transforms. Considerfto be a real

function on 0 < r < 1 such that:
(i) f is piecewise continuous and of bounded variation in every finite interval

[a,b]whereO<a<b< 1;
-a-1(ii) For some real a > O, fo r If(r)[ dr is convergent.

Let the Naylor transforms and 2 be defined as follows:

(1) {f(r); r s} F(s) (r- + r--)f(r)dr;

(2) {f(r); r s} F(s) (r- r )f(r) dr.

We extend the domain of r to (0, oe) and consider two extensions of the function f,
f and f, defined by

5f(r), O<r< 1,
() fl,2(r)

+_f(1/r), < r < oo,
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r 11 f,E(r) drwith the
-a-l[o r f(r)[ dr and is convergent. Thus one recognizes that the Mellin trans-

forms

(4) {f,,2(r); r s} r ’fl,2(r)dr

are convergent if -a < Re (s) < a and that (with p l/r)

(5)

with the transform functions defined

2.2. Inversion integral. The inversion of (1) and (2), in the light of (5), is
given by the standard Mellin inversion integral

(6) f {F,(s)} f(r), r-Fl,(s) ds, 0 < r < 1,

where L denotes the line, Re s 2, with 121 <
2.3. Operational properties. Let f continuous on [0, 1]. Then on [0, ),

f is continuous and f is continuous except for a jump of [-2f(1)] at r 1.
Thus, if the Naylor transforms ,{rf’(r)} exist, one readily obtains the formulas

(7) {rf’(r)} {rfh(r)} -sf(s) + 2f(1),

(8) {rf’(r)} {rfi(r)} -sfl(s).

If f and f’ are continuous on [0, 1] and if ,{[r(d/dr)]f} exist, then
using (7) and (8) with g,(r) rfi,(r), one obtains

(9) r

2.4. Convolution formulas. Consider ,e{f} F,e(s) {f,e} and
,{g} Gl,e(s)= {g,}. In terms of the extended functions f, and gl,
the standard Mellin convolution formula for -{F(s)G(s)} is applicable pro-
vided F and G have a common strip of convergence. Thus

(11) - {Fi(s)Gj(s)} x- l(r/x)gj(x) dx.

Before proceeding further, one should note that the definitions (1) and (2) imply
that Fl(S and F2(s are respectively even and odd functions of s. Thus one can

In certain cases one can consider e 0 as a limiting case. Thus for each 6 > 0,
2 r6} 2s/(s 62), IRe s[ < 6. In a limiting sense, we shall consider2 1} Z/s, defined on Re 0
except at 0. The inversion integral on Re 0, interpreted as a Cauchy principal value at 0, is
applicable.
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readily obtain the following meaningful formulas in terms off and g on their basic
domain 0, 1]:

f’-{F(s)G(s)} x-[f(x/r) + f(rx)g(x)dx

(12)2

+ I x-[f(r/x) + f(rx)]g(x)dx
d

x- [f(rx) + f(x/r)]g(x) dx,
0

f - {F(s)G(s)} x-t[f(x/r) + f(rx)g(x) dx

(13)

+ x- [f(r/x) f(rx)]g(x) dx

I x- [fz(rx) + f2(x/r)]g(x) dx,
d0

f {F(s)G(s)} x- [f(x/r) f(rx)3g(x) dx

(14) + x f(r/x) f(rx)]g(x) dx

| x- [f(/O L(x]g(x clx.
0

2.5. Extension of another Mellin property. As in the case of Mellin trans-
forms (see Harrington [2), the application of Naylor transforms to problems
involving the Laplacian operator in polar coordinates often leads to transforms,
f(s) cos Os or f(s)sin Os, where f(s)is a known transform. The extension of the
Mellin property 2] to Naylor transforms is not automatic but the analogous results
can be established for and 2 as set forth in the following two theorems.

THEOREM 1. Let f be a real continuous function on (0, ) such that3 f(1/r)
f(r) with //{f} 4{f} f(s), IRe(s)[ < z. If, within some sector, -fl

< arg z < fl, f has an analytic extension in the subregion 0 < ]z] < 1 with continuity
on the region to include [zl 1 and if limzo zSf(z)= 0, [Re (s)[ < , then for

(15) f(s) cos Os {Re f(rei)} and f(s)sin Os 2{ Im f(re’)}
THEOREM 2. In Theorem 1, interchange and 2 and change the restrictive

property on f to read" "f(1/r) f(r)".
Proof of Theorem 2. In the sector ]arg z] < fl, Iz[ < 1, one has f()= f(z)

and 2 Re f(z) f(z) + f(). For each 0, 0 __< 0 < fl, let Lo and L_ o denote, as in

In the last integral form one can observe that the integral defines a function h(r) on (0, v) such
that h(1/r) h(r). This is also true in (13)" in (14), h(1/r) -h(r).

Functions arising from convolution have this property. See (12) and (13).
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L’/... Lo

FG.

Fig. the directed radial lines each consisting of segments L L and L’_ 0
L"_ 0 respectively.

We consider the real-valued function,

2g(r)--f(rei) + f(re-i), 0 < r < 1,

and

(16) 2Az{g If(rei) + f(re-i)](r- r--)dr I + I2 + 13 + 14,

where

and

I1 f(reiO)r dr e- iso f(z)z dz,

I2 f(re-i)rS- dr eisO f(z)z dz,
20

I3 f(reiO)r- dr ei f(z)z dz
-0

I4 f(re- i)r-- dr e-io f(z)z dz

In the consideration of 13 and I,, we extend f into the region Iz] > 1, larg zl < fl,
by defining f(z) -f(1/z). Here also f is analytic with continuity on the region
including the boundary Iz[ 1.

Thus (16) can be written in the form

(17) 2A2{g} e-iS| f(z)zs-1 dz + eis| f(z)zs-1 dz.
.L

If each of the complex integrals in (17) is equal to the corresponding integral along
0 0, then one obtains

A2{g} (cos Os)2{f},
where

g(r) Re f(rei).
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FIG. 2. Paths of integration

To establish this, consider the paths ofintegration F1 ABCDA and F2 BEFCB
as shown in Fig. 2.

By the stronger form of the Cauchy integral theorem [3],

fv f(z)z-I dz=0= fr f(z)z-I dz.

The conditions limzo zf(z)= limlzl_, zf(z)= 0,4 IRe (s)[ < , imply that the
integrals on the arcs, [z[ 6 and [z[ R, tend to zero as 6 0 + and R
respectively. Also the contributions to the two integrals from the arc BC nullify
each other.

Thus, with the analogous argument relating to L_ o, we conclude that

f(z)zs-1 dz f(z)zs-1 dz r V(r) dr //{ f} 22"{ f

Similar considerations of the combination f(rei) -f(re-) yield the other
conclusion of Theorem 2.

The proof of Theorem is analogous.

3. Naylor transforms on < r < o for polar coordinates. Closely related to
the transforms and 2 of 2 are two transforms defined by Naylor on the
domain < r < o:

(18) A3{f(r)} F3(s & (rs-1 + r--l)f(r)dr,

(19) A{f(r)} F,(s)a__ (r-i r--l)f(r)dr.

We simply note that if g(r) f(1/r), 0 < r < 1, then directly from (18) and (19)
one obtains

(20) A3 f(r)} A[{g(r)},

(2 1) {f(r)} 2{ g(r)}.

The conditions, properties, and theorems of {} 2.1-2.5 can be readily translated so
as to apply equally well to A and A24 on the domain (1, m).

The second of these conditions follows from the first because of the property f(z) -f(1/z),
1, larg zl < ft.
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4. Naylor transforms on (0, 1) and (1, ) for spherical coordinates. In [1]
Naylor also introduces two transforms designed for use with spherical coordinates.
On (0, 1), consider a function g satisfying conditions (i) and (ii) of 2.1. We define
the transform N2 as follows:

(22) N2{g(r); r - s} G2(s (r*- r-*-1)g(r)dr

on the strip -0- < Re s < . Letting

rg(r) 0<r< 1,
(23) gz(r)

[ g(1/r) r> 1,

one has

(24) Nz{g} //{g2}.

The inversion formula is obtained directly, namely,

(25) g(r) fL r-S-IGz(s)ds’ 0 < r < 1,

where L denotes a line, Re s 2 with -0 < 2 < a. The important operational
property iss

(26) N r[rg’(r)] s(s + 1)G(s)- (2s + 1)g(1).

Similarly if g(r) is defined on (1, oe), the counterpart of A is given by

(27) N{g(r)} N{h(r)},
where h(r) (1/r)g(1/r), 0 < r < 1.

5. Applications. The Naylor transforms , ff2 and N2, described in the
preceding sections, are particularly applicable to Laplace’s equation in polar and
spherical coordinates where the region is a finite sector or finite spherical cone.
In the use of the transforms, a variety of boundary conditions can be handled
particularly on the circular or spherical surface, r 1.

The following example is presented primarily to exhibit the use of some of the
transform properties of 2. A second paper is planned in which solutions to some
boundary value problems for finite spherical cones will be given.

We consider the steady-state heat problem in a finite sector (or wedge),
where T(r, 0) satisfies

(28) r2Trr -I- rT -q- Too 0, 0 < r < 1, ]0l < </z,

There is a transform analogous to V, employing a + instead of in (22). Unfortunately,

N rr[rg’(r)] s(s + 1)G(s) + 2g’(1) + g(1),

involving both g’(1) and g(1).
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with boundary conditions

(29) T(r, + (i) TO const. T(1,0) + hT(1,0) 0, h > 0.

Because of the radiation boundary conditions at r 1, we do not apply a
Naylor transform directly to T(r, 0). Instead, we observe that the function

(30) v(r, O) rT + hT

will satisfy Laplace’s equation, if T(r, O) does, and hence we consider the related
problem

(31) r2vrr / rvr / Voo- 0, 0 < r < 1, 101 < <
with

(32) v(r, +_ (i) hTo, v(1, O) O.

Letting V(s, O)= 2{v(r, O);r-+ s}, one obtains from the application of the
A2’ transform,

dzV
(33)

dO2 + sZV 0, with V(s, +_(i)= 2hTo/s. 6

Thus

2hTo cos Os
(34) V(s, O)

S COS (IS

Letting k rc/2(i, one finds that

(35) {r/(1 + r2)} A{r/(1 + r2k)} (i sec (is.

The application of convolution formula (14), with g(r) 1, yields6

s

Since h(1/r) -h(r), we employ Theorem 2 to obtain (see [2])

(37) v(r, 0) hTo[1 2 2r cos
arc tan S

Integration of (30), with v(r, 0) given by (37), yields

(38) r(r 0)= To 1-
2h

xh- arc tan

An equivalent form is

r(2n+*) COS (2n + 1)kO
(39) T(r,O)= To 1-4,=o (-1)"(2n 1)[(2n+ 1)k]J’-

0<r<l.
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THE RAYLEIGH-FABER-KRAHN THEOREM FOR THE
CHARACTERISTIC VALUES ASSOCIATED WITH A CLASS OF

NONLINEAR BOUNDARY VALUE PROBLEMS*

CATHERINE BANDLE"

Abstract. This paper is concerned with functionals which were introduced by Nehari and also
discussed by Coffman in connection with the study of nonlinear boundary value problems. Their
behavior under the Schwarz symmetrization is studied, and an isoperimetric inequality analogous to
that of Rayleigh-Faber-Krahn for the fundamental frequency of a vibrating membrane is derived.

Introduction. Let f2 be a bounded region in R for which the Green’s function
for the Laplace operator exists. We shall write P for an arbitrary point in R" and
R/ for the positive real axis. Let F(s, P) be a positive function on R/ f with
the following properties"

(A) F(., x) is continuous on R / for almost all x f2. F(s,. is measurable for
all s R/.

(B) There exists a positive number e such that for almost all P f and for all
S S2

s-fF(sl P) <-_ seF(s2, P).

We define the function G(t, P) by

G(t, P) F(s, P)ds,

and consider the functional

H(v) @(v) fo G(v2, P) dx

(dx volume element in R", (v) fu grad2 v dx, (x, x2, ..., xn) are Cartesian
coordinates), within the class F of piecewise continuously differentiable functions
which vanish on the boundary df and are not identically zero in f. This note will
be concerned with the functional

A(f) min H(v),

where v ranges over all functions in F satisfying the side condition

(1) (v) ff v2F(v2, P)dx.

Following Nehari we call A(f) the characteristic value.
Nehari [9] showed that if f (a, b), there exists a function u F subject to

(1) which minimizes H(v). Furthermore this function is a solution of the differential

* Received by the editors October 7, 1971, and in revised form January 7, 1972.
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equation u" + uF(u2, P) 0 in (a, b), u(a) 0 and u(b) 0. It might be observed
that the minimum of H(v) without additional restriction on v does not exist in
general. Coffman [2] generalized Nehari’s result for the case where fl R",
n >_ 2. It can be stated as follows"

Let F(s, P) be locally H61der continuous on R+ x fl, and suppose that there
are positive constants a, c and < 2/(n- 2) such that F(s, P) <= cs + a for all
s R+. (In R2 there is no restriction on 7.) If we assume further that (A)and (B)
hold, then A(fl) exists, and the minimizing function u is of class C2 in , and solves
the Dirichlet problem Au + uF(u2, P) 0 in , u 0 on 0fl (A ’= 2/(0xi)2
is the Laplacian). If = R2, then more general results can be found in [6], [1].
In a physical system A(fl) corresponds to the energy.

Example. Consider a membrane which covers at rest a region of the (, r/)-
plane. We assume that the interior of the membrane is subject to an external force
(0, O,-zF(z2, x)) (x--(, r/)); the membrane is fixed on the boundary. Let the
deformation normal to the equilibrium plane be denoted by u(x, y) and suppose that
this deformation is small. If the modulus of elasticity is 1, then the equilibrium
position is described by the equation Au + uF(u2, x) 0 in , u 0 on 9. The
total energy is 1/2A().

In this paper we shall derive a bound for A() which depends only on F and
on the volume of ).

1. Nehari [8] proved that for every function v e F satisfying (1) the inequality

H(v)
=l+e
>

e fn v2F(v2’ P)dx

holds. A() is therefore bounded from below. It was pointed out in [8] that for
every function v F there exists a constant 0 such that v satisfies the side
condition (1). This is an immediate consequence of (B) and the fact that
lim_ o F(s, P) 0 and lim F(s, P) .

In order to estimate A(fl) we shall use the following property of H(v).
LEMMA 1. If V satisfies (1), then the inequality

H(v) <__ H(v)

holds for every real number o.

Proof. Since F(s, P) is nondecreasing, G(s, P) is concave and hence G(so, P)
-G(sl P) >= (so s)F(s P). Thus, observing (1) we have

H(v) H(v) (2 1)(v)- fn {G(2v2’ P) G(v2’ P)} dx

(Z2 1)(v) fn ((x2v2 v2)F(v2’ P) dx O.

From this simple lemma it follows that

A() min max H(ow).
0on0f

This minimum property and a reflection argument show that the minimizing
function is positive. It is also easily seen that A() is a monotonic decreasing
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functional of the domain.
For the following considerations we shall need the Schwarz symmetrization

[12]. By this symmetrization a domain B R" is transformed into a n-sphere B*
with the center at the origin and the same volume as B. A positive measurable
function f on B with f 0 on cB is transformed into a function f* on B* in the
following way" Let B, denote the region B {P B; f(P) > t}. f* is the radially
symmetrical function with f* > on B* and f* on OB*. The next result is
based on the inequality of Rayleigh-Faber-Krahn [12] for vibrating membranes.

THEOREM 1. Let F(s, P) F(s) satisfy (A) and (B) and be independent of P.
Then among all regions )

_
R" with a given volume the n-sphere yields the minimal

value ofA().
Proof. Let {u,), be a sequence of functions in 17, subject to the side condition

(1), and with the property

A() lim H(u,).

* the function obtained from u, after the Schwarz symmetrization.We denote by u,
For each u, we determine a number , such that

n*("u"*) fn 2 ,2F(a.2 ,2u, )dx.O U

,2) dx. Since the* that fa G(Z, u2.)dx fa. G(Z,u.It follows from the definition of u,
symmetrization diminishes the Dirichlet integral, we have (a,u,)_>_
(see [12]), and thus by Lemma 1,

A() > lim,_. In(,u,)- faG(2,uZ,)dx]
>= lim inf In*(,u,*)f,_ G(nU*n2)dx]

This inequality together with the minimum property of A(*) proves that A()
> A(fl*).

Remark 1. The same arguments show that A()) is diminished by the Steiner
symmetrization [12].

Remark 2. Suppose that fl is a sphere and that the minimizing function u of
the variational problem exists. Then u is radially symmetric and nonincreasing in
r(r2 -’.= (xi)2). From this fact it is not difficult to obtain a lower bound for
the maximal value ofthe function u which solves the Dirichlet problem Au + uF(u2)

0 in {x;lx] __< R}, u 0 on cY, and yields the minimum of H(v). As an
example we consider the case where F(s)= s and
u has the representation

u(z) In [Z Zt[b/2m+ I(Z’) dAz,,
(2)

z x + iy, z’= x’ + iy’, dAz,-dx’dy’.

Since maxzn u(z) u(0), and since u is decreasing, we have

u(O) >= 2I/m.
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Remark 3. Some growth conditions on F(s) are necessary in order to obtain a
minimizing function of class C2(f). Indeed, consider the functional

(3) A(f)= man max{@(v) 1 fn(v)2m+2dx}v=Oon0fa m + 1

and suppose that the minimizing function u is of class C2("). It is therefore a
solution of the corresponding Euler equation Au + u2m+ 0 in f, u 0 on
Of2. If u(r) is the solution for f21 {x ;Ixl =< 1}, then t- I/mu(r/t) is the solution for
the sphere f2, {x;lx[ <= t}. An easy computation yields

(4) A(f,) -(2m+2)/m+nA(’l)
where n is the dimension of the space. Since A(f2t) is a monotonic functional of t,
we must have m <= 2/(n 2). This condition was obtained by Pohozaev [11] in a
different way. If we compute the value for , then (3) becomes

min
m F (U)rn +1 -]l]m(5) A(f)

O on m + lL.f. v2m +- -dxA
We now consider the case n 3, m > 2. If we take

cos rckr/2 in 0, 1/k],
0 in [1/k, 1],

k > 1, then v is admissible for the variational characterization (5) of
The computation shows that the right side of (5) tends to zero if k c. Hence
A(f2) 0, and by the same argument and the monotonicity of A(f2), we can
prove that A(f2) 0 for an arbitrary domain [2. If n 3 and m 2, there exists a

constant//> 0 such that

A(f2) =/ for all

Because of an inequality by Ladyzhenskaja [5]:

{(V)}3 48 fn/36 dx dx2 dx3’

it follows that A(f) > 0 for all f. If we can show that/J is the same for all circles,
then the assertion will be proved. Let t < 2, and u,(r) be a sequence of radially
symmetrical functions subject to (1) such that

A(f2t2 lim H(u,).

The functions v, tff i/2Un(r/to) with o tz/t are admissible for the variational
characterization of A(f2t,). Hence

A(f2,,) =< lim H(v,)= A(f2t).

On the other hand, we have from the monotonicity that

a(n,) =<
2. Let f

__
R2, and consider functions F(s, P) of the form

F(s, P)= p(P)Fo(s + a(P),
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where p(P) and a(P) are positive on f and Fo(s satisfies (A) and (B) of 1. If the least
eigenvalue of the membrane problem Au + 2au 0 in fLu 0 on Of exceeds 1,
then it is possible to find for each function w e F a constant a 0 such that (1)
holds for v aw (see [2], [3], [8], [9]). Under all these assumptions A(O) exists.
If F(s, P) is locally Hblder continuous on R+ x , then there is a minimizing
function u which solves the boundary value problem Au + u{p(P)Fo(uZ(P)) + if(P)}

0 in , u 0 on (see [2]). It may be observed that 2, > 1 is also necessary
for the existence of the function u. Indeed, since u does not change sign, it can be
interpreted as the first eigenfunction of the problem Av + m(P)v 0 in , v 0
on , where re(P)= p(P)Fo(uZ(P)) + a(P). We have m(P) > a(P), and by the
monotonicity of the eigenvalues 1 , < 2, (see [4]).

We shall use the following notations"

B B

where B O is an arbitrary domain, and x, y are the Cartesian coordinates. Let
r x2 + yZ, and K be an arbitrary real number. Then we define

4
ifK > 0,

Igl(1 + r2)2

g(r)
IKI(1 1"2)2

ifK <0,

ifK 0,

and MgK(B) gK dx dy. Let Fo(s be fixed, and consider A(f) A(fL a, p) as a
function of fL a and p. f* denotes the circle with the property

f.f gdxdy= ffadxdy,
and f* is defined in an analogous way. The next result is a generalization of
Theorem 1 of 1. It is related to some extensions of the Rayleigh-Faber-Krahn
inequality for inhomogeneous membranes [1], [10].

In order to simplify the proof we shall assume that there exists a function
u e C2 belonging to F and subject to (1) which yields the minimum of H(v). Other-
wise we have to consider a minimizing sequence as we did in the proof ofTheorem
1.

THEOREM 2. Suppose that f is simply connected, 21 > 1 and that there exists a
number K such that the following inequalities hold in

-A In p -A In a<= K, <= K, 4re KMp > 0 and 4re KM, > O.
2p 2a

(a) If
_

f*,, and if the first eigenvalue of the problem Au + pgKu 0 in

f*, u 0 on t3f*, exceeds 1, then we have, for fixed Fo(s),

A(f, a, p) >__ A(*, gK, (Mo/M,,)gr),

Mp M(ft), M.
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(b) If *
_
f, and if the first eigenvalue of the problem Au + l(M,/Mp)grU

0 in , u 0 on c3, exceeds 1, then

A(, a, p) >__ A(*, (M,/Mp)gK dx dy.

Proof of part (a). If f is an arbitrary positive function, let B()) denote the
circle with center at the origin and the property that

B Bf)
* be the radially symmetrical function onLet f(t) {P e f; u(P) > t}, and let

on O)(t) We shall write c m,/mo,> in )(t) andfit)) such that ut)
cp and h(P) max {u)(P), u,)(P)}. Since

such that

a.,(h)

The proof is based on the following lemma Ill.
LMA 2. Let v be an arbitrary positive function in which vanishes on the

bouary . Let G(t) be the domain {P e ; v(P) t}. ff a positive function f
satiCes in the inequalities (- A In f)/2f K a 4 Kffnfdx dy > 0,
then for every (tx, t2)(tx t2),

(6)

(7)

ff ffgrad2 v dx dy > grad2
vs)

G(t )NG(t2) Gf)(t )NGf)(t2)

Because of the assumptions regarding r, it follows therefore that

ff ffgrad2 u dx dy > grad2 u()
(tl )N(t2) ’)(t )N’)(t2)

for all =< 2.

Because of c _> 1, we have (-A In 5)/25 __< K/c <= K. Since 4r Kn dx dy
4rr KM, >= O, we can apply Lemma 2 to u), and we obtain

ff ff(8) grad2 u dx dy > grad2
u()

From (7) and (8) we conclude that

(9) n(u) >= nZ,(h).
* andThe following relations are immediate consequences of the definition of u

(a)

and

(11)
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From (10) and (11) and the monotonicity of Fo(s we have

G(2u2) dx dy <= c- Fo ds + 2h2 gK dx dy,
,0

and by (9) and the same arguments as the proof of Theorem 1,

A(, , p) A(fl), gr, (Mo/M)gr).
Part (b) can be proved in a similar way"

Example. Consider functions a and p such that A ln a 0, A ln p 0,
M/M, 1 and M j (Jo 2.4048 -.., first zero of the Bessel function of
order zero). We have K 0 and gr 1. From the inequality of Nehari for in-
homogeneous membranes [10] it follows that 2 j/M 1, and from the
Rayleigh-Faber-Kra inequality p j/M 1. Hence, Theorem 2 yields

A(n, p)> A(n? M,/M
where

+ y: < (M
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A GENERATING OPERATOR FOR SOLUTIONS OF CERTAIN
PARTIAL DIFFERENCE AND DIFFERENTIAL EQUATIONS*

JOAN ROHRER HUNDHAUSEN?

Abstract. This paper concerns an algebraic method for generating additional solutions of an
n-dimensional homogeneous linear partial difference equation from a known solution. A parallel
theory is developed for the continuous case via the Taylor series expansion; the pertinent partial
differential equation is linear and homogeneous of order , with constant coefficients. In both the dis-
crete and the continuous cases, a generating operator is introduced and is shown to commute with the
given difference or differential operator, respectively. Applications are presented for both cases.

1. Introduction. In the context of this paper, generation refers to an operation
performed upon a known solution ofa difference or differential equation to produce
another solution. Generating processes have been devised for various special
forms of difference operators; these include methods of differentiation, integration
[2] and convolution of solutions [3], [4]. Continuous analogues of many of these
processes may be applied to corresponding differential operators. In particular,
algebraic generating processes for harmonic and polyharmonic difference operators
have been studied by Duffin and Shelly [5]. The content of this paper extends a
result developed in [5] for polyharmonic operators to a more general class of
linear partial difference operators with constant coefficients; it is also shown that a
parallel theory holds for linear partial differential operators with constant coeffi-
cients which are homogeneous of order . A generating operator is explicitly
displayed for each case. The transition between the treatments of the discrete and
the continuous cases is provided by the vehicle of the Taylor series.

Although perhaps the more orthodox approach is to derive discrete-analogues
from the better-known continuous theorems, here is a case which exemplifies a
statement appearing in the Editor’s Foreword to the text by Miller [73: "It is
possible to derive theorems about differential equations from theorems on
difference operators, and the methods might be more transparent in the latter case."
Thus the discussion of the discrete case precedes that of the continuous case.

Some applications ofthe generating process are presented in 4. The generating
operator is developed for the case of the n-dimensional Laplacian operator; both
continuous and discrete versions are considered. A particularly interesting
application in the discrete case lies in the context of the theory of discrete analytic
functions. Here a modification of the generating operator coincides with an
operator introduced by Duffm [2] which is useful in generating a sequence of dis-
crete analytic polynomials.

2. The generating operator in the context of difference equations. In prepara-
tion for development of the theory in the discrete case, we impose a cubical grid
of width h upon n-dimensional Euclidean space. Nodes of the grid structure are

* Received by the editors September 16, 1971.

" Los Alamos Scientific Laboratory of the University of California, Los Alamos, New Mexico
87544. This work was supported by the U.S. Atomic Energy Commission under Contract W-7405-
ENG-36.
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denoted by points x (x x2, Xn) where x Eih, E integer, 1, 2, ..., n.
Complex-valued functions qg(x) defined at these nodes are designated as discrete
or lattice functions. In order to prevent formulas from becoming too cumbersome,
we adopt where advantageous the notation introduced by Schwartz [8]. For two
vectors

x (x, x2, ..., x,), m (m m2, m,)

where the m are integers, x" denotes the monomial "lvm’v’m2"2 "’Xnmn, m’V denotes the
product [mll!lm2[! [m.[!, and [m[ denotes the sum Imx[ + [m2l + + Im,[.
With the designation e as the characteristic vector having 1 in the ith position and
0 elsewhere, the fundamental translation operators XT" may be defined concisely as

X?iq)(X) q(X + hmiei) minteger, i= 1,2,...,n.

The translation operators are clearly linear and commutative, and Xtp Iq
99. Also

XT1X72... Xnn(D(x Xmqg(x)-- (49 x -JI-- h
i=1 miei)

For differentiation, the operational symbols Di c/c3x, 1, 2, ..., n, can be
combined into a gradient vector D (D, ..., D,), and for k (k, k2,... kn),
where the k are nonnegative integers, the general derivatives of tp(x) may be
abbreviated to Dkq(x). The Taylor series expansion for Xmq(x) becomes

xmq)(X)-- Z h" Z mkDkq)(x)"
=o Ikl=e

Let M represent a linear difference operator of the form

(1) M 2 amxm’

where m ranges over a finite set of vectors having integer entries and the coefficients
a --amlm2...m. are complex constants. We are concerned with the family of
solutions of the homogeneous difference equation Mqg(x) 0. Anticipating a form
of Taylor series expansion for M, we introduce the associated or derived operators

Mk

_
ammkXm.

Noting that Mk(1) ffm amink’ we may exhibit the relationship between M and its
derived operators via the Taylor series expansion as follows"

(2) M Z amgm Z he Z Mk(1)Dk"
e-O Ikl=e

The derived operators themselves have the expansions

1
k(1)DkM- he , .M+

where s (s ,s2, ..., s,) with s a nonnegative integer. Also for p (pl, P2,
P,)- Pi nonnegative integer, the relation X"[xiq(x)] (x + hmi)X"qg(x is the
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basis for derivation of the general formula

(3) Mk[XPqg(x)]
L_r 0 r2=O rn=O

P" XP-rMk+r qg(X),
l"

where the vector r (r1, r2, rn).
We now define the generating operators in the discrete context.
DEFINITION. Mij =_ XMe, xiMej 4: j, i, j 1, 2,..., n.
For future reference we cite the Taylor series representation

(4) Mii e he .[XjMk+e,(1 XiMk+ej(1)]Dk.
Ikl

The following theorem shows that the operators/ri are useful in generating
additional solutions of the difference equation M(x) 0 from a known solution
f(x). The proofinvolves a simple application of (3) and is based upon the condition
that the relation Mf(x) 0 holds in a suitably extensive region ofdiscrete Euclidean
space, viz., a region containing at least each point (x + h =x miei), where
m (m,m2, .-., m,) appears in the summation formula (1) for M. Several
corollaries follow almost immediately from the theorem; their proofs depend upon
extensions ofthis condition and for the sake ofbrevity are omitted. Finally, we make
the basic assumption that the relation Mf(x) 0 holds in a sufficiently extensive
region of discrete Euclidean space and do not repeat it in the statement of the
theorem or the corollaries.

THEORY. If Mf(x) 0, then M[if(x)] 0, for j, i, j 1, 2, ..., n.

Proof.
M[ijf(x)] xjMMe,f(x + Me,Me,f(x)- xiMMef(x M,Mef(x

(xjMe,- xiMe)Mf(x
jMf(x) O.

The notation Mq indicates that the operator M is to be applied q times in
succession; for example, M2 kaakX+k, where m and k range over the
same finite set of vectors. Formula (3) is helpful in developing successive powers of
the operators j.

COROLLARY 1. If Mqf(x) O, then Mq[i.if(x)] 0 for j, i, j 1, 2,...,
n;q= 1,2, ....

COROLLARY 2. If Mf(x) O, then M[jf(x)] O, j, i, j 1, 2,..., n;
q= 1,2,....

Here a sequence ofadditional solutions may be generated by repeated applica-
tion of the generating operator; the prooffollows easily by induction. Also different
generating operators may be applied successively to a known solution, thus
generating additional families of solutions.

COROLLARY 3. If Mf(x) O, then M[i[,f(x)] O, j, r s, i, j, r,
s= 1,2, ..., n.

3. The generating operator the context of differentifl uations. The rep-
resentation (2) illustrates the fact that a difference operator M is always an approxi-
mation to a linear homogeneous partial differential operator of order having
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the form
(5) = ,
where k k,2..., are complex coefficients; i.e.,

M- M(1)I
(6) lim

h
//, q 1.

hO

The exact value of the integer q and the exact form of are uniquely determined
by the values M(1), again emphasizing the essential role played by the derived
operators of M. On the other hand, the great variety of difference expressions (and
translations thereoO which may be used to approximate derivatives renders
possible the approximation of a given form by many different forms M. For
further details see Collatz Ill.

Because of this approximation relationship between the discrete and con-
tinuous cases, the theory of the generating operator as developed in 2 has a
parallel in the continuous case; the natural vehicle of transition is the Taylor series.
The schematic diagram in Fig. 1 serves as a brief outline of the process by which the
generating operators corresponding to a given operator are developed.
We assume { as given in the form (5).

M
F.

Mij

Reference to the Taylor series representation (2) for M together with the
desired approximation relationship M M(1)I he l,l=e,D’ + O(he+ 1) de-
monstrates the necessity of the conditions

(7) Mk(1 0 for __< [k[ < ,
(8) Mk(1 akk! for [k[ .
These in turn may be used together with the Taylor series representation (4)
of the corresponding generating operators o to determine, in the spirit of the
approximation relationship (6), corresponding generating operators . Thus
for a vector p (pl, P2, "’", P) having nonnegative entries, condition (7) enables
us to write

/rij he-1 Ipl=e-1 __1-. [XjMp+ei(1 XiMp+e(1)]Dp + O(he),

i:/:j, i,j--1,...,n.

Noting that [p + ei[ ]p[ +[ei[ Y, we use relation (8) to obtain

p+e,(P + eg)! Mp+e,(1 for[p[ - 1.

Finally after simplifying the factorial expressions we define the generating operators

DEFINITION
/ffij-- E [XjOp+e,(Pi + 1)- XiOp+e.(pj "+" 1)]Dp,

ij, i,j= 1,2,...,n.
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We thus have a family of homogeneous differential operators with the property
ij -Tji; they are useful in generating additional solutions of the differential
equation /{q(x) 0 from a known solution f(x). Indeed, some members of the
family may be null operators; it is not difficult to discern from the definition that
/ffzj will be a null operator whenever derivatives with respect to x and xj are en-
tirely absent from each term of the given /.

The following generating theorem may be proved independently of its discrete
counterpart in 2. The basis for the proof is the commutation relationship
between //and /{ij which we state as a lemma.

LlaMA. Let f(x) C2e- I[R], where R is some region of Euclidean n-space.
Then

/[,ffijf(x) /ij[[f(x)

Ikl--e IPl=’-
[Op+e,(Pi + 1)(xjDk+Pf + kjDk+p-eJf)

--p+e(Pj + 1)(x,D+Pf + kD+P-f)]

okp+ e(Pj -F 1)kiDk +p-e]

A careful rearrangement of indices enables us to write the lengthy expression in the
form

Ipl--e- Ikl=e-
Ok+ejOp+e,(p q- 1)(kj + 1)ok+ej+p-ef

2 Z Ok+e,p+ej(Pj + 1)(ki-F 1)Dk+ei+p-e
IPI-- Ikl=e-

which can be seen to vanish identically.
The lemma readily establishes the proof of the following theorem.
THEORVI. Let f(x) C2e- I[R] such that hf(x) 0 in R. Then

///[//ijf(x)] 0 in R, 4: j, i, j 1,..., n.

Letting /q and /i} denote repeated applications of the respective operators,
we may state three corollaries, counterparts of those stated for the discrete case.
The proofs, similar to those indicated for the discrete case, are omitted.

COROLLARY 1’. Iff(x) e Ctq+ x)e- aIR and //f(x) 0 in R, then

/q[/’ijf(x)] =0 in R for v j, i, j 1, 2, n, q= 1,2,....
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COROLLARY 2’. Iff(x) Ce +qte-[R] and //f(x) 0 in R, then

//{[(if(x)] =0 in R for ij, i,j= i,...,n, q= 1,2,...

COROLLARY 3’. Iff(X) C3- 2[R] al’ld /i/f(x) 0 in R, then

#[///i.f(x)] =0 in R for v j, r =/= s, i, j, r, s 1, n.

4. Examples and applications. As a first example we consider the n-dimensional
Laplacian operator A 7= t32/dx2 and a discrete harmonic operator having
relatively simple form, viz.,

M-- Z amxm: (Xi "-[- X? 1)_ 2hi.
i=1

Although this example has been treated by Duffin and Shelly [5], it is nonetheless
instructive to place it within the present context of Taylor series expansion and
derived operators and from these to demonstrate the form of the corresponding
generating operators. The simple form of the operator enables us to write for the
Taylor expansion

c3f h c3fMf(x) M(1)f(x)+ h Mei(1)-x --I- ---f M --t- ....
i= i= j=

i+ej(1) Ox Oxj
Using the convention 0 one can easily verify that

M(1) O,

Me,-- X X-1, Mei(1 --0,

0 for/4= j,
Me’+eJ X + X for j,

i= 1,2,...,n;

Me,+ej(1 26ij, i, j 1,2, ..., n

(using the Kronecker delta symbol), so that in fact,

Mf(x) h2af(x) + O(h4).
The generating operators become

x(X- x? )- x(X- xf ),
and it is interesting to note that these simulate via the Taylor expansion (4) the
corresponding family of operators

Aii-- xi-x Xi lXj
V j, j 1 2 n

The latter may be recognized as analogues of the components of the vector
r x grad in three dimensions, which are known to generate harmonic functions
when applied to a harmonic function.

An interesting application of the discrete version of the generating operator
lies in the context of discrete analytic function theory. We recall that a complex
function f is termed analytic in the continuous theory when Of/t? 0, where
Of/c3 1/2(c3f/Ox +if/Oy)= 0 is the complex form of the Cauchy-Riemann
equations. By analogy, a discrete analytic function fsatisfies the equation Lf 0
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in some region of the discrete xy-plane, where L is a linear difference operator with
constant coefficients. A crucial property of L is that it is an approximation to
/; for detailed treatment of other properties of discrete analytic operators, see
Duffin [2] and Hundhausen [6].

Thus the theory developed in this paper is useful in generating a sequence of
discrete analytic functions via Corollary 2; we cite an important example of the
process for the case of a particular operator L. For the discrete analytic operator
L I + iX XY- Y, Duffm [2] introduces the operator

Z 1/4[z(I + X + XY + Y) i(I X + XY- Y)]

and shows that if Lf 0, then L(Zf) 0 also. Algebraic simplification and use of
the relation Lf 0 show that Z is a variation of 12; indeed, Zf (1/2 21-i)ff_,lzf.
To achieve greater symmetry relative to the point of application, Duffin forms a
new operator _Z from the average of Z applied at the four points z, z 1, z i,
and z 1 i, and finally establishes the interesting relation

(9) _Zz,) z,+ 1).

Here z") is the nth member of the sequence of discrete analytic polynomials,
which were originally defined by a process of recursive indefinite discrete integra-
tion with z)= 1; relation (9) provides an alternate (and simpler) method of
generating this particular sequence of functions.

Finally we note that for discrete analytic operators L, the corresponding
generating operators ff-’12 are aptly symbolized by Z since the conditions imposed
upon L- L(1)I in order that it approximate c3/c, viz., Le.(1 iLel(1 4: 0,
are exactly those which determine ff-’12 as an approximation to multiplication by z.
More precisely, the Taylor expansions (2) and (4) become

[L- L(1)/]f Lel(1) Of/O - O(h2);

lzf iLe(1)zf -+- O(h).

Thus in this particular context the generating process may be considered a simu-
lation of multiplication in the continuous case.
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A VOLTERRA EQUATION WITH PARAMETER*

KENNETH B. HANNSGENt

Abstract. We discuss the Volterra integral equation x’(t) + 2o a(t z)x(z)dz k, 2 > 20 > 0.
We find conditions under which solutions are bounded on {0 < < o }, uniformly in 2. We deduce
results on the asymptotic behavior of certain Volterra equations in Hilbert space arising, for example,
in viscoelasticity.

1. Introduction. In this paper we discuss boundedness of solutions of the real
Volterra equation

(1.1) x’(t)+2 a(t-z)x(z)dr. =k, x(0)=Xo, 0=< < o

(primes denote differentiation with respect to t).
Let x(t)= x(t, 2) denote the solution of (1.1), where 0 < 2o _-< 2 < o and

Xo and k are prescribed constants. Theorems 2, 3 and 4 below give conditions
ensuring that

(1.2) Ix(t,&)l n(Ixol + Ikl), 0 _<_ < , 20 =< 2 < ,
where B depends only on a(t) and 2o. The conditions on a(t) will include the follow-
ing.

(H) a(t) is continuous, nonnegative, nonincreasing, and convex on (0, ),
0 < a(O +) <_ , a(t) dt < o, and a(t) 0 as c.

In [5] we showed that for fixed positive 2, x(t, 2) is a bounded function of t,
provided (H) holds; if in addition a(t) is differentiable on (0, o), then

(1.3) x(t,2)O asto.

Our interest in the uniform estimate (1.2) comes from questions of asymptotic
behavior of solutions of certain integral equations in Hilbert space. Let L denote a
symmetric linear operator defined on a dense subspace K of a real, separable
Hilbert space H. Assume that (Lz, ;t) >- 2o(;t, Z), ; e K, and that the inverse L-
of L is a compact operator on H. Consider the equation

(1.4) y(t) + L h(t z)y(z) dr # + tv,

where # and v are prescribed elements of H and h(t)= oa(z)dz. Following
A. Friedman [3], we expand y(t) in terms of eigenvectors of L then the expansion
coefficient Yk(t)satisfies(1.1), where2 2k is the correspondingeigenvalue.Theorem
1 below says that this method yields information about y(t) when (1.2) holds.

We discuss (1.4) and related work of C. M. Dafermos [1], [2] and A. Friedman
and M. Shinbrot [4] in 2. We state our main results, the sufficient conditions for
(1.2), in 3 proofs follow in 4 and 5.

* Received by the editors October 7, 1971, and in revised form January 21, 1972.
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Throughout this paper we let u(t)= u(t,2) and w(t)= w(t,2) denote re-
spectively the solutions of

(1.5) u’(t) + 2 a(t- )u()d O, u(O) 1

and

(1.6) w’(t) + 2 a(t z)w(z) dz 1, w(O) O.

One easily checks that

(1.7) x(t) XoU(t) + kw(t) and w’(t) u(t).

Then (1.2)holds whenever lu(t, 2)1 + Iw(t, 2)1 =< B (0 =< < oe,2o =< 2 <

2. Equations in Hillaert .space. Let H be as in 1, with inner product (.,.
and norm I1" I. Let {)k}=o be a complete orthonormal set of eigenvectors of the
operator L, with corresponding eigenvalues {2k}.

THEOREM 1. Let a(t) satisfy condition (H), and let h(t)= ’o a(z) dz. Suppose
lu(t, 2)1 <= M and Iw(t, 2)1 _-< M (0 =< < , 2o --< 2 < ). Let

(2.1) Yk(t) lakU(t, 2k) + VkW(t, 2k),

where lag (la, Zk and vk (v, Zk. The series

(2.2) y(t, , v) Y y(t)
k=0

converges in H, uniformly in t, to the unique continuous solution of (1.4). Moreover,

(2.3) Ily(t, , v)ll 2 __< 2M2(11112 / vii 2).
The following is an immediate consequence of uniform convergence in (2.2).
COROLLARY 1. Let the hypotheses of Theorem 1 hold, and assume that a(t)

is differentiable on (0, oe), so that (1.3) holds. Then Ily(t, la, v)ll --, 0 as

Proof of Theorem 1. Uniform convergence in (2.2) and the estimate (2.3)
follow from the inequality y(t) <= 2M2(la + Vk2). Then y(t) y(t, la, v) is continu-
ous. Setting x Yk, 2 2k, k Vk, XO lak in (1.1), integrating, and dividing by
2k, we obtain the identity

(2.4) 2- lyk(t q- h(t "C)yk(’C dr 2- l(lak -- tVk).

Multiply Zk by both sides of (2.4) and sum over k; this yields

(2.5) L-y(t) + h(t z)y() d L-(la + tv).

Thus L can be applied to both sides of (2.5); this gives (1.4). Conversely, if
v(t)7. satisfies (1.4), v satisfies (2.4), so v y. This proves Theorem 1.
We remark that our proof follows the proof of Theorem 4.1 of [3] as in that

paper, only the uniform boundedness of the family {u(t, 2), w(t, 2)} was used here,
and the sum (2.2) could be replaced by an integral for the case where L is self-
adjoint but L- is not compact.
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2r .2We also note that if IILrltll2+ IILrvll2= Z=o2k (/k + o9, > 0,
the same argument shows that Lry(t, p, v) =o 2Yk(t)Zk converges uniformly.

Under the conditions of Theorem 1, the equations R(t)p y(t, #, 0) and
S(t)v y(t, 0, v) define R(t) and S(t) as uniformly bounded, strongly continuous
operator-valued functions;moreover

R(t) + L h(t z)R(z) d I

(I identity). Friedman and Shinbrot [4] analyze this operator equation in
Banach space in the case where h(0) > 0 and h’ e L(0, o9); in Theorem 1 above,
h(0) 0.

Consider the more general nonhomogeneous equation

(2.6) z(t) + L h(t )z() d p + tv + F(t),

where V(t) o f(r) dr + oo g(a) da dr. The operators R(t) and S(t) are resolvents
for this equation; some calculation shows that the solution of (2.6) is

(2.7) z(t) R(t)p + S(t)v + R(t r)f(r)+ S(t v)g(r)dr.

As an application of our results, consider the equation

(2.8) z"(t) + (a(0) + c)Lz(t) + a’(t- z)Lz(z) d-c g(t),

where (H) holds, a(0) < o9, and c __> 0. Dafermos [1], [2] obtains results on asymp-
totic behavior for a wide class of equations arising in viscoelasticity and including
(2.8) with c > 0 as a simple particular case. If instead c 0, integration.shows that a
solution of (2.8) is a solution of (2.6) (f 0, z’(0), z(0)); then by formula
(2.7), IIz(011 is uniformly bounded on {0 =< < o9 } when the hypotheses ofTheorem
1 hold and IIg(t)ll at <

3. The scalar equation. We state our results in terms of u and w. In the
following, B denotes a finite, positive constant, independent of and 2; its value
may change from line to line.

THEOREM 2. Ifcondition (H) holds, then [u(t, 2)1 x/ (0 =< < o9, 0 < 2 < o9).
THEOREM 3. If condition (H) holds and a(t) LI(O, o9), then

(3.1) Iw(t,2)l =< B, 0_<t< o9, 2o=<2< o9.

THEOREM 4. Suppose condition (H) holds, a(t) is twice differentiabte on (0,
and a(t) L1(0, o9). We have three alternative cases:

(i) If a(0/) < o9 and a" is bounded away from zero on every finite interval
(0, L], then (3.1) holds.

(ii) If a"(t) is nonincreasing on (0, o9), and if
-1

(3.2) a(t) O(t -t3) and O(ta), O,
a’(t)

for some fl, 0 < fl < 1, then (3.1) holds.
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(iii) If a"(t) is nonincreasing on (0, o), and if
-1

(3.3)
a’(t)

O(t), 0,

then (3.1) holds.
In view of (1.7), our results give sufficient conditions for (1.2).
Theorem 2 gives a uniform bound on u for all positive 2. No such bound is

possible for w. In fact, integration of (1.6) shows that

(3.4) w(t, 2) 2 h(t z)w(z, 2) dz.

Then iflw(t, 2)1 _-< B, (3.4) says that w(t, 2) as 2 0 for each fixed t, a contradic-
tion.

Our proofs of Theorems 2 and 3 come essentially from the work of J. J. Levin
[7], which deals with the case of fixed 2. For Theorem 4 we show that some esti-
mates in [5] can be made uniform in 2.

4. Proofs of Theorems 2 and 3. For Theorem 2, recall [8, p. 230] that when
a(t) satisfies condition (H), we may write a(t)= (z)dz, where a(z) is a non-
positive, nondecreasing function and 0(t) 0(t +), 0 < < o. With u(t) u(t, 2),
define

1V(t) u2(t) q- 2a(t) u(z) dz 2 u(s) ds a(z) dz.

Direct computation using (1.1) (see [6]) shows that V(t)- V(O)= o Vl(z)dz
with Vl(z) =< 0 a.e. Therefore

u2(t) __< 2V(t) __< 2V(0)= 2u2(0)= 2,

as asserted.
For Theorem 3, choose n > 0 such that 2o[ 2j’]a(t) dt y > 0. Choose

an integer N > n such that 2Ny > 3. Fix 2 > 2o, and let w(t) w(t, 2). Suppose
there exists T > 0 such that ]w(T)l 4N and Iw(t)l <= ]w(T)l (0 =< =< T). Since
]w’l lul =< 2 by Theorem 2, Iw(t)l _-> 2N (T- N =< __< T). (Note that T- N > 0,
since w(0) 0.) But

1 w’(T) + 2a(T z)w(z) dz,
-N

2a(T z)w(z) dz <= 4N2 a(t) dt

and

Hence,
ff 2a(T z)w(z) dr

-N
=> 2N2 a(t) dt.

3 _> I1 w’(T)l >= 2N2 2 a(t) dt

>= 2N7 > 3.
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We conclude that no such T exists and Iw(t)l Iw(t, 2)1 =< 4N. This proves
Theorem 3.

5. Proof of Theorem 4. The proof depends on the integral representation

fo { em }(5.1) rw(t, 2) Re
iz[2qg(z) i2(z) -4- iz]

dr, > O,

which we derived in [5]. Here

o(:) lim a(t) cos rt dt

and

if(z) lim a(t) sin rt dt.

Briefly, we showed in [5] that the Laplace transform W(s, 2)= j’ff etw(t, 2)dt
is analytic in {Re s > 0} and continuous in {Re s _>_ 0} except possibly at s 0;
moreover W(s, 2) [s(s + 2A(s))]-, where A(s) is the Laplace transform of a(t).
The complex inversion formula

2nw(t, 2) e’’ emW(a + ir, 2)dr, a > 0, > 0,

holds; a contour shift, together with some estimates near s 0 and a change of
variable, yield the representation

w(t, 2) Re {eiW(i, 2)} d.

Since () and -0() are the real and imaginary parts of A(i), we obtain (5.1).
Let () / a(t) cos t dr, and let O(r) () (). Using the

monotonicity and convexity of a(t), we proved several facts about ,, and
0 in [5]; we collect these facts in the following lemma.

LNNa 1. With a(t) as in Theorem 4, the following relations hold (0 < < )"
1

(5.2) 0 if(r) a(t) dt,
aO

1
a(t)dt (),

(5.4 0 -( 0(t 4e(,

(5.5 e(I e(r +
(5. e( > 0.

For details, see Lemmas 3 and 5 and inequalities (3.23) and (3.24) of [5].
Since a(t) L(0, ), O(r) as 0, by (5.3). Choose 0 > 0 such that

(5.7) () 2/2o, 0 < N o.
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Since
d fff/2rdzq(z) ta(t)sin zt dt <= O,

1/qx(z) 0 as z $ 0; in particular 1/qgx(z is of bounded variation on [0, p], and by
the familiar theorem concerning the kernel (sin zt)/z [9, p. 64] it follows that

(5.8)

(5.9)

zt
lim dz O.

We write (5.1) as

f fT(2) foonw(t)- + + Ix + 12 + 13,
p T().)

where T(2) will be determined separately for each case of Theorem 4.
LEMMA 2. In cases (i), (ii), and (iii), ]Ixl =< B (0 =< < , 2o _-< 2 < ).
Proof. Rewriting the integrand in (5.1), we see that

(5.10)

where D(z, 2) 12qg(z) i2(z) + izl. (The existence of these three integrals was
proved in [5]; the first inequality in (5.11) below and the fact that q91(r) as
r 0 provide the required estimates.)

Using elementary inequalities for complex numbers, we find that

2-x/z2[qg(r) + 0(z)- r12] <= D(r, 2) =< 2[qgx(r + qgz(r + 0(r) + r/2o].

Using (5.5), (5.7) and (5.4), we see that

(5.11) 2o()/2,,/ =< D(r, 2)__< 102qgx(r),

Then we can estimate the middle term in (5.10) as follows"

(5.12)

Moreover,

cos rtD- 2(r, 2) dr =< 82ff 2 q) 2(r) dr B.

0<z__<p.

(5.13) 0 < rD--2) 2rtp(r) --< z--’ 0 < z p.

The existence of the first integral in (5.10) implies that the last expression in
(5.13) is in L(O, p); hence so are the other two expressions. Therefore,

f] _r O(!)x)j.] f/()a(5.14) cos zt[zDZ(z dz 82g z(z)
B.

We write the last term in (5.10) as

Io1 o sin rt
dz + E(r, 2) sin zt dr,
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where

E(,2) {zo,q9 2q9 [2 z]z}/:qg,O(, 2).

Straightforward estimates using (5.3) and (5.4) yield the inequality

IE(t, 2)1 B[2t-’ff(t) + 1]/2D(t, 2).

From (5.11) and the fact that the expressions in (5.13) are in L(0, p) as functions of
t, we conclude that

fo’ E(z, 2) sin zt dz B 2(Z) [Z- @(Z) + 2ff 1] dz B.

On the other hand, (5.8) shows that

1 t’ sin zt

therefore IJ(t, 2)l B (0 < , 2o 2 < ). In view of (5.10), (5.12), and
(5.14), this proves Lemma 2.

Next we prove (3.1) in case (i) of Theorem 4. We set

(5.15) T(2) max (p, (2ha(0)2)/2}
in (5.9).

We estimate 13 first. By (5.2) and the monotonicity of a(t),

0 2(z) 2a(O)n/z T2(2)/2z z/2, T(2) z < .
Then (with D(z, 2) as in the proof of Lemma 2) we have

O(, 2) O(r) R r/2, T(2) r < ,
z-2dz= B.so IIa] 2

For I2, integration by parts shows that

(5.16) rO() lim sin t a’(t) dt

since a() 0. Equation (5.16) is also valid when a(0+) , because condition
(H) implies that ta(t) a()d 0 as 0. Let

(5.17) N() greatest integer N 2/p.

Note that N() /p when p. Since a(t) is convex, -a’(t) is nonincreasing and
2()/

() sin t[- a’(t)] dt
0

(5.a
sin rt{-a’[t + 2k/] + a’[t + (2k + 1)/r]} dr.

k=O o0

Now 2N(r)n/z 4nip. Since a" is bounded away from zero on finite intervals,
there exists >0 such that -a’(t)+a’(t +e)e if O< t<t+e4n/p.
Then

N()- n/
re(r) r-n [ sin rt dt 2nN(r)/r 2n/rp, p.

=0 0
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Using this and (5.15), we make the estimate

fT(,,],) dr
< P [T2(2)_ p2]lI2l =< ,,,o zq(z) 4zr/2

<= pa(O)/2q B.

These estimates for 13 and I2, together with Lemma 2, establish (3.1) in case (i).
LEPTA 3. In cases (ii) and (iii) of Theorem 4, there is a positive number Q such that

(5.19) zq(z) >- Q-1 . > p

where comes from (3.2) in case (ii) and 1 in case (iii).
Proof. We may assume that

(5.20) -a’(t) >= 6t -t 0 < < 4r/p

where 6 > 0. Define N(z) as in (5.17). We again have relation (5.18). Using the
mean value theorem and the fact that a"(t) is nonincreasing in cases (ii) and (iii),
we make the estimate

q() _>_ sin zt a"(2krc/z)r/z dt
.0

(5.21)
2re’c- 2 a"(2krc/’c).

k=l

But 2IN(r) + 1]t/r > 4rc/p, so

2rz
k=l

(5.22)
a’(4zr/p)- a’(2r/z),

since the first expression is an upper sum for the integral.
Since q(z) > 0 for all z (see (5.6)), we deduce (5.19) from (5.20), (5.21) and

(5.22). This proves Lemma 3.
Now consider case (ii) of Theorem 4. Choose

(0 < n/p) and define

T(2) max {p, (2A2)1/(2-)},
where A 7

(1 -)/(1 fl).
By Lemma 3 we have

z dz

< --Q[(2A,)x/(2-fl)]2-t B.
2(2- fl)

For z >= T(2),

0 < 2(z) =< 27 - dt <= [1/2A-xzz-t]Az-I 1/2z,
,0

where the first two inequalities come from (5.2). Therefore, with D(z, 20 as in the
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proof of Lemma 2, we have D(z, 2)>= z- 2(r)>= r/2(r >= T(2)) and I/a[
=< 2o r 2 dr B. Lemma 2 again provides a bound for I1, so (3.1) holds in case
(ii).

Finally, we estimate I2 and 13 in case (iii). By (5.2), (r) 0 as r . Choose
a number o9 so large that 10(v)l_< 1 if r -> o9, and let T(2) max {p, o9, 22}. Then

r-2dr=B. For I2 we useD(r, 2) > r 2q(r) > r/2(r > T(2)) and II1 < 2j" o
(5.19) with/ 1. We have

1 T(2) dr < 2Q B.

This completes the proof of Theorem 4.
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ON THE EQUATION OF EULER-POISSON-DARBOUX*

D. W. BRESTERS"

Abstract. Weak solutions of the initial value problem for the EPD equation are constructed
using distributional methods. After taking the Fourier transform with respect to the space variables
we obtain an equation related to the Bessel differential equation which can easily be solved. The
inverse transforms are then found using some results obtained earlier by the author.

It is shown that for values of the parameter 2 which are greater than n (n being the space
dimension) the solution is the same as the one obtained by Weinstein [16]. However, the method of
this paper can be used for all values of the parameter. Also the exceptional values 2 1, 3, 5,
fit in quite naturally. Conditions for the regularity of the solutions are given for all values of 2.

1. Introduction. Consider the hyperbolic differential equation

G2 2t)u(t x’2) 0 t>O(1.1) A
tt2

with initial conditions

(1.2)
lim u(t, x; 2) qS(x),
to

lim u(t x’2) 0,
t0 -where A 62/X @ + 62/OXn,X2 (X1, X2, x,) and 2 is a real or complex

parameter. For 2 4:0 the problem considered here is a singular Cauchy problem.
The case considered most frequently is obviously the one where 2- 0.

Equation (1.1) then turns into the n-dimensional wave equation. For 2 0, (1.1)
appears in several branches of applied mathematics such as the transonic flow
of compressible fluids. For 2 , (1.1) corresponds to Tricomi’s equation. If we
replace A by -A, we obtain an elliptic equation which appears in generalized
axially symmetric potential theory and has applications in hydrodynamics and
the theory of elasticity.

Equation (1.1) is generally referred to as the equation of Euler-Poisson-
Darboux (abbreviated as the EPD equation). It is almost impossible to mention
all publications on the EPD equation. Hence we restrict ourselves to the following
rather arbitrary survey. References [7], [9] and [15] are of historic interest. The
most essential steps forward have been done by Weinstein [16], [17]. His studies
were followed by several others from the "Maryland-School" of which we mention
Diaz and Weinberger [8], Martin [14] and Blum [1], [2]. Several recent publica-
tions still depend on the work of Weinstein (for example, Young [18]). The papers
mentioned above all give solutions in the classical sense. For a treatment in the
distributional sense we refer the reader to Lions [13] and Carroll [5]. Lions uses
"operateurs de transmutation" (after an idea of Delsarte) and Carroll applies
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Fourier transformation with respect to the space variables only. Neither constructs
solutions but both derive theorems on existence, uniqueness and convexity
properties of the solutions.

It is the aim of this paper to show that the method applied by Carroll can
also be used to construct the solution of the Cauchy problem (1.1)-(1.2). In the
author’s opinion the greatest advantage of this method is that it gives solutions for
all values of 2. Weinstein considers first positive integer values of 2 which are
greater than n 1; the solutions obtained for these values of 2 are then used to
obtain solutions in the other cases by means of a generalized method of descent
and recurrence formulas.

The situation for 2 < 0, where the solution is no longer uniquely determined,
can also be clarified by the method of this paper and the exceptional values
2 -1, -3, -5,... fit in quite naturally. We shall use Fourier transformation
with respect to the space variables only and it will appear that the required inverse
transforms can easily be found from the tables of Fourier transforms as given by
Gel’fand and Shilov [10] and by the author [4].

In the subsequent section we denote by "distribution" a generalized function
defined on the space S of testing functions which decrease, together with all their
derivatives, faster than any negative power of Ixl as Ixl . In this case the
Fourier transform is a one-one mapping of the dual space S’ into itself.

Finally it may be remarked that the method of solution introduced in this
paper can be modified in order to solve the Cauchy problem for the equation

(1.3)
C 2

t2 2t)u(tt X’/)=C2U(t, X;2).

This problem has been studied by Young [18] by means of methods related to
those of Weinstein.

It is the author’s intention to study problem (1.3) in detail in a subsequent
paper.

2. Solution of the Cauchy problem.
2.1. Preliminaries. We consider again the singular Cauchy problem:

Ot2 t

(2.1) u(O, x;2) (x),

u,(0, x;2) 0.

u(t,x; 2) 0, > 0,

Applying Fourier transformation with respect to the space variables only we obtain

(2.2)

(2.3)

(2.4)
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where k (k l, k2, kn) corresponds to x (x 1,"’, x,), k2 k2x d- k +
+ k,z, 0(t, k;2) Fx[u(t, x;2)] and (k) Fx[q(x)].

First we construct a solution (z(t, k) of (2.2) which satisfies

(2.5) lim z(t, k) 1,
tO

(2.6) lim
c3

,o
(t’ k) 0.

When (z(t, k) is found, the solution of (2.2), (2.3), (2.4) is

(2.7) fi(t, k;2) tz(t, k). (k)
and the solution of (2.1) is then given by

(2.8) u(t, x;2) F- ’Etz(t, k)] * b(x) Gz(t, x) * qb(x),

where F- denotes the inverse Fourier transform with respect to k (k,
k2, ..., k,) and the symbol * denotes convolution with respect to x (xl, "-, x,)
only.

We call Gz(t,x) the fundamental solution of the Cauchy problem (2.1). It
satisfies the EPD equation with initial condition b(x) 6(x). In order to prove
that (2.8) actually represents the solution of problem (2.1) we shall show in 2.3
that"

(i) Gz(t, x) is a well-defined distribution in S (i.e., the dual of the space Sx
of testing functions depending on x) which is twice continuously differen-
tiable with respect to the parameter for all _>_ 0.

(ii) The convolution product in (2.8) exists for a large class of functions and
distributions 4(x).

2.2 Construction of G(t, k). By the transformation

(2.9) z(t, k) ttx-z)/2h(t, k),

equation (2.2) becomes

(2.10) d2hdti + t-’-d-[dh + (k2 ((1 -t2)’)/2)2

that is, the Bessel differential equation.
The following two cases are considered separately:
Case I. (1 2)/2 noninteger.
Case II. (1 )0/2 integer.
For future use we summarize below some general formulas for Bessel func-

tions of the first kind Jr(z) and the second kind Yv(z):

1
(2.11) lim z- J(z) v :/: neg. integer,

z-O 2*F(v + 1)

(2.12) J_,(z) (- 1)"J,(z), n integer,
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(2.13)

(2.14)

(2.15)

d
{z_Vjv(Z) _z_Vjv+ 1(2,),

dz

dz

0 for v>0,

limzJ(z)= for v<0,
z--0

1 for v 0,

2*r(v)
(2.16) lim zY(z)= -, v > O.

z--*O

Formulas (2.12), (2.13), (2.14) hold for Y(z) as well.
We start with Case I" (1 2)/2 noninteger (2 even). The general solution

of (2.10) is then given by"

(2.17) h(t, k) AJ(l_)/2(Ik t) + BJ(z- 1)/2(1k1" t),

where A and B are arbitrary complex numbers which may depend on

Ikl x//k2 + + k.2. Hence,

(2.18) (t,k) AttX-)/2Jtl_)/2(lk t) + Btt-z)/2Jtz_)/2(lk t).

Now A and B should be chosen such that G(t, k) satisfies conditions (2.5) and (2.6).
Using formulas (2.11)-(2.15) we easily obtain that

B= ,kl’-x)/22’x- 1)/2F(2 + 1)2

while A 0 for 2 > 0 but remains undetermined for 2 < 0. Hence we have for
2 <0(2 4= 21 + 1, 0, ___1, ___2,...)"

k)= 2(x- 1’/2F(/ +2 1)(ikl.t)tl_X)/2j,x_ )/2(Ikl.t)4-A. (1-,/2J(1- z,/2(]kl.t),(t

(2.19)

while for 2 => 0 (and 4:21 + 1) the second term vanishes (A 0).
Next we consider Case II" (1 2)/2 integer (that is, 2 odd). We obtain

(2.20) tz(t, k C.t(-z)/2J(z_l)/2(]k].t + Dt(-z)/2Y(z_)/2(]k]’t),
where C and D are arbitrary numbers which may depend on ]kl. Using again for-
mulas (2.11)-(2.16) we obtain that conditions (2.5) and (2.6) are satisfied if we take

C= 2tx-’/2F( .2.+, 1)lkl(1-’/2 for2 135...

D=0
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and

(2.21)

(2.22)

(2.23)

C arbitrary,

D -n2(-l)/Z/F((1 2)/2)1kl-)/2 for 2 -1, -3,-5, ....
Summarizing our results we have

Oa(t, k) 2- )/2F
2

([k[. t)(1-)-)/2J(a_ )/2(Ikl" t) for all 2 >= O,

ga(t, k) 2(- x)/2F 2+1
2

(Ikl" t){x- )-)/2J(2-1)/2(Ikl" t)

+ At-)-)/2J(1-)-)/2(lkl t) for 2 < 0, 2 - 1, 3, 5,

a)-(t, k)
2()-- 1)/2

r((1 2)/2)
(Ikl" t)( ).)/2 Y(1 a)/z(Ikl" t)

+ B. t(1-)-)/2J(x_)-)/2(lk t) for 2= -1,-3,-5,...,

where A and B are arbitrary complex numbers. It follows immediately that a
unique solution for the Cauchy problem (2.1) is certainly not possible for negative
values of 2.

The difference between two solutions of the problem (2.5),(2.6), (2.7) is
always of the type

(2.24) C t(1- )-)/2J(l )-)/2(lk t),

where C is an arbitrary complex number which may depend on k. Also we remark
that for 2 -1, -3, -5,... the solution will be of a different character than
the solutions for other values of 2, due to the occurrence of a Bessel function of the
second kind Yv(z) which is singular at z 0. We shall return to this case after we
have studied the inverse Fourier transformation of the obtained solutions t)-(t, k).

3. The fundamental solution G)-(t, x) for 2- -1, -3,.... In 2.2 we
obtained that for 2 4: -1, -3, -5, .-.,

(3.1) G)-(t, k) 2()-- )/2F121 + 1
2

(Ikl" t)(1-)-)/2J()-- )/2([k[" t)

is a solution of (2.2) which satisfies conditions (2.5) and (2.6). Moreover, (3.1)
gives a unique solution in the case where 2 _> 0.

For the solution of our original Cauchy problem (2.1) we need the inverse
Fourier transform of (3.1) with respect to k (ka, k2, ..., k,). We use the follow-
ing formula from the table of Fourier transforms as given by Gel’fand and
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Shilov [10]"

FL. (__r(m2 -+- P)_ ] 2" + hi2 + lnn[2- ran + t

(3.2)

Ku + ,/2(mQl+/2)[-sin (p + q/Z)n.
L 2 sin (p + n/2)n

{sin (p + q/2)n.
Ju+nlz(mQX-/2) n q
Q+n12)/2 -F sin

2
n

Q(_ +n/2)/2

where P is a real quadratic form ",= grSxrxs (X, I-’X), A--det F, F is the
matrix (g’") and q is the number of terms with negative sign in the canonical form
of P. Jis(z) and Kis(z) denote the usual Bessel functions. Q is the dual of the quadratic
form P, that is, Q (x, F-ix), while Q + Q for Q > 0 and vanishes for Q < 0.
Terms with Q+ vanish for Q < 0. Q_ IQ] for Q < 0 and vanishes for Q > 0.

Now if we take
2P -x x2

2

2-n-1
p=0, q=n, #= 2

m=t, IAI=I,

and denote by Ikl the square root x, we obtain"

(t X2) -n-,)/2 -] 2( + 1)/2toni2 -1 t(;t -1)/2
(3.3) F F((X n + J ikl(a-1)/2 Jut-1)/2(Ikl t),

and consequently,

(3.4) Gx(t x) -x F((2 + 1)/2) (t 2 x2) )/2

n"/2 F((2 n + 1)/2)

and the solution of problem (2.1) is given by

(3.5) u(t X /) - 1"((2 / 1)/2) (t 2 X2) 1)/2

(x).
n"/2 r((2- n + 1)/2)

It should be remembered that (3.5) gives the solution for all 2 4: -I, -3, -5,...
but that only for 2 >= 0 the solution is uniquely determined.

In the case where (2 n 1)/2 is a negative integer we use the fact that

(3.6)
(t 2 X2)_
r(v + 1) l

6(1- 1)(t2 X2).

We remark again that all distributions appearing in our solutions are defined
on the space Sx of testing functions depending on x -(x,.-., x,) only. The
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variable only appears as a parameter on which the solution depends continuously
for >= 0. The latter property is based on the fact that the Fourier transform is a
continuous linear one-one mapping and on the properties of Bessel functions.
In the same way we can conclude that the distribution G2(t, x) is twice con-
tinuously differentiable with respect to the parameter for all > 0.

Next we consider the existence of the convolution in (3.5). Since (t2 x2)_
has as its support the interior of the sphere Ixl < t, we may conclude that the
convolution exists for arbitrary b(x) S’ (see, for example, de Jager [12, pp. 24-25]).
Hence, a distributional solution of our problem exists for arbitrary b(x) S’.

For a solution in the classical sense we shall have to impose some conditions
of differentiability on the function b(x). In that case u(t, x;2) should be a twice
continuously differentiable function of x for all > 0 (remember that it is already
such a function with respect to t).

We consider the expression

(3.7)
cx.7,

(t 2 X2)_ O(t2 X2)(t2 X2)v,

where m Iv + 1], that is, the largest integer which is smaller than or equal to
v + 1. For k positive the symbol c-k/Ox -k denotes the primitive of order k with
respect to x (see, for example, 10, pp. 118-124]). It is easily seen that (3.7) contains
cS(t2 x2) as its most singular part. It follows from the definition of cS(t2 x2)
that 6(t2 x2)* b(x) is defined and regular for b(x) CO (that is, b(x) continuous).
Hence for the existence in the classical sense of

X2). * (/)(X)

we need only assume that b(x) C. Consequently,

is a C2-function if we require that b(x) be

2
+1 =2-

2

times continuously differentiable. This result is in agreement with that of Wein-
stein [16]. For 2 > n 1 the solution as given by (3.5) is easily rewritten in the
form in which it has originally been presented by Weinstein (cf. [16]).

If we put for the surface of the unit sphere in R

2/rs/2

r(s/2)
o,

we have from (2.29),

0)2 + 2(t2 X2)(+Z -1)/2 ,
O)2-t-
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or equivalently,

(3.8) u(t, x; ,) o____.+_ (1 )-"- /4(x + t) cl,
002+ J2<

where 2 ’n 2= j,x + t (x + t, x2 + 2t, "", x, + ,t) and d d
d2 dn.

We describe briefly the way in which Weinstein derives formula (3.8). He
starts with the solution for 2 n- 1 which can easily be found. Next, (3.8) is
proved for integer values of 2 which are >__ n 1 and then the validity of (3.8)
for noninteger values of 2, which are greater than n 1, is shown by means of,
as Weinstein calls it, the generalized method of descent. Then recurrence formulas
relating the u(t, x;2) for different values of 2 are used to obtain the solution for
values of 2, smaller than n 1 and not equal to -1, -3, -5, ....

We remark that the distributional attack used in this paper produces the
solution for all 2 4: -1,-3,-5,... at once. We have already seen that for
2 < 0 the solution is not uniquely determined. The difference between two such
solutions is always of the form"

(3.9) F x[C. t-)/zJ_)/z(Ik t)],

where C may depend on k. Consequently, the difference between two arbitrary
solutions for 2 < 0 is always of the form"

(3.10) -Gz_(t, x) * O(x) t-Xu(t, x;2 2),

where Gz_x(t,x is the fundamental solution of the Cauchy problem (2.1) with
2 2 as the value for the parameter, and ,(x) is an arbitrary function or distribu-
tion belonging to S’. Hence, u(t, x;2 2) is the solution of some Cauchy problem
(2.1) with arbitrary initial condition ,(x).

It is easily checked that u(t, x;2 2) for all 2 < 0 has the properties

lim t-2/2u(t, x; 2 2) 0,
(3.11)

,-o

lim t- Z/E- Xu(t, x; 2 2) O.
t0

Conditions (3.11) are the ones given by Blum [2] for the difference of two solutions.
It should be noted that in the presentation of these conditions by Weinstein

[16] or Hadamard [11, Chap. VIII], u(t, x;2 2) does not denote the solution of
a Cauchy problem of type (2.1) but an arbitrary solution of the EPD equation.
In our presentation u(t, x 2 2) is considered as the solution ofa Cauchy problem
and then conditions (3.11) are automatically satisfied. It is also easily seen that
conditions (3.11) when applied to the general solution z(t, k) as given by (2.18)
or (2.20) lead to a difference between two arbitrary solutions for 2 < 0 which is
of the form (3.10). Hence, Blum’s conditions (3.11) are equivalent to the condition
that u(t, x; 2 2) is the solution ofsome Cauchy problem (2.1), that is, u(t, x; 2 2)
satisfies

lim u(t, x; 2 2) exists in the distributional sense in S’,
t-O

(3.12)
lim u(t, x; 2 2) 0.
t-O
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Finally, we remark that (3.10) with conditions (3.11) or (3.12) also gives the form
of the difference between two arbitrary solutions in the case where 2 -1,
-3, -...

We investigate this case more extensively in the next section.

4. A fundamental solution for the exceptional values of the parameter 2. In
this case a nonunique solution of the Cauchy problem (2.1) will always contain
a term

rc2(z- x)/2

(4.1)
F((1 2)/2) F- [(Ikl" t)t-a)/ZY-a)/z(Ikl" t)].

We should find the inverse transform occurring in formula (4.1). The calculations
can be simplified, however, if we make use of the arbitrariness of the solution for
2<0.

It is clear from 3 that

(4.2)
F((1 -/],)/2) F- l[([k[" t)(1-)/z{Y(x-)/z(]k[ t) -+- iJ(x_z)/2(Ik t)}]

will also be a fundamental solution of our problem. Hence we can also take

zri2(x x)/2

Gz(t, x)
r((1 2)/2)

F-[(Ikl. t)(1-z)/ZHII)-z)/z(]k] t)]

or

ni2t )/2

Gx(t,x)
F((1 2)/2)

FI[(IkI" t)tt-X)/EHIE)-X)/E(Ikl" t)],

where H1) Jv + iYv and Htv2) J iY are the Hankel functions of the first
and second kind.

In order to obtain the inverse Fourier transforms we use the table of Fourier
transforms as given by Gel’fand and Shilov [10, (17), (18), p. 351]. If we take

2 X2P= -x x22 x,

Q= k k2 k2, k2,

p=0, q= n, c= t,

we obtain after some simple calculations

(4.3) G(t,x)
F((n- 2 + 1)/2)t_ e+,=,/2(t2 x2 + i0)(2_n_1)/2
r((1 )O/2)rcn/2

Using the results obtained by the author in [4] (or an earlier paper [3]), it is easily
seen that for n even formula (4.3) can be written as a combination of

(t2 x2)(x-, -)/2 and 6("-x-)/z(t2 x2)
while for n odd we obtain a combination of

(t2 xZ)q 1)/2 and (t2 x2)-,- 1)/2.
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In both cases the first term is connected with

F- [(Ikl t)x -4)/2 yx-/2(Ikl t)].

Hence, this first term is essential in so far that it will always be present in the
solution. Consequently, the fundamental solution is no longer concentrated
within the sphere Ixl < and the existence of the convolution

(4.4) Gx(t, x) * c/)(x)

is no longer ensured. However it follows from the behavior of

(Ikl" t) )/2 Y(1 z)/z(Ikl" t)

that every distribution (k) S’ is a multiplier for this distribution. Consequently
the convolution (4.4) exists for arbitrary qS(x) S’. For a solution in the classical
sense, 4(x) will have to satisfy certain conditions of differentiability. It is easily
seen from (4.3) that these conditions are the same as those derived in 3 as far as
the variables (x a, x2, ".-, x,) are concerned. But even then the solution can display
a singular character with respect to the variable at 0.

It follows immediately from (4.1) and (2.14) that

)-F[u(t,x;2)], 2= -1,-3,...,

behaves for --, 0 like

Ikl z Yo(Ikl t). 6(k).
Consequently (c/ct)-u(t,x;2) has a logarithmic singularity at O. This
singularity vanishes if Ikll-X(k)= O, that is, if

m(1 2)/2()(X) 0.

It follows that a solution for 2 -1,- 3,- 5,... has logarithmic singularities
in certain of its derivatives unless we assume that the initial condition qS(x) is
polyharmonic of order (1 2)/2. This is a well-known result which was obtained
earlier by Weinstein [16], Diaz and Weinberger [8] and Blum [1].
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IMPROPERLY POSED INITIAL VALUE PROBLEMS FOR
SELF-ADJOINT HYPERBOLIC AND ELLIPTIC EQUATIONS*

DAVID COLTON"

Abstract. Integral representations are obtained for the solution to Cauchy’s problem for hyperbolic
equations along a convex time-like surface, the exterior characteristic initial value problem for hyper-
bolic equations, and Cauchy’s problem for elliptic equations along an analytic surface. Each of
these problems is improperly posed in the real domain and hence our representations are constructed by
integrating over appropriate regions in the space of one and several complex variables.

1. Introduction. Until about twenty years ago the problem of constructing
approximate solutions to improperly posed initial value problems in partial dif-
ferential equations was ignored by most mathematicians on the basis that such
problems did not correspond to meaningful physical phenomena and hence such
efforts were at best misguided and at worst fruitless. However, during the past two
decades it came to be realized that such problems do in fact arise in mathematical
physics. One such appearance is in the form of inverse free boundary problems in
fluid mechanics (cf. [14]), and another is in boundary value problems where part
of the boundary is inaccessible to measurement and hence the boundary data is
incomplete (cf. [24, [26]). The physical origin of these problems has led to two
different mathematical approaches.

In the case of inverse free boundary value problems the interest lies in con-
structing a "catalogue" of explicit solutions, and hence analytic data is prescribed
on some analytic surface and it is desired to construct an approximate solution
to a well-defined initial value problem. On the other hand, in the situation where
the boundary data is incomplete, the initial data is not known exactly and ap-
proximations are constructed by assuming an a priori bound on the solution and
then applying a Rayleigh-Ritz procedure [29].

Alternatively one can assume that the initial data itself satisfies an a priori
bound, approximate it by a polynomial in some appropriate region (cf. [23]), and
then treat the resulting initial value problem in the manner developed for inverse
free boundary problems.

In all approaches the basic problem remains the same: the initial value prob-
lem is improperly posed in the sense that the solution does not dependcontinuously
on the (real) initial data and hence one cannot approximate the solution by simply
constructing the solution corresponding to approximate initial data.

In this paper we consider three classic examples of improperly posed initial
value problems in partial differential equations: Cauchy’s problem for hyperbolic
equations along a time-like manifold [3], [21], [22], [11, pp. 754-760] the exterior
characteristic initial value problem for hyperbolic equations [12], [18], [25]; and
Cauchy’s problem for elliptic equations [4], [5], [6], [14], [17]. Each of these
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problems is improperly posed in the sense that the solution (if it exists) does not
depend continuously on the initial data and possesses coherence properties [12],
[14], [21], [11, pp. 754-760]. (It should be noted, however, that in the case of
analytic coefficients uniqueness is no problem since it is assured by Holmgren’s
theorem [12], [21], [13, pp. 185-188].)

We shall first treat in detail the exterior characteristic initial value problem
and Cauchy’s problem along a time-like manifold for the self-adjoint hyperbolic
equation

(1.1) UX1X1 UX2X2 " UX3X3 "JI- q(x x2 X3)U f(x X2 X3),

where q(xx, X2, X3) and f(xa, x2, X3) are analytic functions of their independent
variables. We shall then briefly show how to modify these results to treat Cauchy’s
problem for the elliptic equation

(1.2) Uxtx q- Ux2x -+- Ux3x3 nt- q(x1, X2 X3)l,/ f(xx x2, x3).
For the special case of equation (1.1) when q 0 (i.e., the wave equation) the

problems we are considering have been studied by Pucci [25] and Cannon [3]
who showed existence, uniqueness, and continuous dependence on the data (in
the complex domain) under the assumption that the initial data was analytic in
one of its variables and differentiable to a sufficiently high order in the remaining
variable (our results show that in the case of Cauchy’s problem the smoothness
conditions imposed by Cannon on the initial data can be weakened somewhat).
It should also be noted that in the case of Cauchy’s problem similar results had
previously been given for general hyperbolic equations in two space variables by
Titt [27] through the use of contraction mapping and majorization arguments.

However, our aim (and that of Cannon and Pucci) is more ambitious in that
we want to obtain the solution as a linear functional of the data when the data is
analytic in one of its variables and is prescribed either along a smooth time-like
surface or on intersecting characteristic planes. Such an approach is advantageous
in that it leads in a natural manner to results on existence, continuous dependence
on the initial data, and approximation procedures. In the special case when the
manifold on which the initial data is prescribed is noncharacteristic and analytic,
and when the initial data is analytic in all of its independent variables, our work
can be compared in some respects to that of Hill [19] and Garabedian [13,
pp. 211-224].

Our results for hyperbolic equations and their analogue for elliptic equations
in three independent variables are of additional interest in that they provide
integral operators analogous to those of Riemann and Vekua in two independent
variables [13], [30]. In the elliptic case these operators have several advantages
(and some disadvantages) over the author’s previous construction of integral
operators in [7] (which can be viewed as an extension of Bergman’s operators in
two independent variables [1]) and a brief comparison of these two approaches
will be discussed in 3. It should be noted that in the elliptic case it is assumed that
the initial data and the initial surface are analytic, and hence in this case the initial
value problem under consideration could be solved locally via the Cauchy-
Kowalewski theorem (cf. [20, pp. 116-119]). However, in addition to no longer being
able to represent the solution by quadrature, this approach is far too tedious for
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practical application, and even if a series solution is constructed it may not converge
in the full region where the solution is needed in a particular example (cf. [29]).

2. The hyperbolic equation (1.1). We shall now construct integral representa-
tions of the solutions to the Cauchy problem along a time-like manifold and the
exterior characteristic initial value problem for (1.1). For convenience’s sake we
make the assumption that q(x x2, x3) and f(xl, x2, x3) are entire functions of
the (complex) variables x, x2 and x3 It will be clear from our analysis that this
assumption can be relaxed to assuming only q(xa, x2 x3) and f(xa, x2, x3) to be
analytic in some polydisc in C3, the space of three complex variables. We also
need the following definition [271.

DEFINI:ION 2.1. A function g(xl ,x2) of two real variables Xl and x2 is said to
be partially analytic with respect to x for x a in the interval
provided it can be represented by a series of the form

(2.1) g(Xl,X2) b0(x2) + bl(xz)(X a) + bz(x2)(x a)2 +...

whose coefficients are continuous functions of x2 in the interval 0 =< x2 </ and
provided that the series (2.1) converges absolutely and uniformly for
[x a[ =< 2,. The region 0 =< x2 __</3, Ix a[ =< ), is known as the region ofpartial
analyticity. The extension to more variables is evident.

We now introduce the coordinates

(2.2) x x3 x, y x + x3, z x2

and rewrite (1.1) in the form

(2.3) L[u] =_ uzz + 4ux, + Q(x, y, z)u F(x, y, z),

where F(x, y, z) f(x x2, x3) and Q(x, y, z) q(x x2, x3). Let u and v be
"well-behaved" functions to be prescribed shortly. Integrate the identity

(2.4) vL[u] uL[v] (2uyv 2uvy), + (2UxV 2uv) + (vuz uv=)
over the torus D x fl, where fl is the circle Iz {I 6 > 0 in the complex plane
and D is the region in the Euclidean plane [2 bounded by a contour C consisting
ofa vertical segment C joining a point B on the smooth, monotonically decreasing
curve y y(x) to a point P above this curve, plus a horizontal segment C2 joining
P to a point A on y y(x), plus the arc C3 defined by y y(x)joining A and B
(see Fig. 1).

FIG.
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Note that the integrals are to be interpreted in the sense of the calculus of
exterior differential forms (cf. [2], [13, pp. 167, 213]), which attaches a meaning to
them even when the differential dz is complex. Note also that the cylinder y y(x)
in Euclidean three-space 3 is time-like with respect to the hyperbolic equation
(2.3). For our purpose it is important that the curve y y(x) be monotonically
decreasing and hence that the region D be as in Fig. 1 rather than as in Fig. 2.
This is because of the fact that the curve AB in Fig. 2 is not time-like but space-like.
Furthermore, we shall later on allow the curve C3 to degenerate to a segment of
the vertical characteristic plane through A and a segment of the horizontal charac-
teristic plane through B. In the case of Fig. 1 this will correspond to an exterior
characteristic initial value problem, whereas for Fig. 2 this becomes a (well-
posed) interior characteristic value problem.

P

B

FIG. 2

The result of integrating (2.4) over the torus D x fL and then preforming an
integration by parts on the right-hand side of the resulting identity, is, in the nota-
tion of the calculus of exterior differential forms,

-.I.f (vL[u] uLv]) dx dy dz

Dx

(2.5) + n [2v(A, z)u(A, z) + 2v(B, z)u(B, z) 4v(P, z)u(P, z)] dz

+4 ff uvrdydz-4 f uvdxdz
Ct x CzX

C3x

where we have made use ofthe fact that dx dy 0 on D x . Note that an expres-
sion of the form v(A, z) is a function of three independent variables, i.e., v(A, z)

v(x, y, z), where (x, y) are the Cartesian coordinates of the point A in N.
We now choose u and v such that equation (2.5) reduces to an expression for

the solution u of L[u] f satisfying prescribed Cauchy data on a smooth convex
surface, where C is the intersection of this surface with the plane z , i.e., C is
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a function of (. It is further assumed that the normal to the initial surface is never
parallel to the z-axis and that C3 is an analytic function of (. First let u be a twice
continuously differentiable solution of Lu f, where u and its partial derivatives
of order less than or equal to two are partially analytic with respect to z in some
neighborhood of the curve y y(x) and such that u satisfies prescribed Cauchy
data on this curve. For v we construct a fundamental solution of L[v] 0 which
satisfies the boundary conditions

(2.6) Vy 0 on C

(2.7) vx=0 onC2 f,

and such that at the point (P, z) (, r/, z),

(2.8) v(P, z)
8ci(z )

+ analytic function of (z ).

Note that conditions (2.6) and (2.7) are analogues to the boundary conditions
satisfied by the Riemann function in two independent variables, and imply that
in (2.5) the integrals over C1 x f and C2 f vanish. We shall now show that the
function v exists and possesses the necessary regularity properties for it to be
substituted into (2.5).

Recall [13, pp. 152-168] that a fundamental solution S S(x, y, z; , rl, ) of
L[u] 0 is of the form

(2.9) S U/R + W,

where R x//(z -)2 + (x )(y r/), U =o UlRzl, and W is a regular
solution of L[ul 0. The terms Ul, 0, 1, 2,..., can be computed, recursively.
When the coefficients of the differential equation are entire, so is U, both as a
function of (x, y, z) and the parameter point (, q, ’) (cf. [13, pp. 161, 167]). The
term Uo is given by the formula

(2.10) Uo Poo exp (C 3/2)

where (in the case of (2.3)) s is a parameter measured along the geodesics of the
metric whose arc length element ds is given by the quadratic form

(2.11)

C is defined by

(2.12)

ds2 dx2 + 4 dx dy,

1632R2 q2R2-]C -1-z2 + 4xcyJ’

and P0o is a constant. Equations (2.10) and (2.12) imply Uo
choose Poo 1/(8rti). Hence we have

(2.13) S=
1
-}" 2 UlR21-1 + W.
8rciR l=

Poo, a constant. We
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Now let us look at the singularities of 1/R in the complex z-plane for x and y
in the region D of Fig. 1. In this case (x )(y r/) _>_ 0. If we cut the complex
z-plane along a line parallel to the imaginary axis between _+ iw/(x )(y rl),
1/R is an analytic function of z outside this cut. (Note that if the region of integra-
tion were the region D in Fig. 2, we would have (x- )(y- r/)< 0 and the
complex z-plane would have had to be cut along the real axis.) In particular, 1/R
is analytic for Iz 12 > ](X )(y q)l, i.e., for

(2.14) I(x- )(y- r/)l < 1.
Iz 1

Hence if W is, for example, an entire solution of L[u] 0, S is regular for all points
(x, y,z) and (, r/, ) satisfying the inequality (2.14). Thus if the point (, q, ’) is
sufficiently near to the curve y y(x), S can be substituted for v in (2.5). The range
of validity of (2.5) with S substituted for v can now be extended by analytic con-
tinuation, provided S satisfies (2.6) and (2.7) and the domain of regularity (as a
function of z) of the Cauchy data is known.

We now turn our attention to choosing W such that (2.6) and (2.7) are satisfied
by S. From (2.13) and the definition of R it is seen that one way this can be accomp-
lished is to construct a solution W of L[u] 0 satisfying the boundary conditions

(2.15) W=- Ol(z- )2/-1
/=1

on the characteristic plane x , and

(2.16) W=- 2 Ul(Z- )2/-1
/=1

on the characteristic plane y r/. (Note that 1/(8rciR) satisfies the boundary condi-
tions (2.6)-(2.8). Furthermore, due to the form of equations (2.6)-(2.8), there exist
boundary conditions different from (2.15) and (2.16) that could be chosen to define
the function W.) This defines a characteristic initial value problem for L[u] 0
with analytic (in fact entire) initial data. Hence from Hormander’s generalized
Cauchy-Kowalewski theorem [20, pp. 116-119] we can construct an entire solu-
tion W of L[u] 0 which satisfies the initial data (2.15) and (2.16). Equation (2.13)
now gives a suitable function v S to be substituted into (2.5). Note that from
(2.13) we have that S satisfies condition (2.8). In the special case when q const.

22 a possible choice for the function S Sz is

(2.17) Sx
cos 2R

Now in (2.5) let v S and let u be a twice continuously differentiable solution
of Lu] f whose partial derivatives of order less than or equal to two are
partially analytic with respect to z. From (2.8) we have

(2.18) 4 fn v(P, z)u(P, z) dz u(, rl, ).
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Hence (2.5) becomes

(2.19)

u(, q, ) + 2 fn IS(A, z; , rl, Ou(A z) + S(B, z rl, Ou(B, z)] dz

-2 ff [u(x, y, Z,Sx(X, y, z ,,,
C3 "

S(x, y, z; , rl, Oux(X, y, z)] dx dz

+2 f l [u(x, y, z)S,(x, y, z , rl, ()
c3 )

S(x, y, z; , rl, Ou,(x, y, z)] dy dz

+ fff s(x.y, z; .,. OF(x,y,z)dx dy dz.
Df

Equation (2.19) is the desired integral representation of u in terms of its Cauchy
data along a smooth time-like convex surface, where C3 denotes the intersection
of this surface with the plane z (. Equation (2.19) also shows that at the point
(, q, (), u(, r/, () depends continuously on its Cauchy data in C )< G, where G is
an arbitrarily small neighborhood containing the branch line ( _+ ixf(X )(y rl)
for all points (x, y)e C3.

The solution of the exterior characteristic initial value problem for L[u] f
can now be obtained in a manner analogous to the method used to solve the
characteristic initial value problem for hyperbolic equations in two variables [13,
p. 131] by setting v S(x, y, z; , rl, ) in (2.4) and integrating this identity over the
rectangle ATBP in Fig. 3. In other words, we allow the curve C3 to degenerate
onto the characteristics C4 ATand C5 TB (where C4 and C5 are independent
of O.

A C2 P

FIG. 3

Performing this deformation, and integrating by parts along the charac-
teristics to eliminate the partial derivatives of u there, leads to

u(, rl, ) + 4 fn IS(A, z; , ri, Ou(A, z) + S(B, z , rl, Ou(B, z)

S(T, z; , q, Ou(T, z)] dz (cont.)
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(2.20)
+4 ff Sy(x, y, z , rl, )u(x, y, z) dy dz

C4 X"

-4 ff Sx(x,y,z; ,q,)u(x,y,z)dxdz
Csxl)

+ fff S(x. y.z; . ,. )F(x. y, z)dx dy dz.
Dxf

Equation (2.20) gives the integral representation of the solution u of L[u] f as
a linear functional of its initial data on two intersecting characteristic planes which
is valid in the wedge bisected by the plane y x and bounded by the two charac-
teristic planes, i.e., equation (2.20) gives the solution of the exterior characteristic
initial value problem.

3. The elliptic equation (1.2). Similar integral representations to those
developed in 2 for hyperbolic equations can also be found for the elliptic equation
(1.2), provided we make the further assumptions that the initial data is analytic
in each of its independent variables and that, in the case of Cauchy’s problem,
the surface on which the data is prescribed is also analytic. To see this we make
use of the fact that twice continuously differentiable solutions of (1.2) are analytic
functions of their independent variables (cf. 13, p. 164]) and introduce the change
of variables

(3.1) x x1, z x2 3v ix3, z* x2 ix3

defining a nonsingular map of C3 into itself. The elliptic equation (1.2) can then be
written as

(3.2) Uxx + 4Uzz.. + Q(x, z, z*)u F(x, z, z*),

which is formally of the same hyperbolic form as equation (2.3). Repeating the
analysis of 2 now leads to the integral representations (2.19) and (2.20) (with z
replaced by x, x replaced by z, and y replaced by z*) for the solution of the Cauchy
and complex Goursat problems, respectively. (In the case of Cauchy’s problem,
z z(z*) is the expression in conjugate coordinates of the intersection of the
plane x ( with the initial surface.) In this case our analysis is reminiscent of
Vekua’s [15], [30] and Henrici’s [15], [17] development of the analytic theory of
elliptic equations in two independent variables. It is also similar to the integral
operators constructed by Colton in 7] (see also [8], [9], [10], [16] and [28]).

The operators constructed in this paper have several advantages over the
approach used in [7]:

(i) The form of the integral representations arises in a natural manner.
(ii) Th integral representation of the solution to Cauchy’s problem can be

readily obtained. In particular, this considerably improves upon the results in
[10] where the Cauchy data was required to be prescribed on the plane x 0
instead of on an analytic surface as in the present work, and where furthermore
the coefficient q(xl, X2, X3) was required to be independent of
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(iii) The nonhomogeneous equation can be treated.
On the other hand, several disadvantages must be mentioned. One of these

is that difficulties arise in treating non-self-adjoint equations since the leading
(singular) term of the fundamental solution S in general no longer satisfies the
Goursat data as it does in the self-adjoint case. Extensions to higher dimensions
also run into difficulties due to logarithmic terms appearing in the construction
of S in an even number of independent variables and also due to the fact that the
geodesic distance R between two points no longer has a pole-like singularity along
the characteristics. The author is at present looking into these problems, and the
results will hopefully be reported in a future paper.

We finally note in passing that different representations than those obtained
in this paper can be derived for the solutions to improperly posed Cauchy problems
for elliptic and hyperbolic equations by means of an appropriate change of
variables in the complex domain and use of a fundamental solution (cf. [3], [13,
pp. 614-621]). In this case the fundamental solution is not required to satisfy
prescribed boundary data along the characteristics. On the other hand, new prob-
lems are created since the representation now includes terms involving the deriva-
tive of an improper integral and/or the finite parts of divergent integrals.

Note added in proof The fact that the solution W of L[u] 0 satisfying the
Goursat data (2.15), (2.16) is entire follows from the results of Jan Persson in his
paper Linear Goursat problemsfor entirefunctions when the coefficients are variable,
Ann. Scoula Norm. Sup. Pisa, 23 (1969), pp. 87-98.
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CYCLICLY RELATED DIFFERENTIAL SYSTEMS*

G. J. ETGEN AND N. C. WONG"

Abstract. This paper is concerned with first order, linear, vector-matrix differential systems in
which the coefficient matrix is an n n g-circulant matrix whose entries are real-valued, Lebesgue
integrable functions. The objective of the paper is to establish the general solution of such systems and
to exhibit their exponential nature. Extensive use is made of the work of C. M. Ablow and J. L. Brenner
on circulant matrices. The results obtained in this paper extend the work of W. M. Whyburn on cyclicly
related functional equations and the work of E. J. Pellicciaro on cyclicly related differential equations.

1. Introduction. This paper is concerned with establishing the general solution
of vector-matrix differential equations of the form

(1) y’ B(x).y,

where B(x) is an n n g-circulant matrix whose entries bo(x), ba(x),
are real-valued and Lebesgue integrable on the interval [a, b]. By an n n
g-circulant matrix with entries bo, b a, "-’, b,_ a, we mean an n n matrix whose
first row is the vector (bo, bl, ..., b,_ a) and which has the property that each
succeeding row is obtained from its immediate predecessor by a cyclic shift of
g-columns to the right.

This work is motivated by the results of W. M. Whyburn 5], P. Barnhard
and E. J. Pellicciaro 2], and W. E. Baxter and E. J. Pellicciaro [3]. In particular,
in [5], Whyburn considered the cyclicly related system of equations

(2) Y’i ak(x)Yi+m+hk, 1, 2,’’’, n,
k=l

where m and h are given integers, the subscripts + m + hk are reduced modulo n,
and the functions ak(X are Lebesgue integrable on [a, hi. Whyburn obtained the
general solution of (2) in terms of exponential functions. In 2] Barnhard and
Pellicciaro consider the more general system

(3) Y’i-- Z ak(x)Yi+(k), i-- 1,2,-..,n,
k=l

where is a function whose domain is the set { l, 2,..., m} and whose range is a
subset of the set 1, 2, ..., n}. They show that the system (3) can be expressed in
the vector-matrix form

(4) y’= A(x)y,

where A(x) is an n n 1-circulant whose entries Co(X), ca(x),..., c,_a(x) are
certain sums ofthe functions al(x), -.., a,,(x). Baxter and Pellicciaro [3] continued
the study of cyclicly related systems by considering the vector-matrix equation (1)
in the two cases: B(x) a 1-circulant and B(x) an (n 1)-circulant.
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The purpose of this paper is to obtain the general solution of certain systems
of the form (1) where g is any integer. Of course, in view of the definition of a
circulant matrix, we can, without loss of generality, assume 0 __< g <_ n- 1.
The matrix methods employed in this paper make extensive use of the results of
C. M. Ablow and J. L. Brenner [1]. In the context of 2] and [5], our results may be
interpreted as establishing the general solution ofcertain cyclicly related differential
systems of the form

(5) Y’i ak(x)Yg.i+k), i= 1,2,...,n,
k=l

where, as above, the functions ak(x) are Lebesgue integrable on [a, b], e is a function
with domain and range {1, 2, ..., m} and {1, 2, ..., n}, respectively, and the
subscripts g. + e(k) are reduced modulo n. In particular, it is easily verified that
the system of equations (5) can be equivalently written in the vector-matrix form
(1) where B(x) is an n x n g-circulant with entries bj(x),j 0, 1,-.. n 1, given
by

b(x) ak(x), g + (k) _= j + (mod n).

In order to obtain the general solution of(l) for arbitrary g, 0 =< g =< n 1,
we distinguish two cases: (g, n) 1, i.e., g and n relatively prime, and (g, n) > 1.
The next section considers the case (g, n) and 3 handles the case (g, n) > 1.
We conclude the paper with some immediate generalizations of 2 and 3.

2. The ease (g,n)= 1. Using the methods of Ill, we give the following
definition.

DEFINITION 1. Let (g, n) 1 and let be the relation defined on the residue
classes 0, 1,.-., n (mod n) as follows" h h2 if and only if there exists a
nonnegative integer q such that hi h 2 gq (mod n).

It is readily verified that is an equivalence relation separating the residue
classes 0, 1,.--, n- (rood n) into the equivalence classes [h0], [h], ..-,
We shall assume that [ho] is the equivalence class containing 0 and it is easily seen
that [h0] contains exactly one element, namely, 0. As shown in [1] the elements in
[hj], =< j =< k, are" hj, hj. g, -.., hj. gq(J)(mod n), where q(j) is the least non-
negative integer such that hj. gq(J)+ _= hj(mod n). Thus, associated with each
equivalence class [hj,j 0, 1, ..., k, there is a nonnegative integer q(j) such that
q(0) 0, =o[q(J) + 1] n. We note, in addition, that in the case g 1,
q(j) 0,j 0, 1, ..., k, k n 1, and the equivalence classes generated by
are merely the n residue classes modulo n. For notational convenience-we shall
denote the elements in the equivalence class [hj] by hj hjo, hj.g hj,...,
hg) h),j 0, 1,..., k.

The following theorem has been established by Ablow and Brenner [1,
Thm. 4.1].

THEORZM2.1. Let B be any n n g-circulant, (g, n) 1. Let ho] [hx], [h]
be the equivalence classes generated by . Let 7(P) be the n-component column vector
whose components are 1, pP, pZp, p(n-)p, where p exp (2rti/n). Let M be the
n n matrix whose columns are the vectors (ho),(hxo),(h), ..., (hq)),
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/(h21), T(hkqtk)). Then M is nonsingular and M-1BM has the block diagonal
form M- 1BM diag Ro, R1, Rk], where for each integer j,j 0, 1, k,
R is the [q(j) + 1] [q(j) + 1] matrix having the form

0 0 0 w(hrq(r)

w(hro 0 0 0

0 w(hrl 0 0

0 0 w(hjq(rI- 1) 0

provided q(j) > 0 and R [w(hro)] if q(j) O, where

(6) w(hjp) b0 -Jr- blphjp nt- b2p2hjp d- -t- b,_ lp(n-1)hjp.

Our next definition gives a property which will be required of the g-circulant
matrices B(x) of (1) on [a, hi.

DEFINmON 2. Let B be an n n g-circulant matrix, (g, n) 1, with entries
bo, b l, "", b,_ 1. Let [ho], [hl], "’, [hk] be the equivalence classes generated by. The matrix B has property a provided the entries of B whose subscripts belong
to the equivalence class [hr] are equal, j O, 1, ..., k, that is, bh bhj
j 0,1,...,k.

We now apply Theorem 2.1 to the matrix differential equation (1).
THEOREM 2.2 Let B(x) be an n n g-circulant matrix, (g, n) 1, with entries

bo(x),bl(x),...,b,_l(X). Let [ho],[h],..., [hk] be the equivalence classes
generated by the equivalence relation .,. If B(x) has property a on [a, b], then for
each integer j, 0 <= j <= k,

k

(7) w(hrp) w(hro)-- Or(x)-- bo(x) + bhs(X)[phh -t-
s=l

p 1, 2,..., q(j), and each block Rr(x in the block diagonal form M-1B(x)M
has the form

0 0 0 1

1 0 0 0

(8) Rr(x)= Or(x 0 0 0

0 0 1 0

Proof. Referring to [1, Thm. 4.1], we have the system of equations

(9)

B(x)7(hro w(hro)(hrl),

B(x)7(hrl w(hrl)(hr2),

B(x)(hjqtj))-- w(hjqtj))/(hjo),



CYCLICLY RELATED DIFFERENTIAL SYSTEMS 55

j 0, 1, ..., k. Now assuming that B(x) has property a, we have, from (6), for
eachj, 0=<j=<k,

k

w(hjp) bo(x + bh(x)[phjphs + phjvhs’ + + ph.ihq’’]

for p 0, 1,..., q(j). We claim that w(hjp) w(ho) O(x), p 1, 2,..., q(j).
Choose any positive integer p, 1 <= p <= q(j), and any s, 1 =< s <= k. Then for some
integer t, 1 <= <= q(s), p + 0 (mod (q(s) + 1)). Thus we see that the exponents

hjphso hjgPhs, hjphs hflVhg, ..., hjphsqts hflPhgot

may also be interpreted as

hjohsp, hjohstp+ ), hjohstp+t) =- hjoho, hoh, ..., hohtv- )
and w(hjp) w(hjo). It is clear from (7) and (6) that if B(x) has property a, then
Oj(x) w(hjo) for each j. We conclude, therefore, that the system of equations (9)
has the form

(10)

B(x)(hjo) O(x)(hl),
B(x)(h) O(x)7(hj2),

B(x)7(hjo(j)) Oj(x)7(hjo

and the theorem follows.
Our next theorem shows that each ofthe blocks Rj(x) obtained in Theorem 2.2

can be diagonalized.
THEOREM 2.3. If R is a [q + 1] [q + 1] matrix having the form (7), then

there exists a nonsingular [q + 1] [q + 1] constant matrix N such that RN ND,
where D is a diagonal matrix having diagonal entries O(x)ro, O(x)r2, O(x)r,
O(x), and r

0
exp (2rci/(q + 1)), a primitive (q + 1)st root ofunity.

Proof. Let p be a positive integer such that < p =< q + and consider the
(q + 1)-component column vector Np whose components are r + -p, r2+ -),
.., 1, respectively. It is easily verified that Np is a characteristic vector of R

correspondingtothecharacteristicrootO(x)r.Consequently, the[q + 1] [q + 1]
matrix N whose columns are N, N2, No+ satisfies the equation RN ND,
where O is the diagonal matrix having entries O(x)rq, O(x)r2, ..., O(x). The matrix
N is nonsingular since it is a Vandermonde matrix, and the proof of the theorem
is complete.

We are now in a position to obtain the general solution of (1) where B(x) is a
g-circulant, (g, n) 1, having property a on [a, b. Let M be the n x n nonsingular
constant matrix defined by Theorem 2.1, and let u be the n-component column
vector defined by the equation

(11) y Mu.

Then y’ Mu’ B(x)y B(x)Mu so that (1) is transformed into

(12) u’ M- IB(x)Mu.
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Now M- B(x)M has the block diagonal form described by Theorem 2.1. Partition
the column vector u into k + blocks having q(0) + 1 1, q(1) + 1, ..., q(k) + 1
components, respectively. Let u(j) denote the jth block of u, j 0, 1,..., k.
Then the vector-matrix equation (12) can be written as a system of k + vector-
matrix equations

(13) u’(j) Rj(x)u(j), j 0, 1, ..., k.

Using Theorems 2.2 and 2.3 and letting

(14) v’ R(x)v

denote any one of the k equations u) Rj(x)u(j),j 1,2, k, of(13), we define
the [q + 1J-component column vector z by v Nz, where N is the nonsingular
[q / 1] x [q + 1] constant matrix defined by Theorem 2.3. Equation (14) is then
transformed into

(15) z’ O(x)z,

where O(x) diag O(x)r, O(x)r2q, O(x)rqq, 0(x)], r exp (2zri/(q + 1)). Clearly,
the vector-matrix equation (15) is equivalent to the q + first order equations

(16) Zp O(x)rZp, p 1,2, ..., q / 1.

By the elementary theory of linear differential equations, the general solution of
(16) is given by

(17) Zp Cp exp r O(t) dt p= 1, 2, q

where cp is an arbitrary constant.
We can now use the transformations which define the vectors z and v to solve

for the n components of the vector y. We obtain

Yy(x) coexp {fXa Oo(t)dt)
(18)

Iq(J+l-- 2 Z P(f l)hjs Cp( i]vs[q(J)+ l-p] exp rPj) Oj(t) at
j=l s=0 [._ p=l

f 1,2, ..-, n, where Oj(x), j 0, 1, ..., k, is given by (8) and Co, Cp(j),
p 1, 2, ..., q(j) + 1, j 1, 2, ..., k, are arbitrary constants.

We have established the following theorem.
THWOrWM 2.4. Let B(x) be an n x n g-circulant matrix, (g, n) 1, of Lebesgue

integrablefunctions on [a, hi. If B(x) has property a on [a, hi, then the general solution
of (1) is given by (18).

Concerning the cyclicly related system (5), we have the following corollary of
Theorem 2.4.

CO,OLLA,Y. Given the system of differential equations (5), where (g, n) 1,
let

bj(x) 2 a,(x), g + 0(t) _= j + (mod n),

j=O, 1,...,n- 1.
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If the n x n g-circulant matrix B(x) has property a on [a, b], then the general solution
of (5) is given by

y&) co exp {f q,o(t) dt}
(19) - 2 p(f- 1)hj

j=l s=O / p=l
’p’J"qtJ)’ m.stqtr)+ pl exp rPqtr) Or(t) dt

f 1, 2,..., n, whereco Cp(j),p 1,2,..., q(j) + 1,j 1,2,..., k, are arbitrary
constants and r(x) Or(x), j O, 1,..., k, Or(x defined by (8).

In the case g 1, equations (19) reduce to equations (12) of 2]. With g 1,
m n and the function defined by (k) q + hk, q and h given integers, equations-
(19) reduce to equations (6) of 5].

3. The case (g,n)> 1. Consider the vector-matrix differential equation
(1) where the n x n g-circulant matrix B(x) has the property (g, n)= d > 1.
Let e and m be the relatively prime integers such that dm n and de g.
Examining the equations of (1), we have

n-1

(20) Yi bn-g(i- 1)+j(x)Yr+ 1, 1,2, ..., n,
r=o

where the subscripts n g(i 1) + j are reduced modulo n. It is easily verified
that (g, n) d > implies yp Ym+p YZm+p Y’sm+p, where 1 < p _< m
and s d 1. Thus, we conclude that there exist arbitrary constants Clp, C2p, "",

Csp, p 1, 2,..., m, such that Yt,,+p Yp + Ctp, 1 <= <= s, and our homogeneous
system (20) may be reduced to the nonhomogeneous system

m-1 2m-1

j=O j=m

(
-Jr" nt- Z bn-g(p- 1)+j(x)[yj+ 1-sin nu Cs(j+ 1-sin)I, p 1,2, "", m.

j--

Let bf(x)= ,=0 br+km(X)" Then the nonhomogeneous system (21) can be
written

(22) yp
j=O j=m

p 1,2,..., m, where the arbitrary constants cij have been renumbered Cm,

%+ 1, "’", C,. Writing (22) in vector-matrix form, we have

(23) y’= B*(x)y + f*(x),

where B*(x)is an m x m g’-circulant, g’= g(modm) having entries b’(x),
b(x),..., b*_ l(x) which are Lebesgue integrable on [a, b, y is an m-component
column vector and f*(x) is the m-component column vector having components

fp(x) cjb,_g(p_l)+j(x), p 1,2,... m.
j=m
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Now, using the elementary theory of linear differential equations, we find the
general solution of (23) by first obtaining the general solution of the corresponding
homogeneous equation

(24) y’= B*(x)y.

To illustrate the procedure which we shall employ in finding the general
solution of (1) in the case (g, n) d > 1, we shall assume first that (g’, m) 1.
With this assumption, let [ho] 0, [hl],.", [hk] be the equivalence classes
generated by . If B*(x) has property a on [a, b], then the general solution of (24)
is given by (18) with bj(x) replaced by b(x) and with n replaced by m.

Let Xo, a < Xo < b, be any fixed point on [a, b]. Using the general solution
vector y(x), with components y(x),..., Ym(X), obtained above, we solve the m
initial value problems

y’= B*(x)y,
(25)

y(xo) 6i, 1,2, n,

where 6 is the m-component column vector having a in the ith component
and zeros elsewhere. Let W(x) be the m m matrix whose columns are the solutions
of (25). Then W(x) is nonsingular and the general solution of (23) is given by

(26) y(x)=W(x)[,+W-(t)f*(t)dtl,
where 7 is an m-component column vector whose components are arbitrary
constants. We summarize this discussion with the following theorem.

THEOREM 3.1. Let (g, n) d > and assume that (g, m) 1, where m n/d.
Let B*(x) be the m x m g’-circulant, g’---g(modm), with entries b(x)

d-1k=obj+m(x). IfB*(x) has property on [a, b], then the general solution of(l)
is given by (26).

The special case g 0 occurs as an interesting corollary of Theorem 3.1.
Letting g 0 we have, from (1), y Y2 Yn" Thus there exist arbitrary
constants cz, c3, "", c, such that Yi Y + ci, 2, 3, ..., n. The vector-matrix
equation (1) can now be written equivalently as the nonhomogeneous first order
equation

(27) y’ bj(x) y + cj + bj(x)
I_J=0 j=

The general solution of (27) is easily seen to be

(28)

Yl exp {f fl(t)dt}
bj(x).where fl(x) y’,j 0

C Cj+ b(t)j
Yi Y + ci, 2, 3,...

COROLLARY. Let the n x n matrix B(x) of (1) be a O-circulant. Then (1) can be
written equivalently as the nonhomogeneous system (27) and the general solution is
given by (28).
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We now consider the general situation in the case (g, n) d > 1. Let m n/d
and let dl (g, ml) (g, m), where gl g (mod m). Let m2 m/dl and let

d2 (g,m2)= (g2,m2),g2 g (modm2), and so on. Clearly the sequence
d > d > d2 > is finite and ends with either dp mp or d, 1.

Consider equation (1). As indicated in the discussion preceding the statement
of Theorem 3.1, (1) can be replaced by the nonhomogeneous system (23), which we
now write as

(29) y’ B (x)y + f (x),

where B(x) is an ml x m g-circulant matrix, (gx, m) dl > 1, and f(x) is an
m-component column vector. We consider the associated homogeneous equation

(30) y’ B(x)y

and in the same manner replace it by the nonhomogeneous equation

(31) y’ B2(x)y + f2(x),

where B2(x) is an m2 x m2 g2-circulant, (g2,m2)= d2 > and f2(x) is an m2-
component column vector. Continuing we obtain, after p steps, the nonhomo-
geneous equation

(32) y’ Bp(x)y + f,(x),

where Bp(x) is an m m, gp-circulant matrix, (g,, m,) d, d 0 or dp 1,
and f,(x) is an m,-component column vector. Now consider the associated homo-
geneous equation

(33) y’= Bp(x)y.

If Bp(x) is a 0-circulant, we find the general solution of (33) using the corollary
to Theorem 3.1. If B,(x) is a g-circulant, (g, m,) 1 and B,(x) has property a on
[a, b], then we find the general solution of (33) using the results of 2. Once we
have the general solution of(33), we obtain the general solution of(32) as indicated
by the discussion preceding Theorem 3.1. Continuing through/9 applications of
this procedure yields the general solution of(l).

4. Extensions. The results and techniques of the preceding two sections
depend entirely on the structural properties of g-circulant matrices and not on the
entries of the matrix, .except in so far as integrations are required. Consequently
we have the following immediate generalization of (1). Let F(x) be an n n
composite g-circulant matrix whose entries Do(x), D(x), ..., D,,_ (x) are m m
matrices of Lebesgue integrable functions on [a, b]. Let Y be an n-component
composite column vector with components the m m matrices Y(x), Y(x),...,
Y,(x), and consider the "vector-matrix" differential equation

(34) Y’ F(x)Y.

DEFINITION 3. Let Q(x) be an rn x m matrix of Lebesgue integrable functions
on [a, b]. The m x m matrix E(J’2 Q) is defined to be the unique solution of

(35) Z’ Q(x)Z, Z(a) I.
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It is well known that E(j’ Q) is the matrix analogue ofthe exponential function.
We now have the following generalization of Theorem 2.4.
THEOREM 4.1. Let F(x) be an n n composite g-circulant, (g, n)= 1, whose

entries Do(x), Da(x), D,_ l(X)are m m Lebesgue integrable matrices on [a, b].
If F(x) has property on a, b], then the general solution of (34) is given by

(36)

f 1, 2,..-, n, where

Oj(x) Do(x +
s-’l

j=0, 1,..-,k,

and Co, Cv(j) are m x m matrices of arbitrary constants.
If (g, n) d > 1, then we can use the procedure outlined in 3 to obtain the

general solution of (34).
Concerning the cyclicly related system (5), we note that there is no restriction

on the positive integer m. Consequently, we can also obtain the general solution of

(37) Y’i aj(x)yg.i +(j), 1,2, m,
j=l

where j= aj(x) converges absolutely and uniformly on [a, b] and a is any function
whose domain is the set of positive integers and whose range is a subset of
{1,2, ,,}.

The matrix analogue of (5) and (37) is

(38)
j=l

l__<k=< , i= 1,2,...,n,

where Aj(x),j 1,2,..., k, are m m Lebesgue integrable matrices on a,b]
such that the matrix series =1 Aj(x) converges absolutely and uniformly on
[a,b].

Finally, we note that we can apply these techniques to cyclicly related
functional equations of the form

(39) L(y,) aj(x)yg.,+(j),
j--’l

where L is any linear operator. As indicated by our previous work, system (39)
can be converted into the vector-matrix equation

(40) L(y) B(x)y,

B(x) an n x n g-circulant. For a wide class of operators, it will be possible to solve
(40) using the techniques presented in 2 and 3.
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THE EIGENVALUES OF THE BETHE DIFFERENTIAL SYSTEM*

J. ERNEST WILKINS, JR."

Abstract. The eigenvalues of the Bethe differential system, d{(1- x2)dl/dx}/dx + kx 0
(-1 < x < 1), if(___ 1) finite, are approximately determined. The first nine positive eigenvalues are
given to 6S, and the first three terms of an asymptotic expansion for the large eigenvalues are derived.

1. Introduction. The Bethe differential system consists of the equations

(1)

d { dO)
dx

(1- x + kx/= O,

ff(_+l) finite,

-l<x<l,

and we shall be interested in the values k for which there exist nontrivial solutions
O(x) of this system. This differential system was first studied by Bethe, Rose and
Smith [1] and some of its basic properties were proved by Scalettar [2], both of
whom were interested in electron scattering and transmission.

We shall show that the eigenvalues are 0 and two infinite sequences kn,
k-n -kn such that 0 < kl < k2 < < kn + . Each eigenvalue is simple,
i.e., there is exactly one linearly independent eigenfunction 0n(x) corresponding to
the eigenvalue kn. The eigenvalue O_,(x) corresponding to -kn may be defined as

The smallest positive eigenvalue kl is 14.5280, and the first nine positive
eigenvalues are furnished in Table 1. We also derive the asymptotic formula

kn 6.875186(n + 1/2)2 0.91185 0.05675(n + 1/2)-2 + "",

valid for large n, which gives excellent agreement even when n 1. The first term
of this expansion had been found by Bethe et al. [1], who also estimated k as
14.476.

2. An equivdlent integral equation. If k is an eigenvalue of the system (1),
so that xd/(x) L(- 1, 1), it follows that the quantities

dip
a lim (1 x2)--- b lim (1 x2)

ax x- + dx

exist and are such that

a b k tO(t) dt,
-1

(2) (1 x) a k tO(t) dr.
-1

If we divide (2) by 1 x, or by 1 + x, integrate over (- 1, x), or over (x, 1), and

* Received by the editors August 31, 1971.
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then let x approach + 1, or 1, we conclude from the finiteness of (+ 1) that
a b 0, and hence that

(3) j -, xO(x) dx 0

if k - 0. Equation (3) is also true if k 0 since the only finite solution (x) of (1)
when k 0 is constant.

Since a 0, the result of integrating (2) over (- 1, 1) is that

fl fl2 xO(x)dx -k
-1 -1 fxdx tO(t) dt -k (1 t)tO(t) dt.

In view of (3), we see that, when k :/: 0,

(4) x2k(x) dx O.
-1

If we divide (2) by 1 x2, and integrate over (- 1, x), we find that

In O(t) dt(5) O(x)-O(-1)
-x +x)(1-

If we multiply (5) by x2, integrate over (- 1, 1), we infer from (4) that

tO(t)
2 + In 1+ dr.0(-1)

Making use of (3) and (4), it now follows from (5) that any solution 0(x) of the
Bethe differential system (1) for which k 0 must satisfy the Fredholm integral
equation of the second kind,

(6)
-1

in which

(7) H(x, t)

l {1} x2 + 3xt + t211_l < < x < lln (l-t)(1 +x) 4 15

l {1} x2 + 3xt + t211
ln (l-x)(1 +t) 4 15’

-l <_x<_t<_l.

Conversely, suppose that O(x) is any function which satisfies the integral
equation (6) almost everywhere, and that k - 0. It is easy to verify that 0 < 11/240

H(1,1/2)__< H(x,t), and it follows from the (Lebesgue) integrability of
H(x, t)tO(t) for almost all (and hence for some) x that tO(t) is integrable over
(- 1, 1). From this and the analytic form for H(x, t) we infer that, for almost all x,

2O(x) k{ A(x) In (1 + x) + B(x) C(x) In (1 x)},
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in which

A(x) t(t) dt, C(x) ttp(t) dt,
-1

S() In (1 )t() d In (1 / )() dt
-1

+ tO(t) dt_
15 2

The functions A(x) In (1 + x), B(x), and C(x) In (1 x) are absolutely
continuous on the respective intervals (- 1, 1], (- 1, 1), [- 1, 1). Hence if(x) may
be redefined on a set of measure zero so that it is absolutely continuous on (- 1, 1),
and (x)= O(1)+ O[ln (1- IxI)]. Therefore, x:(x) is integrable, and from
Schwarz’ inequality we now see that

O(x) kh(x) tO(t) dt, h(x) H:(x, t) dt.
-1 -1

A straightforward calculation shows that h(x) is continuous on [- 1, 1], and hence
if(x) is bounded. This insures that A(x)In (1 + x), B(x), and C(x)In (1 x), and
therefore if(x) also, are absolutely continuous on [- 1, 1] if the first and third of
these functions are defined to be zero when x 1 or x + 1, respectively.

Differentiation of (6) now shows that

dx 2 1 + x
t@(t) dt + 1- x

tf(t) dt

t2qj(t) dt
4
_

on [- 1, 1], and hence

xt(x + t)qJ(t)dt.
dx (1 x kx(x) + - _1

Moreover, from (6) and an easily justified inversion of the order of integration,

f, flx@(x) dx k t@(t) dt xH(x, t) dx O,
-1 -1

since the integral of xH(x, t) can be calculated in an elementary fashion to be zero.
In addition,

fl flX21/j(X) dx k tO(t) dt xZH(x, t) dx (1 In 2)k tO(t) dt 0.,
-1 -1 -1

We conclude that any function qJ(x) which satisfies the integral equation (6) almost
everywhere can be redefined on a set of measure zero so that qJ(x) is a solution of
the Bethe differential system (1).
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3. Properties of the equivalent integral equation. We have already observed
that the integral of H2(x, t) with respect to is a continuous function of x. Hence,

(8) - - H2(x, t) dx dt < + o.

Moreover, it is obvious that

(9) H(x, t) H(t, x).

If it were known that the functional

Jig]= ;1 fl-1 -1
g*(x)xH(x, t)tg(t) dx dt

is nonnegative for an arbitrary complex-valued function g(x) in L2(-1, 1), then
the integral equation (6) would belong to the class of J-definite integral equations
of Zimmerberg [3], and certain interesting conclusions could be drawn from his
general analysis. (In fact, Zimmerberg requires that H(x, t) be a bounded function
with regularly distributed discontinuities. Zaanen [4, pp. 418-422 and p. 565] has
shown how to replace this hypothesis with (8).) We shall now establish this
property of the kernel H(x, t).

Consider the Legendre differential system

dxd f 2.
dP)

(1 x -d-x + kP 0, P(/ 1) finite.

Manipulations like those in 2 show that this differential system is equivalent,
when k - 0, to the Fredholm integral equation

(10) P(x) k Ho(x, t)P(t) dr,
-1

in which

Ho(x t)
ln(l_t)(1 +x) +ln2- if-1 =<t=<x=< 1,

1
ln(l_x)(1 +t) +ln2- if-l_<_x__<t_<_ 1.

Equation (10) is a Fredholm integral equation of the second kind with a kernel
Ho(x, t) which satisfies the relations (8) and (9). The eigenvalues are known to be

kt--- l(l / 1), 1, 2, 3, ..., and the corresponding normalized eigenvalues are
(1 + 1/2)l/2Pl(X). The result that

21 + P(x)h(x) dxh*(x)Ho(x, t)h(t) dx dt
21(1 + 1)-1 -1 l=

for every h(x) in L2(- 1, 1) is a well-known [5, p. 118] property of kernels Ho(x, t)
satisfying (8) and (9). Since

15 2H(x, t)= Ho(x, t)- 1/4Pl(x)Pl(t) iP2(x)P2(t) + -ffatx -)(t2 -) + 1 In 2,
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it follows that, for every g(x) in L2(- 1, 1),

21+1 (1 2

Jig] P(x)xg(x) dx
1=3 2l(1 + 1) J._l

+]-
-1

x2- xg(x) dx +(l-In2) -lxg(x) dx

and so Jig] > 0 unless xg(x) is orthogonal to 1, x2 53-, and P(x) (1 >= 3). Since
Po(X) and P2(x)= (x2 -}) + , it follows that Jig] > 0 unless xg(x) is
orthogonal to P(x) when 4= 1, i.e., unless g(x) is constant, and then Jig] O.

It now follows immediately from the results of Zimmerberg [3] that all eigen-
values k are real, and that the index (i.e., number of linearly independent eigen-
functions) of each eigenvalue is equal to its multiplicity (as a zero of the Fredholm
determinant of the integral equation). In fact, each eigenvalue is simple, for it is
easy to see that there cannot be two linearly independent eigenfunctions , l(x) and
ff2(x) both satisfying the differential system (1) for the same value of k.

It is obvious from inspection of the differential equation (1), or from the
observation that H(- x, t) H(x, t), that if(x) is an eigenfunction corresponding
to an eigenvalue k if and only if ,(-x) is an eigenfunction corresponding to an
eigenvalue k.

It follows from another result of Zimmerberg [3] that there are at least N
positive eigenvalues if

xf2(x) dx > 0
-1

for all nonidentically vanishing f(x) in an N-dimensional linear subspace of the
set L of functions f(x) for which there exists a continuous function g(x) such that

fl(12) f(x) H(x, t)tg(t) dr.
-1

Let the functions f,(x) be defined when n 2, 3, ..., N + 1 so that

f,(x) (3n + 2)(3n + 3)x3n 2(3n + 3)(3n + 4)x3n+ _+_ (3n + 4)(3n + 5)x3n+ 2

when x => 0, and so that 2f,(x) f,(-x) if x < 0. Since it is easy to see that

xf.(x) dx xZf.(x) clx O,

it follows from the identity

f’ a{ 3fH(x, O-ft. (1 2) dt f(x) - (x + t)tf(t)dt,

that f,(x) is in L with a function

g(x) g.(x)
x ax (1 x),txj
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which is continuous on 1, 1). Iff(x) a,f,, is any element ofthe N-dimensional
linear space spanned by the linearly independent functions f,(x), n 2, 3,...,
N + 1, then

-1
xf2(x) dx - xfZ(x) dx > 0

unless f(x) 0 on (0, 1), and hence unless f(x) 0 on (-1,1). Since N is an
arbitrary positive integer, we conclude that there exist a denumerable infinity of
positive eigenvalues kl < k2 < k3 < "’’, and a corresponding sequence of real
eigenfunctions ft,(x).

The totality of eigenfunctions may be orthonormalized so that

XOP(X)Oq(X) tpq sgn kp, < p, q < +dx
-1

In terms of these eigenfunctions another result of Zimmerberg [3] is that

(13) j[f] , 1 2

x@(x)f(x) dxp=-l--pl -1

xlf(x)ldx= ’ (sgnk) xO(x)f(x)dx
--1 p=--oo -1

wherever f(x) is in the set L defined above, or even if f(x) is in the larger set L
of functions f(x) representable in the form (12) with a function g(x) in L2(- 1, 1).
(The prime on the summation sign indicates that the value p 0 is to be omitted.)
The identity (13) does not hold for all f(x) in L2(- 1, 1), since the right-hand side
vanishes when f(x) x, by virtue of (4), while the left-hand side is 4(1 In 2)/9,
according to (11).

4. An equivalent Jacobi matrix. While we have deduced the existence of
the sequence of eigenvalues of the Bethe differential system (1) from properties of
the equivalent integral equation, it is more convenient to determine the numerical
values of the eigenvalues in a somewhat different manner. An eigenfunction
of (1) can be expanded into a series of Legendre polynomials,

{21+1}(14) O(x) /3o + =x 2+1) P(x).

In view of the orthogonality and the recurrence relations satisfied by the Legendre
polynomials, we see that the series (14) satisfies the differential equation (1) if and
only if the coefficients// satisfy the conditions that

flO --(1--)1/22, fll 0, k- 1ill B,_ 1,8t_1 + B,,gt+l, _> 2,
(15) B, {l(l + 2)(2/+ 1)(2/+ 3)} -1/2.

Therefore, the nonzero eigenvalues of the Bethe differential system are the
reciprocals of the characteristic values of the (Jacobi) matrix

B (Blm) (BlC1+ 1,m .qt_ BI 1(1- 1,m)l,m= 2,3,..."



68 J. ERNEST WILKINS, JR.

It is a consequence of known results on Jacobi matrices [6, p. 553] that the
characteristic values of B may be obtained as limits of the characteristic values of
the finite segments of B. B. Forutanpour has used a general purpose computing
machine program for finding characteristic values for symmetric matrices and has
evaluated the characteristic values of the first few even-ordered segments of B.
In this manner he finds that the first nine positive eigenvalues of the Bethe dif-
ferential system are those given in Table 1. It is possible to get bounds on the value

TABLE

Values of the first nine positive eigenvalues

of the Bethe differential system (1)

k.

14.5280
2 42.0486
3 83.3044
4 138.308
5 207.060
6 289.563
7 385.816
8 495.820
9 619.573

of the smallest eigenvalue kl by making use of the general result that the sum of the
eigenvalues of a matrix is equal to the trace of the matrix. Since 1/k is a character-
istic value of B if 1/k is, with a characteristic vector (- 1)flt, it follows that

and consequently that

(16)

k- 2, 1/2 tr (B2) U2,
n=l

p- 1,2,...

k >= Up/(2t’),

(17)

It is easy to see with the help of the partial fraction expansion of B that

U2=l=2 B--t=2 1+2 -- 2/+1 2/+3

The telescoping series can be summed immediately, showing that U 1/180.
In a similar manner,

2 6907
2.279207 x 10-5U (B + 2BB+ )= 108 75600/=2

U6 Z {B + 3BB+ I(B + B+, + B+2)}
1=2

5441
1.065407 x 10-.

3572100 6480
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The inequality (16) becomes kl => 14.523 when p 3, and the inequality (17)
becomes kl =< 14.626 when p 2.

5. Asymptotic properties. The differential equation (1) has singularities at
+ 1 and a turning point at 0. It is possible to make use of the results of Langer [7]
in order to construct an expansion, asymptotic for large k, of the general solution
of the differential equation on the open interval (- 1, 1). Similarly, the results of
Dorodnicyn [8] enable the construction ofan asymptotic expansion ofthat solution
of the differential equation which is finite at 1, or + 1, which is valid on the half-
open interval [- 1, 0), or (0, + 1]. By comparing these asymptotic expansions we
can deduce an asymptotic expansion for the large eigenvalues of the differential
system (1). The result we obtain is that

(18) k, {F(1/4)}4(n + 1/2)2 I1- 5/(12n) + [35n’/3{F(1/4)} 8] J8re (n + 1/2)2 (n + 1/2)’rt2 +

We first observe that, if u (1 x2)l/21/l(x), 2 k, ro(x (1 x2) -2,
qg(X) xl/2(1 X2) 1/2 when x => 0, qg(x) eni/2qg(-x) when x =< 0, then

d2u
(19) dx-z + {/].2(p2(X) + ro(X)}U O.

In view of the results established in 3, we may assume that k > 0, and hence that
2>0.

The formal manipulations of [7] used to get an asymptotic expansion of the
solution u(x) of (19) are the following. Suppose that v(x)= (x)V(), in which

(D(X), Ill(x {(D(X)}-l/2{(D(x)} 1/6 I/l(-x),

(x)=
qg(t) dt whenx>__0,

e3i/2(-- x) when x < 0,

(20)

and V() is any solution of the differential equation

dzV dV+ v=0.

Now suppose that

(21) y(x)

in which

flo + -7, z D - 1/2y,

fro(t O(t) dtrio(X) - 2qg(t)
,.o,x, +

2

fl2(x) -1 f a’(t) + a2(t){ro(t O(t)}2tp(t)- 2fl’(t)O(t)- flo(t)O’(t) dt,

ff"(x) q"(x)3 qg’(x)] 2 qg(x)iO(x) O(x) 2qg(x) 4 [ qg(x) J + 6 2

O(-x),
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D + 22 + 2fl +//z- ffo + 2oflzq92 + 0

It is easy to see that

q"
O*(x) 2q 41q

5 X2
16x2 + + + x4E(x),

(22)

o(x)
2x3/2

3
3X2 9X4 )1q-- if- -- q- x6E(x

3 624x2
O(x) ff + 539 + x4E(x)’

ro(t O(t) 2t- 1/2 150t3/2
+ tV/ZE(t),

2qg(t) 7 539

in which E(x) stands for a convergent power series in X 2 (not necessarily the same
function at each occurrence). The integral defining o(X)qg(x) therefore exists, and

fi(x)qg(x)
4X1/2 [ 15X2

7 + 7
+x4E(x

Hence ri0(x) is even and 2(X) is odd. Since O(x) is even, the numerator of the
integrand in the definition of flz(X) is odd, the integrand itself is tl/2E(t), and hence
flz(X)qO(x) x3/2E(x) exists and is such that flz(X) is odd.

It follows that

d2z
dx2 + {222(x) q- ro(X q- O(2-4)}z 0,

and hence z and z’ are, for a suitable choice of a particular solution V() of the
differential equation (20), asymptotically equal to u and u’, with an error which is
0(2-4). (This last assertion is a rather informal translation of a more carefully
worded assertion rigorously demonstrated in [7].) Since D 1 + 0(2 -4) and

D’ O(2-4), y and y’ are also asymptotically equal to u and u’ with an error of
0(2 -4) on any closed subinterval of the open interval (- 1, 1).

The general solution of the differential equation (20) is

V() (t2)1/3[alJ1/3() -}- a2J_l/3()],

in which a and a2 are arbitrary constants and J is the Bessel function of the first
kind and order . Hence

(23)
U(X) {(x)/q)(x)}l/2[alA1 + a2A2]

u’(x) 2{(I)(x)q(x)}’/2[a,B a2B2]
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in which

A, {1 -I- ,/1-2 -.]- 0(.-4)}1/3(,(I)) -]- -l{flo + 2-2 + 0(-4)}_2/3(),
: {1 + ,-: + o(-)}_ l(e)- -’{o + :- + o(-)}a:(;e),
B {1 + p:-: + O(-’)}J_:/()+ -1{] + 4-2 + O(-a)}j,/a(),
B2 {1 + p22 -2 + 0(-4)}J2/3()- -1{3 + ff4 -2 + 0(-4)}J_1/3(),

( 2)(/(6@)- ’/(2))- fl flo(ro + 0)- 2fl22

P 2
In view of the relations J+_ 1/3(e3i/22@) eni/2I 1/3(2@), g 2/3(e3ni/22@)

-I 2/3(2), it is also true that, if x > O,

U(--X) {(x)/(x)}ll2[-alC + a2C2]
(24) ,( a2D2u -x) 2{(x)p(x)}’/2[alD,
in which

C (1 .1-2 + O(A-4)}Ix/3(A)- -le{flo f12-2 +
C2 (1 l-2 + 0(-4)}I_,13()- -’{flo 2-2 + 0(-4)}I213(),
D, {1 z2 -2 + 0(2-’)}I_z/(2 + -1{3 4-2 + 0(-4)}I1/3(),
D2 {1 p22- z + 0(-4)}i2/3() + - 1{3 4-2 + 0(-4)}i_ 1/3().

Having established (23) and (24), let us now consider the neighborhood of the
singularity at 1. Suppose that

2 f (t)dt 2{a- (x)},

(1)= f/e(t)t B(3/4, 1/2) (2)32

2 {r(/4)} 2,

(x) {,/e()}’2o(,).

Then (1 x2) /2w(x) is finite when x l, and we now suppose that

Y(x) +

in which

O(t) ro(t)dto(X) 2q(t)ptx)

w+ (2) W’

,(x)

fi’ 26)01 -k- 6o0x 3 -k- ])2(0x ro)dt62(x) -) 2o(t)

0 l(X) 2q(x) 4 [ q(x)J +
a x)
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If x 1 e, it is easy to see that

ro (2e)-2{1 + e + O(e2)},

(25) 16e--7 + O(e2)

O (2e)- 2 1 + O(g2

{tp=(2e)-/2 1-+O(e2

a-=(2e)/ 1--+ O(e

ro 01 1
2q9 3(2e) 1/2 {1 + O(e)}.

The integral defining 6o(X)qg(x) therefore exists, and

60p
(2;) 1/2

_
3 {1 +O(e)}, 6o=a{1 + O(e)}.

The integrand of the integral defining 62(X)(0(X is now seen to be O(e- l/z), so that
fiz(x)q(x) exists and is such that 62(x O(e).

As a consequence of the definitions, it follows by reasoning analogous to
that used above for y(x) and y’(x) that u and u’ are asymptotically equal to a
suitable constant multiple of Y and Y’, with an error of 0(2 -4) on any closed
subinterval of the half-open interval (0, 1]. Therefore,

(26) u(x) a3{(a O)/q}’/ZA3, u’(x) a32{(a O)qg}1/2B3,

in which a3 is an arbitrary constant, and

A3 {1 vl-2 + O(,-4)}So(r/)+ ,-lq){(0 q- a2/], -2 + O(2-4)}Sl(r/),

Ba {1 + v22-2 + O(/],-4)}Jl(r/)- /-I{F3 + Y4./ -2 -vl= o+6 q
a-tI) - v2= 2

’3 2(a O) + -7 + 6oq9,

(6 6ZoqgZ)(qg/(2(a O))+ qg’/(2qg)) + 6 + 6o(ro + 01) -- 262q2

2q9

We now observe that the differential equation (19) is unaltered if x and 2 are
replaced by -x and i2. Hence equations analogous to (26) may be derived for
negative values of x. Thus we see that, when x > 0,

(27) u(-x) a,{(a f)/(19}1/2C3, b/’(--X) --a42{(a O)q}l/2D3,

in which a4 is an arbitrary constant, and

C3 {1 + vl& -2 4- O(-4)}Io(r/)+ -l(.D{(50 (2/], -2 + 0(,-4)}I1(r/),
D3 {1 F2/ -2 + O(2-4)}I1(q)+ 2-1{v3 -+- v42-2 + O(2-4)}Io(rl).
If we now compare (24) and (27) we find that

al1/2 a,(a )1/2(C2D3 DzC3)/(C1D2 D1C2),

02(I)1/2 a,(a f)I/Z(C1D 3 D1C3)/(C1D2 D1C2).
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The denominator C1D2
minants,

DIC2 can be expressed as the product of two deter-

-{- O(,- 2) 0q)//], -Jr- 0(/],- 3)

1+ O(2_2) 1{16-O 2q9
2q9’O 0(/9}, ..[.. 0(/],_ 3)

2 60 2q92 t- O(2-2)

11/3(20) I_ 1/3(20I))

I- 2/3(/O) 12/3(20)

and so does not vanish since

2 sin (rt/3)

60 2q92
l+x2

6 j’) {t 1/2 dt/(1 t2) 1/2} 4X3/2(1 X2)1/2

< =0 whenx>0.
6) 1/2 dt 4x3/2

Moreover, since
that

(2/rt) tan (0rt)Ks, and Ks(z O(e-Zz 1/2), it follows

C1 C2 O(e-a,A- 112O- 1/2), D1 D2 O(e-a,2- 1/2O- 1/2).

In addition, Is(z O(eZz 1/2), and hence

C3 O(e2(a-))t 1/2(a O)- 1/2), D3 O(eZ(a-’)2- 1/2(a 0)- 1/2),

al a2 a40(e("- 2’)2)= a,o(2-")

for every integer n, if x is sufficiently close to that a < 20(x).
A comparison of (23) and (26) now shows that for such x,

aO/2(Ax + A2) a3(a O)1/2A3 + O(/],-n),

alO1/2(B1 B2)--a3(a O)1/2B3 + o(),-n),

and consequently, dropping the 0(2-") terms,

(28) (A -F Az)B3 (B Bz)A3.

With the help of the asymptotic expansions for the Bessel function
manipulation of the trigonometric functions involved, we see that

1/2

{1 pl 2-2 -4- 0(2-4)} sin

+ ,-l{p2 + p32-2 -4- 0(2-4))COS

n -B2=
1/2

+ p4- 2 + O(2-4)} cos

-1- - 1{105 -[- p6-2 -1- 0(,-4)} sin

and some
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A 3 p72 -2 nt- O(-4)}cos r/--

+ 2-1{P8 P92-Z + o(2-4)}sin rl

Ba {1 + po2- + O(2-)} sin -
in which the coecients p, p, ..-, p are expressible as explicit formulas
involving o,, , , ro, 0, o, , 0, and a.

The characteristic equation (28) may now be written in the form

{1 + (p Ov + PzP, 1)-2 @ O(-4)} COS ( @ )

+ 2-1{P + Pal + 2-2(p6 + P12 PsP7 PxP11)+

sin ( + q)

+ 2-2{P P7 + PzPx + Pl Po + PsP8 + O(2-z)}

.cos 

Let us introduce the symbol
5

G o o 8(a- ) 72’
so that

dG 5
x (oe’- (oe’

a(a 7’
dG ’ 5’ 5
dx

(o)" (o)"
8(a )2 722 4(a )3 363

It follows from the definitions ofo and 8o that dG/dx 0, so that G is a constant
and dZG/dx2 0. It is then easy to verify from the explicit formulas for the coeffi-
cients p that

G 1 dG G
P5 + P P8 P2 -G, P4- P7 + PzPI 2 2 dx 2

G2 1 dG G
Px-Pxo+PsP8 = +

2 dx 2’
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63 1q9
/96 -[- P12 P5P7 P P -- +

2q) . q) 2 +
1 d2G G3

H= H,
2q) 2 dx2 6

P3 + P9 P4P8 + P2Plo

5 1 }dG72(I) 8(a (I))

63

16q 9-(I) a-@ --x + H

in which

H=H1- H2, H1 =/2q9 +
6 o{ o* 5]+- ro- + 36(i)aj +

1105
31104o1)3,

)q)3 0{ 0*
(/02 } 25

H2 =62q9 + 6 + r- + 4(a--(I))2 384(a-(I))3"

We shall show in the next section that

G 5{F(1/4)}2/48(2n) /2,
H 35a/384 35(2n)3/2/384{F(1/4)}2.

Assuming these results for the moment, we can write the characteristic equa-
tion (29) in the form

G2
+ 0(2 -4 cos2a- G-5 H + 0(2 -4 sin2a= 0(2.-4).

For large values of n, this equation has the solution

Ga (Ga)2 + Ha3
-5)n -[- 7

(/ -[- 1/2)7 (/ -[- 1/2)33
-]- 0(//

Actually, all we can show from the reasoning above is that the error term is
O(n-4), but it seems reasonable to conjecture that an analysis of the next term in
all of the expansions used would result in a term which is O(n-2). Therefore,

) 2n2 2G G2 +2Ha 4)k n + a2 a (n + 1/2)2n2 + O(n-

{r(/4)}"
8

n +
12n(n + 1/2)2

t- 35n4/[3{F(1/4)} 8] }(. + k)’ +""

6.87518581 n +
0.0567489

0.9118498 + ....
By comparison with the results of Forutanpour recorded in Table 1, it is seen

that these three terms of the expansion produce a result which is correct to within
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one unit in the sixth significant digit when n is as small as 3, and has an error of only
0.0041, or less than 0.03 , when n 1.

6. The numerical values of G and H. We have already seen that G is constant.
In this section we shall evaluate that constant, and also evaluate H, which is itself
a constant. From the definitions, we see that

fi: ro O 5
G ro o

dt + dt
2q 2cp 72q) 8(a q)

=lim ro 0* 5q9
dt+ r-

s-o 2 722 ’ 8(a )2
dt

5

72 8(a )

lim dt

In view of the specific analytic form of the functions ro and ,
G= lim[f’ 5+2t-3t 5 1

o 32t/(1 t)a/
dt

72(s) 8{a (s’)}
s’l

lim
( / + )/- t3/ dt

so 24t/ ) 8(1- 48

72(s) 8 {a (s)

5 " dt 5(1 $2) 1/2 5

24 Jo tl/2( t2) 1/2 +
lim
s-,O 48S3/2 72(s)

lim Iqg(s,) ]+
s’-+1 a (s’)

5 5{F(1/4} z

48B(1/4, 1/2) 48(2rc)1/2,

since it follows from (22) and (25) that the limits of the bracketed quantities are
zero.

After some similar, although more complicated, manipulations we find that

I{4 5(49 2 ro’- 0" (ro O*)q)’ 1105 tH lim ro- 0* + 36@2 + 3 +
-o 8q9 4q9’ 31104q)3

83 4 Jx- 83 dt,

H2 lim[{a(ro -0" +
4(a @2)t-O*t)2+ r (r-O*)o’

s’+ 83 44 (cont.)
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384(a (I)) 3 s’ 8go3

(ro 0"):
+ dt

8go3

In view of the specific analytic form of the functions ro and (19,

(ro 0*)2 (5 + 2t2 3t4)2

8(193 2048tXl/2(1 t2)5/2

{-50-224t2- 1974t4 + 5654t6 3360ts} ’_18432t9/2(1 t2)3/2

and consequently,

H H H2 tl/2(1 t2) -/2 dt

+ lim ro -0* + 36(i).] +
0 8(19 3 4tp4

50 + 224s2 + 1974s4- 5654s6 + 3360s8-]
18432s9/1(1 s2)3/2 1

35tl/2

384(1 t2) 1/2’

1105

(19
2 1’0’ 0" (ro 0")(19’

ro 0* +
4(a (I))2

-]-
8(40 3 4994

50 + 224s’2 + 1974s’4- 5654s’6 + 3360s’8]
18432s’9/2(1 s’2)3/225}384(a (1))3 s,

35a/384,

since it is a consequence of (22) and (25) that the limits of the bracketed quantities
are zero.
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ADIABATIC INVARIANCE OF A SIMPLE OSCILLATOR*

WOLFGANG WASOW’f

Abstract. J. E. Littlewood [5] has derived asymptotic expressions, as 0+, for the function
ck(ez)u + ok-(ez)(du/dz)2, when u is a solution of the differential equation d2u/dz + ck2(ez)u

0. He assumes that 4(z) > 0, q(+ oo) > 0, qt")(+ o0) 0, and 4") L(-oo, o0), for all n > 0.
In the present paper, Littlewood’s results are re-proved and strengthened by using the established
methods for the solution of differential equations by asymptotic series. A new result is an explicit series
construction in powers of for the function 2. Littlewood’s asymptotic expression was in terms of
the unknown solution of the differential equation.

1. Introduction. If the function g(z) in the differential equation

dEu
(1.1) dz-- -+- gZ(z)U 0

for the motion of a simple oscillator is a constant, the energy

(1.2)

is also a constant. If g is not constant but changes very slowly with the time z, the
function (1.2) can be interpreted as measuring the "local" energy, and it is
plausible that it, too, changes slowly.

The statement: "g changes slowly" can be mathematically formulated by
setting

(1.3) g(z) q(e),

where e is a small positive parameter. It is then convenient to make a change of
time scale by setting .
This transforms the differential equation (1.1) into

d2

(1.4) e2/i + b2(t)u 0 /i d-U
The function r2(t, e), defined by

(1.5) r2(t,

turns out to have simpler and more striking properties, for small e, than the local
energy itself.

In fact, Littlewood [5] proved that, under appropriate hypotheses on
(hypothesis (H), below),

(1.6) r2(oo, g) r2( oo, g) O(e,n) for all n > 0.
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In his proof, Littlewood made no use of the established theory of asymptotic
expansions for the solutions of linear differential equations. In this paper it will
be shown that Littlewood’s results follow almost immediately from a refined
version of the standard theorem on asymptotic solution (see, e.g., [7, 26]), which
can be proved by taking into account Littlewood’s particular hypotheses on b(t).

The method of this paper also yields an asymptotic series for rZ(t, e), as
e 0 +, whose coefficients depend only on qS(t) and on the initial data. Littlewood’s
corresponding series involves the unknown solution of the differential equation.

The problem of replacing the right member of (1.6) by an asymptotic expan-
sion, or at least the leading term thereof, requires varying methods depending on
more special properties of (t). Some remarks applicable to certain types of
analytic differential equations are included in 6. A more complete account will
be published elsewhere. Other results in this direction can be found in 1], [3]
and [4].

The term "adiabatic" is commonly applied in physics to phenomena which
involve some changes that are much slower than others. An example is wave
propagation in a fluid where the compression caused by the wave passes so fast
that very little of the heat generated by it can diffuse. This makes it approximately
a process without heat exchange, i.e., adiabatic in the original sense of the word.
The quantities that change slowly in such processes--or, in other words, those
nearly invariant--are the adiabatic invariants. Mathematical problems of this sort
are sometimes said to involve two time scales: "fast" and "slow" time. An asymp-
totic analysis from a more general viewpoint can, for example, be found in [2].

The simplest--but by no means the only--physical interpretation of the
mathematical problem studied in this paper is that of a pendulum whose length
is changed at a rate much slower than the frequency.

DEFINITION 1.1. An indefinitely differentiable real or complex function f
of will be called gentle if

d"f/dt" e LI(- oo, oo),

By integrating the derivatives off one sees that

n =0,1,2,....

lim d"f/dt" 0, n 0, 1, 2,....

The term "gentle" has occasionally been used in the mathematical literature
with a meaning different from the one above.

Hypotheses (H).
(i) e is a small positive parameter.

(ii) is a positive function of in
(iii) lim,_ (t) and lira,_, (t) exist and are positive.
(iv) 4 is gentle.
These are the same assumptions as in Littlewood [5].

2. Reduction to a Riccati equation. The transformation
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changes the differential equation (1.4) into the equivalent vectorial system

(2.1) e

where

(2.2) 4/2b.

z Az,

Observe that ff is a gentle function. The function r2 takes on the simple form

(2.3) r2 x2 + y2.

The change

(2.4) z Svo, S
-i

of the dependent variable diagonalizes the leading part--with respect to e--of the
coefficient matrix in (2.1) and takes the differential equation into

(2.5) et3o v0 Bovo.

We shall show, following essentially the method of Sibuya in [6] (see also
[7, 26]), that there exists a matrix P(t, e) of the form

(2.6) P(t, e)
ep(t, e)

where the bar represents complex conjugation such that the transformation

(2.7) Vo Pv

reduces (2.5) to

(2.8) et3 By,

where B is a diagonal matrix of the form

(2.9) B(t e)=
ip(t) + e’z(t’ e) 0

0 -igp(t) + 2b(t, e)

Substituting (2.6), (2.7) into (2.5) and identifying the result with (2.8), (2.9) we
are led to the relation

(2.10) BoP- PB e,
and, hence, to

(2.11) e[ k + 2ip e,Zpb,

(2.12) p b

as necessary and sufficient conditions for the existence of such a transformation.
By elimination of b the Riccati equation

(2.13) eiO 2ickp + e2p2
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for p is obtained. The diagonalization of the differential equation (2.1)wand hence
its solution--has thus been reduced to the study of the Riccati equation (2.13).

3. Asymptotic solution of the Riccati equation.
LEMMA 3.1. The differential equation (2.13) can beformally satisfied by a series

of the form :0 Pr(t)er with gentle coefficients.
Proof Substitution of the series for p into (2.13), termwise differentiation and

rearrangement according to powers of e yields the recursion formulas

2idppo+ k=O,

r-2

2idppr pr_, pp,_2_, r > O,
s=O

where P-2, P-1 are defined as zero. As is gentle, all the p so defined are in-
ductively seen to be gentle.

We next prove an adaptation of the so-called Borel-Ritt theorem (see [7,
Thm. 9.3]). The theorem below is somewhat stronger than what is needed in the
sequel.

THEOREM 3.1. Let a(t), r O, 1, 2,..., be gentle functions. Then there exists a

function f(t, e) defined for 0 < e < 1, - < < , such that

(i) dr,if(t, e.) a)(t)e,
r--O

ase +0, forn=O,1,...

uniformly on -o < < .
(ii) fis a gentlefunctionfor all e in 0 < e < 1. (See [7, Chap. III] for the defini-

tion of the symbol ".-. ".)
Proof Let

k max sup [aJ)(t)l, laJ)(t)l dt
O<__j<_r {.[tl

o(e) exp (-e- k; ).

Then the series =o ar(e)a")(t)e, n 0, 1, 2, converge uniformly in -oe <
< oe, for 0 < e < 1, since 1%(e)[ =< e- k;- 1, and therefore,

I,(e)a)(t)e.1 <_ e-,

for r => n. Thus, the function

f(t, ) a,(e.)a,(t)a
r--O

is in C(- oe, oe) with respect to t, for 0 < e < 1, and it as well as all its derivatives
vanish at _+ oe. The integrability off")(t, e) follows from the integrability of the
right member in the inequality [f")[ =< o Ia(e)l[a")(t)ler" The latter function is
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integrable as a consequence of the definition of kr, which implies that

I(e)lla)(t)le dt
r=n+ r=n+

I()l la)(t)l dt

This proves assertion (ii).
Next, for all N > 0,

N N-1

f(")(t, ) a()a")(t) exp(-e-k- 1)an)(t),r + ,N 2 a(e)a")(t)e-v.
r=O r=O r=N

The right side is O(eN), uniformly in - < < , i.e., part (i) of the theorem is
also proved.

By Lemma 3.1 and Theorem 3.1 there exists a gentle function/3(t, e) with the
asymptotic representation

(3.1) p(t, e) pr(t)e as e 0+,
r=O

uniformly valid in -o < < , such that the function q q(t, e), defined by

(3.2) q -e/ + p + 2iq/- ezp2

is uniformly asymptotic to zero:

(3.3) q(t, e) O, e 0+.

Clearly, q is also gentle.
To show that/ is asymptotically equal to an actual solution of equation (2.13)

we set

(3.4) p =/3 + w

and obtain the differential equation

(3.5) 2iw e2t(2w/3 + w2) + q

Set

(3.6) O(t) b(s) ds

for 14;.

We now have to construct a solution w of (3.5) that is asymptotic to zero.

and observe that, by the variation of parameters formula, any continuous solution
of the integral equation

(3.7) f’ {2iw(t, e) exp --[(t) (s)]

where

also solves the differential equation (3.5).

F(w(s, e), s, e) ds,

F(w, s, ) e,O(s) [2wp(s, e) + w2] + e- q(s, e),

r=n+l
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The existence of such a solution is a simple consequence of the contraction
mapping theorem in the Banach space of bounded continuous functions on the
real line with the maximum modulus norm. The operator in this application is
defined by

(3.8) Tv exp
2i

s(s)[2v(s)(s ) + v2(s)]

It is readily verified that this is a contraction operator in the ball Ilvll -< 1, provided
0 < e < eo, with eo < 1/2 and

2 10(s)l ds sup /(’,e) +
O<e<l/2

The integral equation can also be written

(3.9)

where

w Tw + to,

to e- exp --[(t) (I)(s) q(s, e) ds.

The function to is in the Banach space. Thus, the integral equation has a unique
solution. Also to is uniformly asymptotic to zero. It follows from the contraction
property of Tthat w is also asymptotic to zero. Returning to (3.7), we see, moreover,
that w(-, ) 0, and that the function

(3.10) v(t, e) w(t, )exp 2i(t)/
has a limit as + . However, (, e) need not be zero. Thus, is generally
not gentle, nor is p.

Now that the differential equation (2.1) has been diagonalized it is readily
solved. The result is formulated in the theorem below.

THEOREM 3.2. The differential equation (2.1) possesses a fundamental matrix
solution Z(t, ) with the following properties:

Z SPV(i)

with

(ii)

-i p(t,e,))P P(t, e)
e(t, )

+ e (s)p(s ) ds 0(t)
V V(t, e,) exp

0 -@(t)+ f (s)p(s, )d
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(iii) p(t, e) pr(t)e as 0 + (pr(t) gentle),
r=O

uniformly in -o < < oe, and this relation may be indefinitely termwise dif-
ferentiated;

(iv) p(- oc, e) 0;

(v) the function

p(t, ) p(t, ) exp 2i(t)
has a limit, as + o, and this limit, as a function of e, is asymptotic to zero as
eO+.

independent of e, and set

(4.2) c c(e) (Z(O, e,))- aZo
The vector c(e,) has an asymptotic expansion in powers of e as e --+ 0+. We

then have

(4.3) z Zc

and

(4.4) r2 zTz cTZTZc.
The matrix

(4.5) m ZrZ
can be calculated in terms of 4, and p, by means of Theorem 3.2. Straightforward
manipulations lead to

(4.6) M(t, )

2e/ exp 2 ,,O ds (1 -1
I- g..2i01 exp ,(p + ) ds

(1 + e/3/) exp { f-oo ’(P+ )ds} 2:/3 exp {2e f_oo g,pds}
(Observe that p/ =/3/.) It follows that, in particular,

(4.7) M(- oc e)
2

For the asymptotic calculation of M(, e) the following lemma is decisive.
LEMMA 4.1.

(4.8) exp e O(P + )ds (1 e2pi0) -1

4. Proof of Littlewood’s theorem. Let z z(t, ) be the solution of (2.1) with
initial values

(4.1) z(O,e) zo Xo/,
Yo
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Proof Multiply equation (2.13) by and add the resulting equation to its
conjugate. This yields

(p +/p) (1 2p)(p +/)

or

ld
dt

log (1 e2p)= t(p + ).

Integrating and forming the exponential function of both sides, we obtain (4.8).
Returning to (4.6) we see that

/(, e) exp 2 t/Jfi ds

M(c,e) 2

(4.9)
+ o(1(oo, )1 ).

2ep(oo, e) exp 2e ,p d

Littlewood’s theorem is now an immediate consequence of (4.4), (4.5), (4.7) and
(4.9). Thus we have proved the following theorem.

THEOREM 4.1.

rZ(oo,e)-rZ(-oo,e)0 as e O+

Actually, we can obtain more precise information.
THEOREM 4.2.

(4.10) r2(zt3,g)- r2(--zt3,e)= 2e Re {(xo + iYo)2/3(zt3, e)}(1 + O(e)).

Proof By Theorem 3.2,

z(0, e)= s + o().

Insert this into (4.2) and (4.4). The expressions (4.7) and (4.9) for M(-oo, e) and
M(oo, e) when substituted into (4.4) lead to (4.10), after a short calculation.

5. The asymptotic form of re(t, e). With the help ofthe results of 4 the uniform
asymptotic expansion for r2(t, e) itself, as e 0+, can be explicitly calculated to
any number of terms, by means of rational operations, differentiations and quadra-
tures. The computations are tedious and probably of little interest beyond terms
of order O(e). The approximation to this order is given in the next theorem.

THEOREM 5.1. Let (r(t, e), O(t, e)) be the polar coordinates in the (x, y)-plane ofthe
point (x(t, e), y(t, e)), where (x(t, e), y(t, e))r z(t, e) is the solution of the differential
equation (2.1) with initial values z(O,)= zo (xo,Yo)r independent of e. Set
r(O, e,) ro, 0(0, ,) 0o Then

(5.1) r:(t, ) r) {1 e-F2L:(t)(t) sin 200 _2 (I)(t) (/)2(0)
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Proof Let the symbol over a letter indicate that the quantity is to be taken
at 0. From the proof of Lemma 3.1 one sees that, in particular,

/, po(O)+ o()= -;4,(o)/4,(o) + o().

Formula (4.2) and Theorem 3.2 imply that

c() 15-P- s- Zo.
Hence,

r(, ) z/,;(t, )Zo,

where K K(t, e) is the matrix

K (S- 1)T(p- 1)T- 1M]- 1i- 1S-1

If this matrix is calculated to within terms of order O(e), and Lemma 4.1 as well
as part (v) of Theorem 3.2 are used to simplify the expressions, one is led to formula
(5.1) after some calculations, the details of which are omitted.

6. Remarks on the asymptotically leading term of r2(:), e)- r2(-, ).
Theorem 4.2 reduces the asymptotic calculation of r2(, e)- r2( , e) to the
determination of p(ov, e). This quantity satisfies the relation

(6.1) p(o., e) e- exp O(s) O(s)(1 eZpZ(s, e)) ds,

which follows from the differential (2.13) by the variation of parameters formula.
The asymptotic information on p(s, e) given in Theorem 3.2 (iii) is probably not
sufficient to evaluate that integral asymptotically. For the case that qz(t) is an
analytic function satisfying certain additional conditions I have obtained more
precise results, the details of which will be published elsewhere. A brief account
of these methods is given below.

The function

(6.2) O(t)

maps a neighborhood of the real axis of the t-plane conformally onto a strip
containing the real axis of the -plane. The function p(t, ), as a solution of an
analytic differential equation, is analytic, and under suitable assumptions on the
smallness of (t) at infinity--at least near the real axis--the validity of the expan-
sion in Theorem 3.2 (iii) extends to a complex neighborhood of the real t-axis. Let

be the inverse of the function (6.2). The integral in (6.1) can then be transformed
into the integral

(6.3) p(,e) 2e
-1 exp -- 4;(27())b-z(z())[1 eZp2(z(), e)] d
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along the real -axis. The path of integration may now be replaced by a path
-ia + r/, a > 0, a constant, - < r/< , as long as this path lies in the

strip where the integrand in (6.3) is holomorphic and falls off sufficiently fast at
infinity. In this way one proves that in such cases

(6.4) (o, e) o(e- 2ale) as e 0 +.

Let us now make the stronger assumption that the path can be shifted in
this manner until the image in the -plane of a simple turning point for the dif-
ferential equation is met, i.e., a point 1 (tl), with

d
(6.5) b2(t) 0, -t2lt=t # 0.

More precisely, the path is replaced by a curve F consisting of the line Im Im ,
except that the singularity at 1 is avoided by a semicircle described in clock-
wise direction. The radius of this semicircle can then be shrunk to zero.

Near such a point a short calculation shows that

(6.6) 1/2d(Z())q-z(z())--(- 1)-1[1 -4- O(( 1)2/3)].
Formula (6.3) becomes, for the new path of integration,

(6.7) /3(, ) e- exp

where

k(),

(6.8) k(e) exp 2/( 1) [1 eZpZ(z( e)] d.
r 2b2(Z())

With the help of the theory of simple turning points one can calculate
pZ(z(), 8) asymptotically and show that k(e) remains bounded, as a - 0 +. In fact,
an explicit expression for limo k(e) as an integral can be derived from that theory.
The integral contains Bessel functions and is somewhat involved.

Formula (4.10) for the adiabatic invariant can now be replaced by the more
informative result that

rZ(ct) r2( o)= r2o expl Im (t)l(c(e)+o(1)),
as e - 0 +, with a function c(e) which can be calculated explicitly.

A simple example in which all assumptions of the foregoing argument are
satisfied is

b2(t) 1 + (1 + 2e-’) -1.
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CONNECTION FORMULAS FOR ASYMPTOTIC SOLUTIONS OF
SECOND ORDER TURNING POINTS IN UNBOUNDED DOMAINS*

ANTHONY WING-KWOK LEUNG"

Abstract. Asymptotic expansions, as 0 or x , for fundamental systems of solutions for
e2u"(x) p(x)u(x) 0 are obtainable by Evgrafov and Fedoryuk’s method on unbounded canonical
domains with neighborhoods deleted around turning points. When p(x) is a polynomial, they also
found a "lateral connection" formula for two fundamental systems of solutions with known asymptotic
expansions which are valid in the interior of two different unbounded overlapping canonical regions
with a common first order turning point at their boundaries. However, their connecting methods are
not applicable to second order turning points. This paper employs techniques of Wasow and of R. Lee
to find central connection formulas with a solution having a known asymptotic expansion in a bounded
full neighborhood of a second order turning point. With the help of this result, lateral connection
formulas are also established.

1. Introduction. In the paper by Evgrafov and Fedoryuk [1], a careful study
of the turning point problem is given for the differential equation

,2
d2u
x ptx)u o.

Under certain conditions on p(x), asymptotic expansions for u(x) and if(x) are
given that are valid as x - and also as 0 +. These expansions are valid for
the functions only in parts of the x-plane. Evgrafov and Fedoryuk also find con-
nection formulas for different solutions with known expansions on different parts
of the x-plane around a simple turning point x0, i.e., a point where

p(xo) o, p’(xo) O.

In the case when p(x) has higher order zero, their connection formulas are not
complete.

This paper finds such connection formulas for the case when p(x) has a
second order zero. It utilizes first the techniques and results of Wasow [2], R. Lee
[5], and Hanson and Russell [3] to find connection formulas between solutions
that have expansions in the sense of Evgrafov and Fedoryuk and solutions that
have uniform expansions with respect to e in a full bounded neighborhood of Xo
when p(x) is a polynomial with a second order zero at Xo. Subsequently, connection
formulas are found between solutions which have asymptotic expansions of
Evgrafov and Fedoryuk’s type on different unbounded domains of the x-plane.
Such formulas are expressed as asymptotic series in terms of e by making use of
Weber (parabolic cylinder) functions. The principal result of the paper is Theorem
2.2 and Corollary 2.2.

2. Connection formulas between different solutions. Consider the differential
equation

(2.1) eZu"(x)- p(x)u(x)= O,
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where p(x) is a polynomial with p(xo) p’(xo) 0 and p"(Xo) - O. A Stokes curve
for the eq_ation is a curve on the x-plane proceeding from x0, along which
Re,oZ)dz O. A canonical domain on the x-plane is a domain which is
bounded by Stokes curves containing no turning points, i.e., zeros of p(x), in its
interior, and which is mapped by the function

g(x) dz

onto the whole -plane cut by a finite number of vertical rays each of which is
unbounded. If all these vertical cuts start from the images of some turning points
and extend to infinity in the same direction, then the canonical domain is called
consistent; otherwise, it is called inconsistent. (Such terminology was introduced
by Wasow [2].)

The purpose of this paper is to find the transition matrix from one funda-
mental system with known asymptotic expansion on one canonical domain to
another such fundamental system on another canonical domain with a common
second order zero Xo for p(x) at the boundary.

Let the four Stokes curves at x0 be 11, 12, 13, 14, counting in the counter-
clockwise direction. By making a suitable choice of roots, the transformation

t(x)= 2 x)dz
1/2

is uniquely defined near x Xo and takes the curves 11, 12, 13, 14 respectively into
the four rays arg re/4, 3rc/4, 5rc/4, 7rc/4. The function t(x) is holomorphic and
univalent in a neighborhood of x xo. It maps four subregions of the domains
between 11, /2; 12, 13; 13, 14; 14, l holomorphically and univalently to simply-
connected regions in the t-plane bounded by the image rays of the corresponding
Stokes curves. Furthermore, the image of these regions and Stokes curves in the
t-plane consists of the entire plane, except for a finite number of cuts which are
analytic curves tending to infinity and starting at the images of turning points
other than Xo. However, there may be choices of unbounded domains in the
x-plane, bounded by curves starting at turning points other than Xo and along
which Re g(x)= const., for the domain of definition of t(x). After making a
particular choice of four open regions D between l, 12 O2 between 12,13 D3

between 13, 14; and D4 between 14, 11, together with the curves 11, 12, 13, 14 in the
x-plane for the domain of t(x), the inverse function x(t) would be holomorphic
and univalent on the entire t-plane, except on the cuts.

In matrix form the equation (2.1) is equivalent to

(2.2) e-dx p(x) Y’

where

e(du/dx



CONNECTION FORMULAS 91

By the transformation

Y=
dt/dx

Y*’

equation (2.2) is transformed into

(2.3) e---= t2 + e
0 -dx21x

whose coefficient matrix has a simpler leading part than in (2.2).
Let q(t) (dx/dt) 1/2 be an arbitrary but fixed root, for in the image t(x) of

the domain formed by our chosen regions D1, D2, D3 D4 together with the curves
11, 12, 13, 14. Let us employ the convention:

arg e arg t,

whenever we take roots in the t-plane.
THEOREM 2.1 (Evgrafov and Fedoryuk). There exist solutions u+-(x,e) for

(2.1) in D (_J D2 such that for 0 < e < 6o, x Do, where

D (D U D2) U {xl Ix- x,I <
i=0

(Xo,Xl, ..-, xk are all the turning points on the boundary of D1 (-J D2, and 6o is a

constant depending on eo), the functions u+(x, e) are expressible as follows."

(2.4) u+(x, ) p(x)-l/+(x,e) exp +-(x

The finctions f +-(x, ) have asymptotic expansions

^- 0+(2.5) u+(x, ) u?(x)er, fig(x) as e --r=0

Or

or

x o in Do with Reg(x)-o for ft + (x, e)

x oe in Do with Reg(x) jbr fi-(x,e).

In a more precise sense, (2.5) means

(2.6)
N

a-+ (x, a?
’-0

< R(x)eN+I

for x e Do. The function R(x) is bounded in compact subsets of Do, and is of
the order O(Ixl -((m+ 2)/2)(N + 1)) uniformly in 0 < e < 6o as x --, oe in Do in such a
manner that Re o(x) T-. The functions fi-+(x) are holomorphic in D U D2
and +u;-(x) O(Ix[ (("+2)/2)gasx --* inDoinsuchamanner that Re g(x) -T- .
These asymptotic formulas may be formally differentiated. (Here m is the degree
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of p(x). Each formula above combines two: take the upper or lower sign through-
out.) In formula (2.4) we define u+/-(x, e) uniquely by specifying

n 7n
(2.7) p- 1/4(X) q(t)t- 1/2 < arg < for t(D 1,3 12 I,.J D U 13 U D3).

4 =- 2

(We shall make this choice for all subsequent formulas in this paper.)
Suppose D U 12 U D2 is a consistent canonical domain. From g(D U 12 U D2)

delete circular neighborhoods of radius 6 about the endpoints of the cuts, as well
as sectors of central angle 6 that have their vertices at the endpoints of the cuts
and are bisected by the cuts. The resulting domain in the g-plane may be denoted
by g(D1 U 2 O D2)6; the corresponding domains in the x-plane or t-plane may
be denoted by (D1 U 12 O D2)a or t(D U 12 [,.J D2)a, respectively. For a consistent
canonical domain, Theorem 2.1 can be improved so that then the asymptotic
relations, as x oo, are valid in D and in D2 for u + and for u-.

COROLLARY 2.1 (Evgrafov and Fedoryuk). Suppose D U 12 O D2 is a con-
sistent canonical domain. Then the solutions u+/-(x, e) for (2.1) of Theorem 2.1 are
expressible in the form (2.4), where

c, + (x, (x)< + o +ub-(x)-- 1 ase or xoo

(2.7a)
r=o

in (Dx U 12 U D2)
in the sense that

(2.7b)
N

a -+(x, 2
r--O

<= C(N, 6)(Ixl-(m+ 2)/2g)N +

(x) O(Ixl -’+2)/2) as x --+ c in (D U 12 [.J D2)a.

These asymptotic formulas may be formally differentiated.
First, let us not require that D U 12 U D2 be consistent. We then have u +, u-

as stated in Theorem 2.1. When we put (u +, u-) in the first row and (e(du+/dt),
e(du-/dt)) in the second row and express everything as functions of t, we obtain a
fundamental matrix solution for (2.3). It has the form

0

0 oxp t
for e t(Do), 0 < e < 6,o. The matrix r(t, e) has the properties:

(2.9) ’v(t, e) ’,(t)e, o(t)
1

in the sense that, for 0 < < 6o, t(D,o),
N

(2.10) v(t, e)
r=0

< C (t)ev+N

(2.7c)

for x e(D U 12 [,.J D2)a. Here C(N, 6) is a constant. The functions ft+/-(x) are
holomorphic in D I.J 2 O D2 and
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CN(t) is a 2 x 2 matrix function of t, and is bounded in compact subsets of
t(Do); the r(t) are holomorphic in t(Do). The absolute value sign and inequality
relation apply to each matrix element. The first columns of (t) and CN(t) are of
the order O([t[ -2r) and O([t[ -2(/v+)) respectively as c in t(O) with
Re g(x(t)) -, uniformly for 0 < e < 6o (for example, at an angle 0,
z/4 < 0 < 3z/4). The second columns of Y(t) and Cu(t) are of the order O([t[-2")
and O([t[ -2(+ 1)) respectively as in t(D2) with Re g(x(t)) + , uniformly
for 0 < e < 6o (for example, at an angle 0, 3z/4 < 0 < 5g/4). In case
D LJ 12 L.J D2 is a consistent canonical domain, then we have YF(t, e) expressible
in the form (2.8), where the matrix ’F(t, e) has an asymptotic expansion of the form
(2.9) in the sense that. for e > 0 sufficiently small, t(D (J 12 L.J D2)6,

N

r(t, e) ,(t)e =< C2(N, b)(Itl-2e) +’.
r=0

Here the C(N, ) are constants and (t) are holomorphic in t(D (3 12 (3 D2).
Define

)c/o--(D2 I,.J D3) I"] {xl lx- ,1 < o}
i=o

where o Xo, ,"’, are all the other turning points on the boundary of
D2 (.J D3. Assume 6o has been chosen sufficiently small. Evgrafov and Fedoryuk’s
theorem still applies in D2 [_J D3 [1]. Analogously, there exist solutions +-(x, e) for
(2.1) in D2 U D3 such that for 0 < e < 6o, x e/3o, -+(x, e) have representations
(2.4), (2.5), (2.6). We only have to replace u-, fi+-, R, fi,+--, Do and D U D2 respec-
tively by +-, +-, Rg,~+ , /3,o and D2 U D3 in the corresponding formulas and
statements. However, g(x) in (2.4) and p(x)- TM in (2.7) are continued from D U D2.
Put (-, +) into the first row and (e(d-/dt), e(d+/dt))into the second row of a
matrix Y(t, e). Then we see that it is a fundamental matrix solution of (2..3) of the
form

xp 0

(2.11) Y(t, e) p(x(t))- 1/4- Y (t, e) f 1
0 exp -t2

for t(/3o), 0 < e < 6o. The matrix F satisfies (2.9) with z replacing
In analogy to (2.10), we have, for t(/3o), 0 < e < 6o,

N

(2.12) ’F(t, ) r(t)e < ffN(t)ev + 1,
r=0

where the first columns of 17 and tu are of the corresponding orders as in
t(D2) with Re g(x(t)) - + v and second columns similarly as in t(D3) with
Re g(x(t)) - -. To see that we should have -t at the lower right corner of the
first matrix in (2.11) we check that 1/2t2, -dY/dt -t. Recall from (2.9) that

We shall now find the connection between Y and Y by first finding their
relationship with solutions having known expansions in a full neighborhood of
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the turning point 0. This is done by a technique similar to that of Wasow [2.
LEMMA 2.1. There exists a holomorphic transformation in a neighborhood of

zero in the t-plane Y* pL(t, e)Z where pL(t, e) has a uniform asymptotic expansion

for Itl <= to, to sufficiently small, that takes the differential equation (2.3) into the
form

(2.13) e--= 2 + /./(e)e
Z,

where #(e) ce for some constant c, as e --+ 0 +.
Proof. Put

d tldtl-2 d2xldx)-*
Direct calculation shows that

dq
-1/2g(t)q(t).

dt
If we let

(2.14) Y*=[-1/2egqq(t)
q(t)
0 1 Y**’

then

(2.15)

dY*
-1/2gq 0

e
1/2eq 1/2gq

Using the original equation (2.3), we obtain

e d--- q- l(t) 1/2gg 2

g
2

-eq(t)

-1 (dg_)
o

e (dg g

Y** + e
0 ldY**q(t) dt

Suppose dg/dt + g2/2 ao + alt + a2t2 +... in a neighborhood of 0. Then
Hanson and Russell [3] show that (2.15) can be formally transformed into

dZ
g.2 Z(2.16) e--d- 2 + ao
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by the transformation
q l(t,/3) q)(t, e,)

Z,
e-d-- + q + q + e

where q(t, ), q.(t, ) are formal power series of the forms

ql(t,e) 1 + qlk(t)ek,
k=l

k=l

with ql, qzk holomorphic for all k for It] =< to, to sufficiently small. The functions
q k, qzk satisfy some recursive formulas given in [3]. Furthermore, if 7 > 0 is any
positive small number, then, by Sibuya [4], there actually exists, in each of the
sectors

-3 +2(j- 1) 1 +2(j- 1)
Sj lltl < to,

4
rc + ? < argt <

4

a holomorphic transformation

y**

that takes (2.15) into (2.16), where

Pj(t, ) ]

n (t,

ql

j=1,2,3,4,

as e 0 + in Sj and Pj is holomorphic for It[ < to
A theorem by Lee [5] shows that the existence of such a Pj in each of these

sectors Sj, j 1, 2, 3, 4, suffices to guarantee the existence of a holomorphic
transformation

(2.17) Y** Q(t, e)z

on a disc with center 0 that takes (2.15) into (2.13), with #(e) (ao/2)e as
e 0 + and

Q(t,e) dql

ql

ql +e
dt.J

as e 0+, uniformly for It] < 0. On combining transformations (2.14) and
(2.17) the transformation Y* PL(t, e)Z is obtained, where

pL(t, e) [ q(t) 0 1-1/2eq(t) q(t)
Q(t, e).
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It transforms (2.3) into (2.13) with/(e) (ao/2)e. Therefore, pL(t, ) has, for
It] _-< to, the uniform asymptotic expansion

(2.18) PL(t, e) q(t)I + Pf(t)e

with Pf(t) holomorphic for each r. This completes the proof of the lemma.
Next we proceed to investigate the solutions of (2.13). Consider the equation

(2.19) 8,
2d2z
-y- (t + e(e))z 0.

By the stretching s t, (2.19) is transformed into

2z s
(2.20) - +z=0.
From the properties of the parabolic functions (see [5, [6), it follows that (2.13)
has the four vector solutions

k ds]

where Og [n(j 1)]/2, j 1, 2, 3, 4. U(a, x) is the standard parabolic cylinder
function with the expansion:

(a+)(a+)(a+)(a+).(2.22) U(a, x) e-/x- 1/2 -(a + )(a + ) +
2X2 2-4X4

for [arg x[ < n/2 as x , Ix[ >> [a[.
Furthermore, the functions zj satisfy the relation (see 5])

1
(2.23) z2(s,e,)

al(p)bz(p)- az(p)bl(p) (-bl(p)z(s’e’p) + a(p)z(s,e,p)),

where

at(#) exp [- 2 ni(1/4tt 1/4)],

x/@ exp [in(1/4tt + 1/4)]b(tt) r(1/2 #/2)

x exp [in(1/4tt 1/4)a2(tt) F(1/2 + #/2)

b2(/t) -exp [2in(1/4tt + 1/4)3.

Expressing Z2, Z3, Z4 as functions of and e, we use (2.21), (2.22) to find:

Z2(t e,) etz/(ze) ei/%l/4t 1/22- 1/4{1 -b O(8 log )} for 0 < arg < n,

(2.24) z3(t, e) e t2/(2) ei/ze/4 1/22- /4{1 + O(e log e)} for n/2 < arg < 2

z4(t g,) e,Z/(Ze) ei/%/4t- /22- 1/4{ 1 -b O(8 log e)} for n < arg < 2n

for bounded away from zero and e 0 +. The restrictions of the arguments of
in (2.24) arise from the restriction [arg x[ < n/2 for the asymptotic formula
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(2.22). The function O(e log e) arises from the factor x-"-1/2 in (2.22), where in
this case a is a function of #(e) (ao/2)e (a lt e-ZiqJ/2) and x e-x/zs e-ij

.-1/2xt e-R, j 2, 3, 4.
We are now ready to investigate the structure of a fundamental matrix

solution of (2.13) whose first row is a solution of (2.19):

Ie’i/4z2(t, e) Z3dzl(2.25) VL(t, e) | ei/% dz2

It has the asymptotic form

VL(t, g) e=i/291/42-1/t- 1/2

(2.26) exp t (1 + O(e log e)) exp t2 (1 + O(g log e))

kexp t t(1 + O(eloge)) exp -t t(-l+O(eloge))

for re/2 < argt < re, Itl > , --, 0+.
In order to calculate the expansion for r < arg < 3rc/2 of VL we have to

use formula (2.23) and expand z3, z4 to calculate z. We find that

z2(t, g
F(1/2)zg 1/4 e.1/4[eni/2e-=i/4x/ t2/(2e))
F(1/2)- 27 21/t 1/2 F(1/2) + O(e log e) (e-

(e3i/4 e-i/2 + O(g log e))e’2/(2e)]
for rc < arg < 3rc/2. Thus V/ has the form

(2.27) V(t,e)=[vl(t’e) v12(t’ ;)1V21(t,g) V22(t,g)

where for rc < arg < 3r/2, It[ > 6, e --. 0+,

v11(t,e) -el/2 1/4t-/2[e-’2/(z)(x/ ei/2 + O(e log e))

+ e’2/(z)(ei/2 + O(e log e))],

V12(t, g) e=i/zg.1/42-1/4t- 1/2e-’Z/(ze)(1 + O(g log e)),

Vzl(t, e) -el/2 1/4t- 1/2. t[e-,/z)(_e=i/zx/ + O(e log e))

+ et/(z)(ei/2 + O(e log e))],

Vzz(t, ;) e=i/zel/42 1/4t- 1/2t e-’2/(2e)( 1 + O(e log

LEMMA2.2. YF(t, e) (PV’)(t, e)C(e) for[t[ <= to and Y(t, e) (PLVL)(t, e)(e)
for [t[ <= to, where

(2.28) C(e) 21/4e-’i/2e-1/4[l + O(e" lg e) (e’)
(2(e) 1 + O(e log
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with al(e 0, (X2(/3) 0 as/3 -- 0 + and

(2.29) ((e) 21/% 1/4_fl 1(e)O(/3 log e) --i + O(e log e) -]
2(e)O(e log e) + (-- + O(e log e)) x,/i + O(e log e)_]

with ill(e) O, flz(e) 0 as e 0+.
Proof. Recall the transformation Y*= PLz in Lemma 2.1. We have an

expansion for pL at It[ =< to. As long as 6 > 0 is small, pLvL is a solution to (2.3)
with known expansions in sectors" re/2 < arg < re, 6 < It[ to; and z < arg
< 3rt/2, 6 < Itl <- to.

We have C(e)= [vL] l[pL]-lyf. For the calculations of C(e) from that
formula we can choose any with rc/2 < arg < ft. Using (2.18), (2.26) and (2.8)
we conclude that

1/[1 + O(e log e) e-’2/O(e log e)-]21/2e-i/2/3
[_ et2/O(/3 log/3) 1 + 0(/3 log/3) 3"

/

e4i/7 then et2/2 0Take o e5i/6 then e-t/ 0 as/3 0 + If we take o
as/3 0 +. Similarly, we use (2.18), (2.27) and (2.11) to evaluate

(/3) [vL] ,[pL]- yl.
For this calculation we can choose some with < arg < 3z/2. We arrive at

21/4/3 1/4

C(/3) 2e,i/2 + 0(/3 log/3) + e-’/O(/3 log/3)

.[ e- t/O(/3 log/3) -2 + 0(/3 log/3) ]e-t/O(/3 log/3) 2 + 0(/3 log/3) 2x/ + 0(/3 log/3) et2/O(e log/3)

To evaluate the first row and the term at the first column and second row, take
o e7/6, then e -’/ exp {-(1//3)t e7/3} 0 as /3 --. 0 +. To evaluate the

term at the second row and second column, take t- to e5/4. Then e-/

e-1/)oi and e+t2/ e1/)’, both of which have absolute value 1. Thus we
have

t(/3)

t e7,i/3} (0(/3 log e))exp

xp ei/ (0(/3 log/3)) + (-i + 0(/3 log/3))

which is of the form stated.
THOmN 2.2. Y(t, /3) Y(t, /3)N(/3), where

1 .qt_ c 12(/3) -I-- 0(/3 log/3)

log/3) x// -i-- 22(/3) --[- 0(/3 log/3)3"
The functions c11(/3), c12(/3), c21(/3), C22(/3) are all ..0 as/3 0 +.

Proof. Use Lemma 2.2. We see that Y(t, e) Y(t,/3)C-1(/3)(/3). Then com-
pute N(e) directly from the formula N(e)= C-(e)(7(e) together with (2.28) and
(2.29).
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In order to find series expansions for the functions of order O(e log e) as
e --+ 0 + in the matrix N() we have to make use of the series expansions of pL(t, ),
vL(t, ), YF(t, e) and Y(t, e). The asymptotic series for pL(t, ) is given by Hanson
and Russell [3]. We can use (2.21), (2.22), (2.23) to find series expansions for
vL(t, e), as we have done for the first term. For the expansion of yFI(t, e) and
Y(t, ) we can use Evgrafov and Fedoryuk’s paper [1].

COROLLARY 2.2. Suppose D1 [_J 12 [,.J D2 is a consistent canonical domain.
Then doubly asymptotic series for + and t- as e-, 0 + or x in all of
(D [.J 12 [_J D2)6 can be obtained from the formula

[- (x, e), + (x, )] [u + (x, ), u- (x, )]U().

Proof. Apply Corollary 2.1 and Theorem 2.2.
The last corollary enables us to find the behavior, in the consistent canonical

domain D1 LI 12 [,.J D2, ofthe solutions +(x, e)and fi-(x, e) which are subdominant
in D3 and Dz, respectively.

3. An example. Let p(x) xZ(x l) 2 in (2.1). Careful analysis reveals that
the patterns of Stokes curves are as illustrated in Fig. 1. The turning points are at
0 and 1 and both are ofsecond order. The lines li, si, 1, 2, 3, 4, are Stokes curves
Di, Ri, 2, 3, 4, and f are open connected unbounded regions with the Stokes
curves as boundaries.

To fix the ideas, we choose the turning point x0 0. Let D1 R, [_J s [-J f.
Consider the region D1 U 12 [,.J D2. We choose

x3 x2

(x) z(z 1) dz
3 2

D2 R

13 84

4
$3

Ii S

FIG. 1. Stokes curves and regions in the x-plane for p(x) x2(x 1)2
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) 2

SI 12

U U

FIG. 2. The image of D [3 12 [..J D on the i-plane

The image of D LI 12 [,.J D2 and its boundaries in the -plane is shown in Fig. 2.
The corresponding parts in the x-plane and -plane are designated by the same
letters, with a tilde over the images on the -plane. The solid lines in the -plane
are cuts. We see that D1 U 2 U D2 is a consistent canonical domain. The cor-
responding diagram of Fig. 1 (with R2 [,.J S 3 [,_J R 3 deleted)on the (t [2(x)]1/2)
plane is shown in Fig. 3.

We apply Corollary 2.1 on the region D1 U 12 U O2. There are two in-
dependent solutions of (2.1),

{1tu+(x, e) Ep(x)]- 1/4/+(X,/3) exp _+.-(x)

with properties given by formulas (2. 7 a, b, c) for x e (D1 U 12 O D2)a, 0 < g < 6eo.
If we choose the root q(0) [(dx/dt)(O)] /2 e3i/4, the root p(x)]- 1/4 for small
x > 0 should be chosen to be Ip(x)-1/4li, by convention (2.7). Referring to Fig. 2
we see that u+(x, e,). u-(x, e) are subdominant in D1 and D2 respectively.

Consider the region D2 [,.J 13 U D3. The image of this region in the {-plane is
shown in Fig. 4. Again, applying Corollary 2.1 on the consistent canonical domain,
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b4

FIG. 3. The image of Fig. (with R [,.J J R deleted) on the t-plane. (The corresponding parts
are designated with the same letters, with a hat over the images.)

we have two independent solutions

+(x, e) [p(x)]- l/4+(x, e) exp {+_(x)}
with properties described for x (D2 U 13 J D3)6, 0 < 3 < 6o. From Fig. 4 we see
that +(x, e) and -(x, e) are subdominant in D3 and D2 respectively.

To find the behavior of + and - in the region (D1 U 2 [,.J D2)6, we apply
Corollary 2.2. Thus

+ (x, e) 1 + e 12(e) + O(e log e)]u + (x, e.)

+ [xfl + c22(e)+ O(e log e)]u-(x, e),

-(x,e) Ic(e)]u+(x,e) + [1 + c2(e) + O(eloge)]u-(x,e),

where cij(e 0, 1 __< i, j __< 2, and the terms of order O(e log e) have series
expansions which can be computed if desired. The inverse relationship can of
course be easily found, too.

Further, by the method of Evgrafov and Fedoryuk, we can express u +(x, e),
u-(x, e) in terms of two other independent solutions of (2.1), v+(x, e), v-(x, e),
with formulas in (D 12 U 02)6. The formulas for v+(x,e) are analogous to
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Os 1)2

14 12
FIG. 4. The image of D U 13 U D3 on the i-plane

(2.4), (2.7 a, b, c), but with (x) replaced by

(1, x) (z2 z) dz.

We can subsequently find the behavior of v+(x,e) in R4 U s4 U R3, etc., by
Corollary 2.2, and "solve" the differential equation "globally."

Acknowledgment. The author wishes to express his gratitude to Professor W.
Wasow for his introduction to and advice on the subject matter.

REFERENCES

[1] M. A. EVGRAFOV AND M. V. FEDORYUK, Asymptotic behavior of solutions of the equation w"(z)
-p(z, 2)w(z) 0 as 2 o in the complex z-plane, Uspehi Mat. Nauk, 21 (1966), no. (127),
pp. 3-50. (In Russian.)

[2] W. WASOW, Simple turning point problems in unbounded domains, this Journal, (1970), pp. 153-170.

[3] R. J. HANSON AND D. L. RUSSELL, Classification and reduction ofsecond order systems at a turning

point, J. Math. and Phys., 46 (1967), pp. 74-92.



CONNECTION FORMULAS 103

[4] Y. SmuYA, Asymptotic solutions of a system of linear ordinary differential equations containing a
parameter, Funkcial. Ekvac., 4 (1962), pp. 83-113.

[5] R. LFE, On uniform simplification of linear differential equations in a full neighborhood ofa turning
point, J. Math. Anal. Appl., 27 (1969), pp. 501-510.

[6] M. ABRAMOWITZ AND A. STGUN, Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55,
Washington, D.C., 1965.

[7] J. HEADYG, Phase-Integral Methods, Methuen’s Physical Monographs, London, 1961.



SIAM J. MATr. ANAL.
Vol. 4, No. 1, February 1973

GENERALIZED GREEN’S MATRICES FOR
LINEAR DIFFERENTIAL SYSTEMS*

HOWARD CHITWOOD]"

Abstract. This paper investigates the n n matrix differential equation Y’ AY together with
boundary conditions of the form b dF(t)Y(t) 0, where F is an n n matrix whose elements are of
bounded variation.

It is known that if the above boundary problem is incompatible then the nonhomogeneous
boundary problem Y’ A Y + R, ba dF(t)Y(t) 0 has a unique solution" here it is shown that if the
homogeneous problem is compatible, then the Moore-Penrose generalized inverse of a matrix can be
employed to obtain conditions which ensure the existence of a solution to the nonhomogeneous
problem.

A generalized Green’s matrix is constructed and its properties studied. An adjoint system is
defined and properties relating it to the given system and the generalized Green’s matrix are explored.
A principal generalized Green’s matrix is defined and properties analogous to those for the classical
case are developed.

1. Introduction. This paper investigates the n n matrix differential equation
Y’ A Y together with boundary conditions of the frm. dF(t) Y(t) 0, where F
is an n n matrix function whose elements are of bounded variation.

In the special case of the two-point homogeneous boundary condition
MY(a) + N Y(b) 0, where M and N are constant matrices such that the rank
of the n 2n matrix [M N] equals n and where is any fundamental matrix
for Y’= AY, it is well known that the index of compatibility of the boundary
problem is n rank IMP(a) + N(b)]. If this boundary problem is incompatible,
then the nonhomogeneous boundary problem Y’ A Y + R, MY(a) + N Y(b) 0
has a unique solution given by

Y(t) G(t, s)R(s) ds,

where G(t, s) is the Green’s matrix for the homogeneous boundary problem. The
detailed development of these results can be found in Cole’s text [5, Chap. 6] or
in the recent book [12, Chap. III] by Reid.

Bradley [2] has generalized the above results to the case where the differential
system Y’= AY, MY(a) + N Y(b) 0 is compatible. His development employs
the Moore-Penrose generalized inverse of a matrix; properties of this generalized
inverse may be found in Penrose [8] or Reid [12, Appendix B]. Reid, in his 1931
paper [9], discussed such a compatible system and determined a generalized
Green’s matrix however, his development did not make use ofthe Moore-Penrose
matrix which allows for considerable simplification in the construction of a
generalized Green’s matrix. Bradley gives conditions for the nonhomogeneous
system Y’ A Y + R, MY(a) + NY(b) 0 to possess a solution and shows that

* Received by the editors August 31, 1971, and in revised form February 25, 1972.

" Department of Mathematics, Carson-Newman College, Jefferson City, Tennessee 37760. This
paper is part of a doctoral thesis written under the direction of Dr. John S. Bradley, University of
Tennessee, Knoxville.
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a generalized Green’s matrix for the homogeneous system exists. While this matrix
is not unique, a formula is developed which gives the most general generalized
Green’s matrix in terms of any particular generalized Green’s matrix. Further-
more, the concept of a principal generalized Green’s matrix is introduced, and it
is shown that with respect to certain orthogonality conditions there exists a unique
generalized Green’s matrix.

The more general problem with boundary operator ] dF(t)Y(t) has been
studied by Bryan [3] for the incompatible case, and Tucker [-13] has dealt with
certain aspects of the compatible problem. In the present paper the construction
leading to a generalized Green’s matrix is more direct than Tucker’s and the
theory is extended to parallel Bradley’s development for the more special classical
case.

The boundary operator j’,b dF(t)Y(t) arises as a representation of a bounded
linear transformation U from the space of n x n matrices whose elements are
continuous functions on [a, b] into the space of n x n matrices whose elements
are constants. A norm for K e- is defined by IKI max {Ikil}, and IIYII

max {I g(x)l "x e [a,b]} defines a norm for YeC. We shall write

u[g; (tlg(t.

The development of the theory will depend, to a large extent, on the Moore-
Penrose generalized inverse of a matrix. Penrose [8] defines such an inverse of a
matrix D to be a matrix D with the properties D*DD D, DD*D D, and DD
and D D Hermitian. Such a matrix exists and it is unique. Penrose also shows that
a necessary and sufficient condition for AXB C to have a solution is AA*CB*B

C, in which case the general solution is X A*CB + Y-A*AYBB for
arbitrary Y.

We now proceed to a description of the results in which most of the proofs
are omitted.

(1)

2. Existence of solutions. The systems to be considered are

Y’= AY+ R, U[Y] K,

(la) Y’= AY+ R, U[Y] 0,

(2) Y’ AY, U[Y] O,

where A, R cg, K if, and U is a bounded linear transformation from
Since U has the representation U[Y] dF(t)Y(t), it is easily seen that

U[YC] U[Y]C for arbitrary C ft. Furthermore, we note that if (2) is in-
compatible and is any fundamental matrix for Y’= AY, then U[O] is non-
singular, and if O1 and 2 are fundamental matrices, then rank U[O1]

rank U[O2].
THEOREM 2.1. If m is the index of compatibility for (2) and is any fundamental

matrix for Y’ A Y, then m n rank
The following theorem was first proved by Bryan [3].
THEOREM 2.2./f the system (2) is incompatible, then the system (la) has a unique

solution given by

Y(t) G(t, s)R(s) ds,
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where

G(t,s)

O(t)U[O]- dF(u)O(u)ap- ’(s)

O(t)U[O]-’ dF(u)O(u)ap-’(s)

for s,

for < s,

and is a fundamental matrix for Y’ A Y. (The matrix G(t, s) is called the Green’s
matrix.)

The natural question which arises now concerns the possibility of the existence
of solutions of systems (1) or (la) in the event that system (2) is compatible. Since
U[]-1 no longer exists, the Moore-Penrose generalized inverse of a matrix is
utilized.

The following theorem is of basic importance to the theory.
THEOREM 2.3. If D is an n x n matrix with rank n m, m > O, S is an n x m

matrix such that DS 0 and S*S I, and T is an n x m matrix such that T*D 0
and T*T I, then the (n + m) x (n + m) matrix

is nonsingular and its inverse is

where D is the Moore-Penrose generalized inverse of D.
We now give an important application of this theorem, in which the matrix

D is taken to be U[].
THEOREM 2.4. If the system (2) is compatible with index of compatibility m,

then the system (la) has a solution if and only if

T* dF(t)O(t) dF(t)CP(t) P- l(s)R(s) ds O,

where is a fundamental matrix for Y’ AY and T is the matrix appearing in the
preceding theorem.

The proof of this theorem employs the variation of parameters formula for
solutions of Y’ A Y + R; the operator U is applied to such solutions and then
Theorem 2.3 leads to the condition of the theorem.

3. The generalized Green’s matrix and an adjoint system.
DEFINITION 3.1. A generalized Green’s matrix for system (2) is an essentially

bounded, measurable n n matrix function G defined on the set

Q {(t,s)’a<_ <=b,a<=s<_b}
such that if system (la) has a solution, then Y(t) fb,,G(t, s)R(s) ds is also a solution.

THEOREM 3.1. A generalized Green’s matrix for system (2) exists.
Indeed, we construct the following matrix and show that the conditions of
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Definition 3.1 are satisfied:

1/2(t)SS*-(s) / q(t)U[] dF(u)(u)-t(s) if > s,

Go(t,s)
-1/2(t)SS*-l(s) q)(t)U[]* dF(u)O(u)O-I(S) if < s.

The following theorem displays some properties of Go(t, s).
THEOREM 3.2. The generalized Green’s matrix Go(t,s has the following

properties:
(i) Go(t, s) is continuous in except at s and is continuous in s except at

s and the discontinuities of F;
(ii) Go(s + O, s) Go(s O, s) 1;

(iii) for each fixed s, Go(t, s) satisfies Y’ A Y in except at s;
(iv) Go(t, + O) Go(t, O) -1 except at the discontinuities of F.
In conjunction with property (iii), it should be noted that Go(t, s) fails to

satisfy the boundary condition

U[Go(t, s)] 0 for fixed s;
indeed, it turns out that

U[Go(t, s)] rr* dF(u)O(u)O- (s),

where T is the matrix introduced in Theorem 2.3.
Continuing our development of the generalized Green’s matrix we discuss

uniqueness.
THEOREM 3.3. The generalized Green’s matrix for system (2) is not unique.
In particular, let Go(t, s) be the generalized Green’s matrix constructed above

and let W(s) be any essentially bounded measurable n x n matrix function.
Define G(t, s) by

G(t, s) Go(t, s) + O(t)[W(s) uEo3*ur 3w(s)3
then G(t, s) is also a generalized Green’s matrix.

We can obtain a more precise result relative to the uniqueness and general
form of generalized Green’s matrices; to do so we must introduce an adjoint
system for system (2). The following adjoint system was defined by Bryan [3]
and also by Tucker 13].

DEFINITION 3.2. For a parameter matrix M -, the system

(3a) Z’ -A*Z + F’*M* on the set where F’ exists,

(3b) Z F’M* is absolutely continuous on [a, b],

(3c) Z(a) O,

(3d) Z(b) 0

is defined as an adjoint system to system (2).
DEFINITION 3.3. A matrix Z is a solution of system (3) if there exists a matrix

M e o such that (3a, b, c, d) hold.
We now present a theorem proved first by Bryan [3] and later, in a more

general setting, by Tucker [13].
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THEOREM 3.4. For M , the system (3a, b, c) has the unique solution

Z(t) M dF(u)g(u)t- l(t)

this Z satisfies (3d) if and only if MU[O] O.
We now give an application of the adjoint system in proving a theorem which

generalizes a classical relation that exists between a differential operator and its
adjoint.

THEOREM 3.5. The system Y’ A Y + R, U[Y] 0 has a solution if and only
if bz*(t)R(t) dt 0 for each solution Z of the adjoint system (3).

We now present a necessary and sufficient condition for a matrix to be a
generalized Green’s matrix. This generalizes a result of Bradley [2] dealing with
the boundary condition MY(a)+ NY(b)= 0. The proof follows the general
procedure of Bradley, and makes use of the fact that system (2) and the adjoint
system (3) have the same index of compatibility.

THEOREM 3.6. Let V1 be an n n matrix of rank m which is a solution ofsystem
(2) and let V2 be an n n matrix of rank m which is a solution of the adjoint system
(3). If GO is one generalized Green’s matrix for (2), then G is also a generalized
Green’s matrix for (2) if and only if there exist bounded measurable matrix functions
F1 and F2 such that

G(t, s)= Go(t, s)+ v(t)rl(s + F2(t)V’(s).

4. A principal generalized Green’s matrix. In 9] Reid introduced the concept
of a principal generalized Green’s matrix and showed that with respect to certain
orthogonality conditions there is a unique generalized Green’s matrix. Bradley [2]
proved a similar theorem when the number of boundary conditions is different
from n. Later, Reid [11] discussed this problem in quite general settings, and we
have the following two theorems as specific realizations of Reid’s results.

THEOREM 4.1. Let V and V2 be as in Theorem 3.6 and suppose that (R) and
are matrices in such that fb (R).V1 and yb V are nonsingular. Then there exists a
unique generalized Green’s matrix Gon for (2) satisfying

Gn(t, s)(s) O, [a, b],ds

O*(t)G.n(t, s) O, s [a, b].dt

THEOREM 4.2. If G.n is the unique generalized Green’s matrix of Theorem 4.1,
then

(i) G.n is continuous in except at s and is continuous in s except at s

and the discontinuities of F;
(ii) G.n(s + O, s) Gn(s O, s) I;

(iii) for each s, G.(t, s) satisfies
Y’(t) A(t)Y(t)- (t)V(s)

except at s and the discontinuities of F;
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(iv) for almost all s, Gon(t, s) satisfies the boundary condition U[Gon(t, s)] 0
as a function of t;

(V) IbaO*(t)Gon(t, S) dt O.
COROLLARY. If R c artd Y is defined by r(t) fb,Gon(t, s)R(s) ds, then
(i) Y’(t)= A(t)Y(t) + n(t)- (t)fV(s)R(s)ds except at t= s and the dis-

continuities of F;
(ii) U[Y] 0;

(iii) aO*(t)Y(t) dt O.
Remark. This corollary has some interesting implications. Let us suppose that

system

(la) Y’ A Y + R, U[Y] 0

has no solution and let G(t, s) be any generalized Green’s matrix. Then G has the
form

(t, s) o(t, s) + v,(t)r,(s) + r(t)v(s)

as found in Theorem 3.6. Now if Y is defined by

then

Y(t) G(t, s)R(s) ds,

Y(t) Go(t, s)R(s) ds + Vl(t) F(s)R(s) ds + F2(t V(s)R(s) ds.

If G(t, s) Go(t, s), then looking back to Theorems 2.4 and 3.1 we see that Y(t)
satisfies the system

Y’(t) A(t)Y(t) + R(t), U[Y(t)] -TT*B,

where -T*B is the left member of the condition in Theorem 2.4. On the other
hand, if G(t, s) Gon(t, s), the corollary shows that Y(t) satisfies, almost every-
where, the system

Y’(t) A(t)Y(t) + R(t)- Y(t) V(s)R(s)ds, U[Y(t)] O.

Thus, we have the choice of satisfying the differential equation or the boundary
condition of system l(a).

REFERENCES

[1] J. S. BRADLEY, Adjoint quasi-differential operators of Euler type, Pacific J. Math., 16 (1966),
pp. 213-237.

[2] Generalized Green’s matrices for compatible differential systems, Michigan Math. J.,
13 (1966), pp. 97-108.

[3] R. N. BRYAN, A linear differential system with general linear boundary conditions, J. Differential
Equations, 5 (1969), pp. 38-48.

[4] R. H. COLE, General boundary conditions for an ordinary linear differential system, Trans. Amer.
Math. Soc., 111 (1964), pp. 521-550.

[5] Theory of Ordinary Differential Equations, Appleton-Century-Crofts, New York, 1968.



110 HOWARD CHITWOOD

[6] A. M. KRALL, Nonhomogeneous differential operators, Michigan Math. J., 12 (1965), pp. 247-255.
[7] W. L. LOUD, Generalized inverses and generalized Green’s functions, SIAM J. Appl. Math., 14

(1966), pp. 342-369.
[8] R. PENROSE, A generalized inverse for matrices, Proc. Cambridge Philos. Soc., 51 (1955),

pp. 406-413.
[9] W. T. REID, Generalized Green’s matrices for compatible systems of differential equations, Amer.

J. Math., 53 (1931), pp. 443-459.
I10] Generalized Green’s matrices for two-point boundary problems, SIAM J. Appl. Math., 15

(1967), pp. 856-870.
I11] --, Generalized inverses of differential and integral operators, Proc. Symposium on Theory

and Applications of Generalized Inverses of Matrices, Texas Technological College, Lub-
bock, 1968.

[12] Ordinary Differential Equations, John Wiley, New York, 1971.
13] D. H. TUCKER, Boundary value problemsfor linear differential systems, SIAM J. Appl. Math., 17

(1969), pp. 769-783.
[14] W. M. WHYBURN, Differential systems with general boundary conditions, Seminar Reports in

Mathematics, University of California Publications in Mathematics, 2 (1944), pp. 45-61.



SIAM J. MATH. ANAL.
Vol. 4, No. 1, February 1973

NONNEGATIVE AND ALTERNATING EXPANSIONS OF ONE SET
OF ORTHOGONAL POLYNOMIALS IN TERMS OF ANOTHER*

WILLIAM F. TRENCH,"

Abstract. Let {p.(x)} and {q,(x)} be monic polynomials orthogonal with respect to the distributions
du(x) and dr(x) w(x)du(x). Conditions are given on w(x) which imply that, for all n, the coefficients
in the expansion of p,(x) in terms of q0(x), -.., q.(x) are nonnegative, and those in the expansion of
q,(x) in terms of po(X), .", p.(x) alternate in sign.

1. Introduction. Several recent papers have been concerned with finding
conditions under which the constants Co,, c1,, "’", c,, in the expansion

(1) q,(x) cr,pr(x), n O, 1,
r=0

are all nonnegative, where {p,(x)} and {q,(x)) are suitably normalized polynomials
orthogonal with respect to different distributions. Askey [1], [2], [3], Askey and
Gasper [4], and Wilson [7] have obtained results on this question. Askey [3] gives
references to areas in which this problem arises.

We shall say that the expansion (1) is nonnegative if cr, _>_ 0 for 0 __< r __< n, or
alternating if (- 1)"-rcr. >= 0 for 0 =< r <_ n. An alternating expansion can be
transformed into a nonnegative expansion (and vice versa) by the renormalization

(2) P,(x) (-1)"p,(x), Q,(x) (-1)"q,(x), n 0, 1, 2,

2. Formulation of the problem. Throughout this paper we assume that u(x)
is nondecreasing and w(x) nonnegative on an interval (a, b), that the distributions
du(x) and dv(x) w(x) du(x) have finite moments

xdu(x) and xrdv(x)

for all nonnegative integers r, and that {p,(x)} and {q,(x)} are the monic poly-
nomials orthogonal over (a, b) with respect to du(x) and dr(x), respectively; i.e.,

(3)
and

(4)

and

(5)

p,(x)= x" +..., q,(x)= x" +...,

Pn(X)Pm(X) du(x) q,(X)qm(X dr(x) O,

We shall give conditions under which the expansions
n-1

q,(x) Pn(X) q- a,p(x)
r--0

n>m>O.

n-1

p,(x) q,(x) + b,.,q,.(x)
r=O

Received by the editors January 6, 1972, and in revised form March 15, 1972.

" Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.

111



112 WILLIAM F. TRENCH

are, respectively, alternating and nonnegative for all n. (If u(x) has only finitely
many, say N, points of increase, the phrase "for all n" should be interpreted as
"for n 0, 1, ..., N 1.")

3. Results. The following is a known result [6, Thm. 3.1.4, 3.1].
LEMMA 1. Suppose xo is not in (a, b) and w(x)= [x- Xo[. Then (4) and (5)

reduce to

(6) q,(x) p,(x) + ,1-- p,(xo)

o P,(Xo)
pax)

and
p._,(Xo)

(7) p.(x) q.(x)
p.(xo)

q"- l(x).

LMMA 2. If --V < Xo a, then (6) is alternating and (7) is nonnegative for
all n. If b <= Xo < v, then (6) is nonnegative and (7) is alternating for all n.

Proof. The roots of pj(x) are all in (a, b). Because of the normalization (3),
(- 1)Jpj(xo) > 0 if x0 =< a, and pj(xo) > 0 if Xo >_- b. This yields the conclusion.

Suppose {p,(x)}, {q,(x)} and {r,(x)} are sequences of polynomials such that,
for all n, the expansion of p,(x) in terms of qo(X), q l(x),..., q,(x) and the expan-
sion of q,(x) in terms of ro(x),rl(x),..., r,(x) are both alternating (nonnegative);
then the expansion of p,(x) in terms of ro(x), r l(x),..., r,(x) is also alternating
(nonnegative) for all n. This and repeated application of Lemma 2 yield the
following theorem.

THEOREM 1. Let R(a, b) be the set of rational functions with only real zeros and
poles, which are positive on (a, b), with finite zeros, if any, confined to (-, a], and
finite poles, if any, confined to [b, ). If w(x) is in R(a, b), then (4) is alternating
and (5) is nonnegative jbr all n.

Example 1. The Jacobi polynomials, defined by

P,’t3)(x) (1 x)- (1 + x)-( 1)" d )" x)" + + ]
2"n! /xx_ [(1- (1 +x)" ,fl> -1,

are orthogonal with respect to the distribution

du(x) (1 x)(1 + x) clx, -1 <x<l,

and have positive leading coefficients. From Theorem 1, the expansion

(8) P(,,’)(x) A,.,,(a, fl 7, 6)P’)(x)
r--O

is alternating for all n if 7 r > 1 and 6 fl + s, with r and s_nonnegative
integers, and nonnegative for all n if + r and 6 fl s > 1, with r and s
nonnegative integers.

For other cases in which (8) is known to be nonnegative for all n, and for a
conjecture on this point, see Askey and Gasper [4].

Example 2. Askey [1] has shown that (4) is alternating for all n if a 0 and
w(x) x, where is a positive integer, and has conjectured that the result remains
valid if is an arbitrary positive number. (Actually, Askey speaks of nonnegative
expansions, but his normalization differs from ours as in (2).) Theorem 1 contains
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Askey’s result for positive integral a, and also implies that in this case (5) is non-
negative for all n. For this reason it is tempting to extend Askey’s conjecture:
namely, to conjecture that (4) is alternating and (5) is nonnegative for all n if
a 0 and w(x) x, with a an arbitrary positive number. However, this extended
conjecture is false, as can be seen by taking

u(x)= 1, w(x)=x, a=0, b= 1;

then straightforward computations yield

qo(x)-- 1,

q,(x) x
c+2’

q2(x) X2 --X2(O+ 2)
+

(o + 1)(o + 2)
o + 4 (o + 3)(o + 4)’

Therefore,

Po(X) 1,

1/2,

P2(X)-- X2 X -F .
o(o 1)

P2(X)-- q2(x) -I- 4q,(x) + qo(X),
a + 6(a + 2)(a + 3)

which is not nonnegative if 0 < a < 1.
The coefficients of p,(x) and q,(x), as well as the coefficients at, and br, in (4)

and (5), are continuous functions of the moments of du(x) and dr(x). The next
lemma follows easily from this.

LEMMA 3. Suppose dum(X) and dvm(X are sequences of distributions on (a, b)
such that

(9) lim x du,,(x) x du(x), r O, 1,...
m---.

(10) lim x dvm(X x dr(x), r O, 1,...

Let {p,,,(x)}=o and {qnm(X)}n=O be the sequences of monic polynomials orthogonal
over (a,b) with respect to dum(X) and dvm(X), respectively. For each m, let the
expansions

n--1

q,m(X) P,m(X) + a,mPrm(X)
r=0

and
n-1

Pnm(X) qnm(X) q- b.mq..(x)
r=O

be, respectively, alternating and nonnegative for all n. Then (4) is alternating and (5)
is nonnegative for all n.
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THEOREM 2. If 7 > 0 and the distribution dr(x) ex du(x) has moments of all
orders on (a, b), then (4) is alternating and (5) is nonnegative for all n.

Proof. If a > -oe, let dum(X) du(x) and dv,(x) WIn(X)du(x), where

=eV"! 1 +7(x-a)/m x>WIn(X) a.
m

Then (9) is obvious and, since WIn(X)<= e’ and limm-oo WIn(X)= e, Lebesgue’s
bounded convergence theorem implies (10). Moreover, w,,(x) is in R(a,b) for
every m. Thus, if a is finite, the conclusion follows from Theorem 1 and Lemma 3.

If a -oo, we again apply Lemma 3, this time with

f u(x), x >_ m,
Urn(X)

(u(-m), x < -m,

and dvm(X ex dum(X). From the result just proved for finite a, the hypotheses
of Lemma 3 are satisfied, and therefore the conclusion follows.

Example 3. Suppose e > 1 and

du(x)= xe-dx, x> 0;

then

(11) p,(x) (- 1)"c,L)(x),
where D,)(x)is the Laguerre polynomial and c, > 0 [6, 5.1]. If p > 0, the change of
variable x py transforms the orthogonality condition

into
f e-Xxp,(x)p,,(x) dx O, n m,

fe- o)y%,(py)p,,(py) dy 0, n 4: m;

hence, the monic polynomials q,(x)= p-"p,(px), n 0, 1,..., are orthogonal
over (0, oo) with respect to the distribution

dr(x) e -(0- x du(x).

Bearing in mind the difference in normalization indicated in (11), we conclude
from Theorem 2 that the expansion

L)(px) Ar,(p)L (x)
r=O

is nonnegative for all n if 0 < p < 1, and alternating for all n if p > 1. This is a
known result; see I5, 119].

Example 4. If

du(x) e-- dx, - < x < ,
then

p.(x)
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where H,(x) is the nth Hermite polynomial and d, > 0 [6, 5.5]. The change of
variable x y- Xo transforms the orthogonality condition

e- p,(X)Pm(X dx O, m : n,

into

e-(-’)2P,(Y_ xo)Pm(Y_ Xo)dy, m =/: n;

hence, the monic polynomials q,(x)= p,(x- Xo), n- 0, 1,..., are orthogonal
over (- oe, oe) with respect to the distribution

dr(x) e2‘’ du(x).

It follows from Theorem 2 that the expansion

/-/.(x- Xo)= /.(Xo)/L(x)
is alternating for all n if Xo > 0, and nonnegative for all n if Xo < 0. This is also a
known result; see [6, Prob. 68, p. 385].

We conclude with the following theorem, which can be obtained from
Theorem 1, Lemma 3 and Theorem 2.

THEOREM 3. Suppose - < a < b < , and let

(12) w(x) ex(x a)m l]= ,[1 + c(x a)]
(b- x)" I-[[= 111 d(x b)]’

where m and n are nonnegative integers, >= O, cr >= O, d >= O, cr < o, and

1 ds < . If the distribution dr(x)= w(x) du(x) has moments of all orders on
(a, b), then (4) is alternating and (5) is nonnegative for all n.

Remark. If - a < b < , a similar result holds with (12) replaced by

w(x) eX(b x)-"

If - < a < b o, the appropriate form for w(x) is

w(x) eX(x a) [1 + c(x a)].
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ASYMPTOTIC EIGENFUNCTIONS OF A SINGULAR
INTEGRO-DIFFERENTIAL EQUATION*

S. E. SHAMMA’ AND S. N. KARP:

Abstract. Asymptotic representations are obtained for the high order eigenfunctions and eigen-
values of the singular integro-differential equation [py’]’ + [q + 22r]y =/],2IK(x s)y(s)ds, where p is
positive in the open interval and has a simple zero at the endpoints, while q may have a pole there.
Bounded eigenfunctions are shown to be asymptotic to the corresponding solutions of the differential
equation resulting from the absence of the integral term. The basic tool is the use of a generalized
Green’s function, F,(x, s), for which it is shown that F.(x, s)r(s)ds tends to zero for large 2,.

1. Introduction. In a recent paper [1], B. I. Aleksendriskii studied the
asymptotic solutions of an integro-differential equation whose differential part is
a regular Sturm-Liouville operator.

In the present article, we consider the integro-differential equation

(1.1) -x p(x) + [q(x) + 22r(x)]y 22 Kl(X,s)y(s ds, x <= x < x2.

The coefficients p(x), r(x), and q(x) have the following properties"
(i) p(x) is twice differentiable, positive on x < x < x2, and has a simple

zero at the endpoints.
(ii) r(x) is twice differentiable and positive on x =< x _< x2.

(iii) q(x) <= 0 for X < x =< x2, continuous on X < x < x2, and may have a
simple pole at the endpoints. Let

qa lim q(x)(x xa) as x xa, j 1, 2.

For convenience, we introduce the two differentiable operators L and A
defined by

(1.2) Lx= -x (x) + q(x) A=
r(x)

Then (1.1) becomes
x2

(1.3) A[y] ,2y(x)-- /],2 K(x,s)y(s) ds, X X X2

Since the function p(x) vanishes at the endpoints, the proper set of boundary
conditions to impose is the boundedness of y(x) at the endpoints.

In , 2, we study the asymptotic behavior of the eigenvalues and the corre-
sponding eigenfunctions of A; that is, solutions of A[u,,] nUn.2 It is shown that
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, O(n) and ]u.(x)] O(x/.). Then we investigate the asymptotic properties of
a generalized Green’s function which will be used in 3 to show that the bounded
eigenfunctions of (1.3) are asymptotic to the corresponding solutions of the
differential equation resulting from the absence of the integral term. Namely, they
are asymptotic to u,. The results of this paper, apart from their interest as a
generalization of [1] and [3], are also expected to prove useful in extending the
study in [7] to three-dimensional problems.

2. Asymptotic eigenvalues and eigenfunctions of A. From the above properties
of the operator A it follows, using the first criterion in [2, p. 443], that its spectrum
is totally discrete.

2 and u,(x) be the eigenvalues and the corresponding boundedLEMMA 2.1. Let an
orthonormal eigenfunctions, with respect to the weight function f(x), ofthe operator

2,A. If the s are arranged in a monotonic sequence, then

(2.1) a,= [(n+1/2)+(#, +p2)] dt +0
] P(t)

and

(2.2)

uniformly in x as n --, , where

(2.3)

Proof It is shown in the Appendix that the uniform asymptotic solutions of
the differential equation

(2.4) A[z(x, 2)] 222(x, 2),

for large positive values of the parameter 2, are

1
-w,(z,),

(2.5) ,(x, 2) g(x)
I
w(zg,

t.Z 2

(2.6) TZ(X, 2 g(X)l
1

zw2(zl)’

where e < , g(x)= [p(x)r(x)]-/,

(-
(2.7) zj(x) |

2 Ox

X X <fl,

X2 " X " 0,

XI X fl,

r(t)
dt, j=l 2,

Yp(t)

(2.8) w l(zj) zjJu(22zj)IAo + 0 zj Ju+x(22zJ) Bo + --O/
1 / IzjI
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(2.9)

zj Yu (22z) Bo O(2.10) w2(z)= zjYuj(22zj) Ao + 0 - + 1 + ]zJ

and Ao, Bo, Co, Do are constants.
The above results are derived in a similar way to Olver’s work on the asymp-

totic solutions of linear differential equations [4], as obtained in the Appendix.
could be found from theThe asymptotic behavior of the eigenvalues e

Wronskian of the two solutions r(x, 2) and %(x,2). The Wronskian vanishes at
2 e. Hence the eigenvalues are roots of the equation

(. p(x[(x,, (x,] a
Using the second part of r and the first part of % given in (2.5) and (2.6), we get

(.3
+ w(zlw(z[(z’(z (l’(z

where w’(z) dw/dz, (z) g(x)/, and ’= d/dx. From (2.7), we have

dx dx 2 p(x)
and

(2.15) zl + z2

Using (2.14), (2.15), and the asymptotic values of w2(zj) and w’2(zj) given by (2.10)
and (2.11), we obtain

3c
p(x)

From the asymptotic behavior of Yu(x), namely,

Yu(x)= sin x
2 4

+O

we obtain

4{Wit1, r2] sin
p(x)

22z2
2g

sin 22zl2 2

+ sin 22z
2

+O
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Hence,

W[zl,,23
=p(x)

sin 22(z, + z2)
2

+O

Therefore, neglecting the terms of O(1/e), (2.12) gives

sin[2"(z+z2)-(/+#2)r2 1 =0"

Hence,

2
[2(z + z2)] + O

since the neglected terms are of order 1/. Since the corresponding eigenfunctions
are bounded at both ends, their asymptotic behavior is given by

(2.16) u,(x) (x, e,) g(x)

Normalizing these eigenfunctions, we find that c,z O(), hen lu.(x)[
O(), since J,(t) is bounded for all 0 and g 0.
Lza 2.2. Let A be the derential operator in 1, and let Fz.(x, s) be the

bounded solution of
(2.17) A[Fx.(x, s)] 2]F (x, s)=

6(x- s)_ u,(x)u,(s)
r(x)

2 is a given eigenvalue and u,(x) is the corresponding normalized eigen-whF n
function of A. Also let 2 be a given real number such that

2 0(.),(2.18) 2] e, + e,, e,

and

(2.19)

Then

f: Fx.(x, s)u.(s)r(s) ds O.

(2.20) F x.(,s)r(s) ds 0

Proof. Expressing the solution of (2.17) in terms of the eigenfunction of the
operator A, we find that

U(X)Um(S)
r.(x, s) y

mg:n /]’n Om
Hence

(2.21)
ut(x)x2

F22.(X, s)y(s) ds 2 (]t.2n 02m)2"
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In the remainder of the proof we show that the right-hand side of (2.21) equals
O(1/a.). The method to be used is to break the series into partial sums and show
that each partial sum is equal to O(1/a.). Hence we have

u + 2 + Y + + 2 (._ m"(2.22) m,,Z (/],n2 )2 k+l m’+l m"

For the first sum in (2.22), we choose k n/2 if n is even and (n + 1)/2 if n
is odd. And from the asymptotic estimate of u,(x), it is seen that there exists a
constant c such that u(x) eem. Hence

(2.23) Um < C < 0
m=l ( )2 m=l ( )2 (n k)2(n 1)2

For the second sum in (2.22), we Choose m’ such that

2 m2 )[(an + b + A/a)2 (am + b)2]
for all m < m’ (m sufficiently large), where a, b are fixed constants such that

m am + b + fm (fro O(1/m)),
2, +An+ g, (g,= O(nP), p< 1).

The last two formulas are clear from (2.1) and (2.18). It is sufficient to take
m’ n 1 + k, where ka 0 if A 0 and the integral part of A/a2 if A < 0.
Hence

2 l+klv’l+k’ Um am+ b
(2.24) < const.

[(an + b + A/a)2 (am + b)2] 2"
+1 (,.2 2)2 -+

To estimate the sum on the right of (2.24), we compare it with the integral
of the function

(2.25) f(x)
ax+b

[(an + b + A/a)2 (ax + b)2]2"

It is clear that f(x) is increasing for k + 1 __< x < n 1 + kl. Hence
+kx

fk-
+kl

(2.26) f(m) <= f(x) dx + f(n 1 + k ,).
m=k+l +1

From (2.24) to (2.26), we find that the second sum on the right of (2.22) is equal to
o(/.).

For the third sum on the right of (2.22), we have
n-I (X __ik.12_n, ( ) , ( )

where M rain ]2, a[, n + k n 1.
For the last sum on the right of (2.22), we choose m" such that

2 2am- , [(am + b)2 -(an + b + A/a)2], m > m".

It is sufficient to take m" n + 1 + k2, where k2 0 if A 0 and the integral
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part of 1 + (A/a2) if A > 0. Comparing the sum with the integral of the function
in (2.25), we find that it is equal to O(1/a,).

For the fourth sum, we have
n+ 1_k2 blm2 < C n+l+k20m2 < (k2+l)On+l+k2 0m=na+ (’n2 tX2m)2 m=n+l (/n2 tX2m)2 M2/n2 nn]

whereM=min12.-,l,n+ 1 <=m<__n+ l+k2.

3. Asymptotic solutions of the integro-differential equation.
THEOREM. (a) Let L and A be the two differential operators defined in 1, and
2 and U,(x) be the eigenvalues and the corresponding bounded orthonormallet (z

eigenfunctions of the differential operator A.
(b) Let K(x, s) be a given continuous kernel on x <__ x, s <= x2 which has con-

tinuous partial derivatives of the first order on x <= x, s < x2, except possibly at
x s, where K(x, s) satis./ies

LzLrx)J=ai(x)6(x-s)+ gi(X, S) (z=x,i= 1, or z= s,i= 2),(3.1)

where ai(x) is bounded and i(x,s) is square integrable on x <= s <= x2.
If the integro-differential equation

(3.2) A[y]=22[y(x)+ffK(x,s)y(s)ds],
has an infinite set of solutions, then the normalized bounded solutions for which

2 0(.)(3.3)

are given by

(3.4) y.(x) d.U.(x) + r.(x),

where d, 1 as n --. and r,(x) 0 uniformly in x, as n

Proof. It is clear that if K(x, s)= 0, then the integro-differential equation
reduces to A[y,] /nYn’2 Hence 2,2 e,,2 and y,(x) U,(x) and r,(x) 0. There-
fore we assume that K(x, s) 4: O. Let

(3.5) .(x) 2.2g.(x),

where

2

(3.6) oCg.(x) K(x, s)y.(s)ds.

Then (3.2) becomes

(3.7) ,.y. ,.(x).

Let Fx.(x, s) be the bounded generalized Green’s function studied in Lemma 2.2;
that is, let Fx,(x, s) be the bounded solution of

(3.8) A [Fx.(x, s)] 2,zFa.(x, s)
(x- s)

r(x)
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We now apply Green’s identity,

{uI[v vu} x p(x)W(u, v)t_,,
where L1 =-r(x)[A- 2,2] and W(u,v) is the Wronskian of u, v. Taking
u(x) F.(x, s) and y(x), we obtain

(3.9) y(x) bU(x) + Fx(x, s)(s)r(s) ds,

since p(x) vanishes at the endpoints, where

(3.10) b. y,(s)U,(s)r(s) ds.

Using the definition of ,(x) in (3.5), the last equation becomes

(3.11) y.(x) b,U,(x) + 2,2 Fz.(x, s),(s)r(s) ds.

From the symmetry of Fx.(x, s) and (3.8) we have

2Fz.(x, s
6(x s) 1

(s---5-- + U,(x)U,s) )I,[r.tx.
Using the last equation in the integral on the right of (3.11), we obtain

(3.12)

where

(3.13) c. U.(s)(s)r(s) ds.

Applying Green’s identity to the integral on the right of (3.12), we get

(3.14) Ls[F.(x, s)]g,(s) ds F.(x, s)Ls[3,(s)] ds,

since p(s) vanishes at the endpoints. Applying the operator Lx to ocg,(x) in (3.6) and
using (3.1), we obtain

(3.15) Lx[Off.(x)] al(x)r(x)y.(x) + if, l(X, s’)y,(s’)r(s’) ds’.
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From (3.12), (3.14), and (3.15) we have

2,2 Fx.(x, s)If,(s)r(s) ds

a,(x) + c,U,(x) Fx.(x, s)a l(s)y,(s)r(s) ds

Fa.(x, s)g ,(s, s’)y,(s’)r(s’) ds ds’.

Substituting the above result in (3.11), we obtain

y,(x) d,Un(x) (x) f F.(x, s)al(s)y,(s)r(s) ds

(3.16)

Fa,(x, s)g(s, s’)y,(s’)r(s’) ds ds’,

where

(3.17) d, b, + c,.

Using Schwarz’ inequality and (2.20), we get

(3.18) Fa.(x, s)a x(s)y,(s)r(s) ds

also

Fa.(x, s)R (s, s’)y,(s)r(s’) ds’ ds

Hence

__< F].(x, s) ds g(s, s’)y.(s’)r(s’) ds ds

<__ F,(x, s) ds R2x(s, s’)r(s’) ds’ y2(s’)r(s’) ds’ ds.

(3.19) Fa.(x, s)gl(s, s’)y,(s)r(s’) ds’ ds O(a2 1/2).

From (3.16) to (3.19), we obtain

(3.20) y,(x) d,U,(x)- )ta,(x) + I,(x),

where

(3.21) I,(x) O(0- 1/2).
From the definition of ag,(x) in (3.6),

(3.22) laef,(x)l O(1).

From (3.10), (3.13), (3.17), (3.22) and the use of Schwarz’ inequality we find that

(3.23) Id,I-< O(1).
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(3.24)

From (3.6) and (3.20), we get the following integral equation for ,(x)

,f,(x) f,,(x) K(x, s),,(s) ds,

where

(3.25) f,(x) d,, K(x, s)U,,(s) ds + K(x, s)I,,(s) ds.

Again using Schwarz’ inequality and (3.21), we see that the last integral in
(3.25) is O(0q- 1/2). The first integral is O(0q-3/2), because

K(x, s)U,(s) ds -.2 r,s----- L[U,(s)] ds
On

. L rts J
-l f U,(s [a(x(x sI + (x, s] s

a(xU(xI 1 f] (x, sU,(s s.

Hence

(3.26) f.(x) O(ff 1/2).
If k(x, s) denotes the resolvent kernel corresponding to the kernel K(x, s) in

the integral equation (3.24), and if bl, b2, ..., qSr are the nontrivial orthonormal
solutions of the homogeneous part of (3.24), then we get

(3.27) /tn(X) anmd/)m(X + f,(x) + k(x, s)f,(s) ds.
m=l

It is clear that if -1 is not an eigenvalue of the kernel K(x, s), 4m(X) 0 and

f,(x) f,(x) + k(x, s)f,(s) ds.

Hence ,(x) 0(o2 1/2). If -1 is an eigenvalue of the kernel K(x, s), then
is given by (3.27). In a similar way to the method used in [2, p. 120], we obtain

(3.28) lima,, 0,

and consequently from (3.27),

(3.29) lim Wn(X) 0.

From (3.20), (3.21), and (3.29), we have

.(x) d.U.(x) + r.(x),

where r,(x) --, 0 uniformly in x as n --* oz. From the normalization of y,,(x) and
U,,(x), d, 1 as n --, oz.
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Appendix. In this Appendix we obtain the uniform asymptotic solutions of
the differential equation (2.4). Let

(A.1)

Then (2.4) reduces to

d2 v
(A.2)

dx2 (22/3(x)+ O(x))v,

where/3(x) -r(x)/p(x) and

[ uxdP) 2 d2p-]/O(x) 4q(x)p(x) + 2p(x)-fx2J/4p2(x)}.

From the properties of the functions r(x), p(x), and q(x), we obtain the behavior
of the functions/3(x) and O(x) near x and x2, namely,

r(Xj)p(x) -p,(xai(x xa)-1{1 + O(x xa)}, j 1,2,

and

O(x) Oj(x xj) -2{ 1 + O(x xj)}, j= 1,2,

where

qj 1
Oj

p,(xj) 4’
j= 1,2.

Hence the differential equation (A.2) is similar to the differential equation in
Case D in Olver’s work on the asymptotic solutions of linear differential equations
[4]. We follow the same procedure to find the asymptotic solutions. We take new
dependent and independent variables w and related by

v dx
w-- 2--

where x and are related by

(A.3)

Then w satisfies

(A.4)

where

22/3(x) 1/.

dEw [22--- + f( w,

(A.5) f() 220(x)+ 21/2
d2

On integrating (A.3), we obtain

1(x) dt j= 1,2.
’q p(t)
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From the properties of r(x) and p(x), we find that

r(xJ)(x_xj){1 +(x-xj)O(1)} asxxj.(a.6) j(x)
p’(x)

Hence j(x)is regular at x xj; it is also positive and continuous on xl =< x =< x2.
Also, f() has a double pole at j 0 since x xj corresponds to 0 and
O(x) has a double pole at x xj.

Let

z(x
) f N[

d

2 and (A.4) reduces toand/b2. 4Oj, wherej 1,2. Then j zj

d2w- dw I l}-
(A.7) -dz zj dzj

+ -422 - zj2 +- f(zj) w,

where

(A.8) f(zj) 4h(z), h(z}) jf(j) + /], j 1, 2.

Using (A.3), (A.5), (A.6), and (A.8), we obtain

[ d2 ] ^r(X)qj_p_),p(X) 3/2 1/2f(zj) (x) + Yc -j (Yc + j 1, 2.

From the properties of p(x), r(x), and O(x), there exist constants , , and such
that"

(i) For x x , < x2, z(x) ranges over 0 z(x) z(), and
f(z) is regular on 0 z 7.

(ii) For x2 x > , > x, z2(x) ranges over 0 z2(x) z2(), and
f(z2) is regular on 0 z2 .

(iii) There is a common domain 0 zj 7, J 1, 2, which corresponds to
x , for which f(z) is regular.
The two equations in (A.7) are in the standard form of the differential equation

treated in [4, p. 78], except that the basic equation is now the Bessel equation
rather than the modified Bessel equation. Appropriate basic solutions are

zjJu(22zj) and zjYu(22zj). And, in a similar way to Theorem D in Olver’s paper
[4], we obtain (2.8) to (2.11). Retracing the transformations, we obtain (2.5) and
(2.6).
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COMPLEX ZEROS OF LINEAR COMBINATIONS OF SPHERICAL
BESSEL FUNCTIONS AND THEIR DERIVATIVES*

B. DAVIES,"

Abstract. We investigate the zeros of the functions [cos (ns)je(x) + sin (ns)ye(x)] and [cos (ns)
(xj(x))’ + sin (ns)(xy(x))’] for arbitrary real values of s and integer ’. In particular, we find the
number of complex zeros for each value of s, and give qualitative information about the loci of the
complex zeros as s varies. The method depends on elementary considerations from the theory of
first order nonlinear differential equations.

1. Introduction. In the course of an investigation which involves the normal
modes of electromagnetic radiation in a spherical cavity 4], we have found it
necessary to have certain information about the complex zeros of the functions

ze(s, x) cos (ns)je(x) + sin (ns)ye(x),
(1)

e(s, x) cos (ns)(xje(x))’ + sin (ns)(xye(x))’,

where je(x) and ye(x) are spherical Bessel and Neumann functions Ill, and is an
integer. In particular, we have needed to know not only the number of complex
zeros of these functions for real values of s, but also the qualitative nature of the
curves in the complex plane determined by the functional equations

(2a) ze(s, x(s)) 0,

(2b) Y. e(s, x(s)) 0

and their relation to the zeros of spherical Hankel functions. This information does
not seem to be available among the considerable literature on the zeros of Bessel
functions [1], 5], F6] and so we investigate the problem in the remainder of this
paper, using an extremely simple method which depends on an analysis of the
qualitative behavior of the solutions of a first order nonlinear differential equation.

2. Zeros of z(s, x). In this section we investigate the zeros of the function
ze(s, x) for arbitrary real s. In order to simplify some of the discussions, we restrict
g to positive values, neglecting the trivial case of# 0. We begin by considering the
differential equation

d
(3) ze(s, x) O.

Explicitly, (3) may be written as

dx/ds Ne(s, x)/De(s, x),

(4) Ne(s, x) c3ze/Ss,

De(s, x) c’ze/c3x.
Suppose we solve (3), choosing as initial condition any pair Xo, So which satisfy
ze(so, Xo) 0; then define Sl and s by the condition that the open interval s

* Received by the editors March 2, 1971, and in final revised form January 28, 1972.
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< S < S2 is the largest open interval containing so such that De(s, x(s)) # 0 for
s < s < s2. Then the curve defined by x(s) is unique and smooth for s < s < s2
(see [2]), and is a locus in the complex plane of zeros of ze(s, x).

It is well known [1] that the function ze(s, x) has an infinite set of real simple
zeros for each value of s, and that for two different values of s. these zeros interleave.
Therefore, Ne(s, x) ze(s 1/2, x) and De(s, x) are real and alternate in sign at the
zeros of ze(s, x), and dx/ds is always of the same sign at each real zero. By examining
asymptotic forms it is easy to conclude that dx/ds is real and positive for real x,
and that the real axis is a locus of zeros, which move in a positive direction as s
increases,

To investigate other solutions of (3), we need to know what values s and s2
may assume, and the corresponding values of the limits

x, lim x(s),
(5) -’’

x2 lim x(s)
$2

if they exist. There are several possibilities; for s they are as follows"
(a) s is finite, x is finite. This gives the conditions

(6)
ze(sa,xl) cos (rtsl)je(x) + sin (rtsl)ye(xl) O,

De(sl,xl) cos (rs)j’e(xl) + sin (rtsl)y’e(xl) O.

The determinant of these equations is the Wronskian x - 2 and since it is never zero,
the only solution is

sin (rcsl) 0,

(7) sl =n, n 0, +l, +_2,

O,

(13) s is finite, Ixl is infinite. Then we must have z(s, ) 0 and D(s, ) 0
as s s, and using the asymptotic forms for the Bessel functions of large argu-
ment, we get the conditions

sin (rts -+ x #rt/2) + O(x- 1) O,
8)

cos (rts + x rt/2) + O(x-1) 0

as s -+ Sl, which are impossible to satisfy simultaneously.
(c) Sl -oo. In this case the solution x(s) is unique for all s __< So, and in

particular, must be one of the real roots of je(x) whenever s is an integer. But the
uniqueness of the solution implies that the locus is the negative real x-axis.

Similar considerations apply to s2, so that we find that the only singular
point of solutions of (3) subject to given initial conditions is x 0 when s 0,
+_1, +_2,....

To find the loci of the complex zeros we first note that for s n there are no
complex zeros, since je(x) has only real zeros. Hence when s is close to an integer,
the complex zeros are close to zero, since this is the only singular point of (3).

This result is shown in [3], where the real zeros of ze and e are investigated.
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Using the asymptotic forms for je(x) and ye(x) in the neighborhood of x 0,
we find that if s n + e, then2

(9) x Ix(2{ + 1)!!(2(- 1)!!g] 1/(2+1).

For e > 0, we have one real positive root and 2{ complex roots with arguments

2rj
(10) arg(x) +2( + 1’

j 1,2,..., 2(.

When e < 0, we have one real negative root and 2{ complex roots with arguments

2zj
(11) arg(x)= -r+

2{+ 1’
j= 1,2,...,2{.

As s increases from n + e to n + e, each of the complex roots must return to the
origin. Furthermore, no two loci can intersect (since this would imply a singular
point) so that the complex roots travel in 2{ closed loops, half in the upper half-
plane and half in the lower half-plane. 3 We have therefore proved that the function
ze(s, x) has exactly 2{ complex roots for every nonintegral value of s. A sketch of the
loci for { 2 is shown in Fig. 1, with arrows indicating the direction of motion of
the zeros for increasing s. We shall show in 3 that no loop may contain another
loop in its interior, so that the arrangement shown in Fig. is the only possible one.

Im(x)

FIG. 1. Zeros of z2(s, x)

3. Relation to the zeros of spherical Hankel functions. We shall now show
that each closed loop of ze(s, x) 0 circles exactly one complex zero of one of the
two spherical Hankel functions defined by [1]

(12)
hO )(x) j (x) + iy e(x),

hteZ)(x) je(x)- iye(x).

(2E + 1)!! (2E + 1)(2( 1)... (3)(1).
It is trivial to show that the complex zeros occur in complex conjugate pairs.
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We first note that the function ze(s, x) may be expressed as

(13) ze(s, x)= 1/2[e- inSh(tl )(x) -F einSh(Z)(x)]

so that if ze(s, x) 0 we have

(14a) Ih)(x)l--IhZ)(x)l,
(14b) arg [h)(x)] arg [h2)(x)] 2t(s 1/2 + n),

where n is an arbitrary integer. Conversely, if Ihl)(x)l ---IhZ)(x)l, equation (14b)
shows that there exist values of s such that ze(s, x) 0. Consequently the curves
defined by (2a) are equivalent to those defined by the condition Ih1)(x)l Ih2)(x)l.
In fact, the curves along which ze(s, x) 0 separate regions where Ihx)(x) <> IhZ)(x)],
and we have marked the regions in Fig. with the numbers or 2 as Ihte)l or Ihte2)l
is the smaller. We shall prove this last assertion. In the upper half-plane, using the
asymptotic forms of the spherical Hankel functions, we find Iha)(x)l < IhZ)(x)l
outside the closed loops. From the facts which are proved below about the loops,
particularly that each loop contains one zero of hZ)(x), we have Ihe1)(x)l > IheZ)(x)l
in the interior of each loop. A similar argument applied in the lower half-plane
completes the proof.

Now we consider the integral4

fc{h’el)(x) h)(2)(x) }
taken in a positive (anti-clockwise) direction around one of the closed loops. By the
principle of argument, its value is equal to the difference between the number of
zeros of he) and he2) inside the loop. Using (14), we can write (15) as

(16)
lf dN / xx In {heX)(x)/heZ)(x)} dx

fcaS +1.

We get + 1 if the zeros of z e(x, s) move in a positive (anti-clockwise) direction as s
increases, -1 if they move in a negative direction. Now it is well known that
h(el) has e zeros in the lower half-plane and he2) has g’ zeros in the upper half-plane,
and since there are loops in each half-plane, which cannot intersect each other,
each loop circles one zero of a spherical Hankel function and no loop contains
another. This justifies our statements made at the end of 2 and following (14).

4. The function e(s, x). The investigation of the zeros of e(s, x) proceeds in
exactly the same manner as for ze(s, x). The differential equation (3) is the analogue
of (4), with

.(s, x) sin (ns)(xje(x))’ cos (ns)(xye(x))’,
(17)

/(s, X) [((ce -b 1)/X2 1] [cos (rs)(xje(x)) + sin (rcs)(xye(x))],

4 Although the origin is on the contour, the integrand does not have a pole there, on account of
cancellations.
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and the solutions of this equation with initial conditions :ge(So, x0) 0 give a set
of smooth curves in the complex plane, except for points where we can simultane-
ously satisfy the conditions e(s, x) 0 and b(s, x) 0. One solution of these
equations is again s n, x 0, but we now have two additional singular points
X
+-, sf), given by

x v/(( / 1),
(18)

tan (rs) (xj(x))’/(xyAx))’],.

We shall investigate the nature of the loci of zeros in the neighborhood of these
critical points below.

Similar arguments to those presented in 2 show that the real axis is a locus
of zeros. Now, however, the presence of the factor [((( + 1)/x2 1] in be(s, x)
gives a slightly different result for the sign of dx/ds" it is

dx(>O, Ixl > x+,
(19) dsl<O, Ixl <x+.

Hence the zeros travel in the direction of increasing x if Ixl > x+, and the opposite
way if Ixl < x+. Let us choose s 0 at x 0, and follow the change in s as x
varies along the real axis to x+ We have just noted that s is monotonic decreasing
as x increases in this range; we now want to show that s+ > -1/2. Inspection
shows that if s+ < -1/2, then the function (xy(x))’ has a real zero for some
x < x+. But the first positive real zero of (xy(x))’ is larger than the first zero
ofye(x), which in turn is larger than ( + 1,/2 (see 1]). Hence we see that s+ > 1/2
and by a similar argument that s- < + 1/2.

Now we shall investigate the nature of the complex curves in the neighborhood
of the points x 0 and x x/e. For x close to zero, we again put s n + e,
and find that if e > 0 we have a real negative root and 2 complex roots with
arguments

2rj
j= 1,2, -.., 2{’.(20) arg (x) r + 2( + 1’

If e < 0, we have a real positive root and 2( complex roots with arguments

2rj
(21) arg(x)=

2(+ 1’
j= 1,2,-..,2(.

We must also determine the nature of the curves when x is close to x+ and s
to s+. We write x x+ + 6 and s s+ + e and expand .(s, x)in a Taylor series
about the critical point, keeping only the first nonvanishing terms in e and 6, to get

(22) .(s, x) + .(s, x) 0
$c,Xc Sc,Xc

which gives 62 Ae for some constant A. We have seen that as s increases from
s+, two real roots move away from x+, hence A is a positive constant and for
negative values of e we get the approximation

(23) x x+ +_ iw/A(s+ s).
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Hence as s approaches Sc
+ from below, two complex roots move in toward the point

Xc+ and then move off along the real axis as s exceeds s+ The behavior near Xc- is
similar;in this case there are two real roots for s < s-, and as s increases through
this critical value they coalesce, and then move off into the complex plane.

We now have sufficient information to sketch the closed loops in the complex
plane, and we have done this for { 2 in Fig. 2. From our considerations, we may
also say how many complex zeros are possessed by the function e(s, x) for any
particular value of s. When s is an integer, there are no complex zeros. If s lies in the
range n + s+ < s < n + s-, there are 2{ complex zeros, half of them in the upper
half-plane and half of them in the lower half-plane. For s in the range n + s-
< s < n + + s+, there are 2{ + 2 complex zeros, and it is interesting to note
that this case includes the complex zeros of the function (xye(x))’.

Im(x)

Re(x)

2

FIG. 2. Zeros of 2(S, X)

Finally we remark that the method of 3 shows that Fig. 2 is the only possible
arrangement, and that each closed loop in the upper half-plane encloses exactly
onezero of the function (2)(xhe (x)). Since the zeros of this function are the roots of a
polynomial of degree { + 1, this exhausts all the zeros. Similarly the loops in the
lower half-plane each enclose one zero of the function (xhe1)(x))’.
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STABILITY THEORY FOR MULTIPLE EQUILIBRIUM STATES OF A
NONLINEAR DIFFUSION PROCESS"

A SINGULARLY PERTURBED EIGENVALUE PROBLEM*

HERBERT B. KELLER’

Abstract. It has been shown, previously, that the parabolic problem Y Yxx Yx + g(x, Y) 0,
Yx(t, O) aY(t, O) A, f(Y(t, 1), Yx(t, 1)) 0 has, for sufficiently small > 0, a distinct equilibrium
state yj(x,e) for each simple root of F() f(, g(1, )) 0. Now it is shown that y(x, e) is stable or
unstable provided that dF(%)/do > 0 or <0, respectively (with fz(Y, z) > 0). This problem leads to a
singularly perturbed eigenvalue problem of the form: eqgx: + p(x)q9 + [2r(x) q(x)]q9 0, aoqg(0
/ alqgx(0) 0, hoop(1 / blqgx(1) 0. It is shown that ase 0(e 0) the least (greatest)eigenvalue is given
by (e) 2ff + O()(2ff + O(e)), where 2g [q(1) + bob-(xp(1)]/r(1)and2 [q(0) + aoa.(Xp(O)]/r(O).

1. Introduction. We consider diffusion processes for a quantity Y(t, x) which
satisfies a nonlinear initial boundary value problem of the form"

(1.1a) Y-eY,x- Y,+g(x,Y)= 0, 0x 1, t> 0;

(1.1b) Yx(t, O) a Y(t, O) A, f(Y(t, 1), Yx(t, 1)) 0, > 0

(1.1c) Y(O,x) Yo(x), 0 <= x <= 1.

In particular, the (dimensionless) temperature in various adiabatic chemical
reactors with first order irreversible reactions can be shown to satisfy such a
system. See R. Aris [1] for a detailed formulation of these applications. The
equilibrium states y(x) of such processes are determined by nonlinear two-point
boundary value problems of the form"

(1.2a) eYxx + Yx g(x, y), 0 <= x <= 1;

(1.2b) y,(O) ay(O) A

(1.2c) f(y(1), Yx(1)) O.

Recent experiments with chemical reactors have shown that multiple equilibrium
states can exist and be "stable" and with some experimental finesse it is made
rather clear that "unstable" equilibrium states also exist [6]. Theoretical stability
analysis for all such problems governed by (1.1) with sufficiently small e > 0 will
be given here.

An existence theory for nonunique solutions of(1.2), for small e > 0, has just
been given by the author 3] under relatively mild assumptions on g(x,y) and
f(y, z). In particular, it is shown that if the equation

(1.3a) F(a) f(a, g(1, ))= 0
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has J simple roots j in an appropriate interval:

(1.3b) M < (X < (Z2 <’’" < j < N,

then (1.2) has at least J distinct solutions, y yj(x, e), provided e > 0 is sufficiently
small. Under slightly stronger smoothness conditions on g(x,y) and with
fz(Y, z) > 0, we shall show that

stable } dF(0){>0,(1.4) yj(x, e) is
[.unstable

if
d < 0.

Thus the entire existence and stability theory for equilibrium states of (1.1) with
small e > 0 is reduced to a study of some simple properties of the given function
F((z).

The stability problem indicated above is formulaed in 2 and leads to a
singularly perturbed eigenvalue problem which is a special case of

(1.5a) egO,x + p(x)go, + [2r(x)- q(x)]q)= 0,

(1.5b) a lq)x(0) + a0q)(0) 0,

(1.5c) b(px(1) + boq)(1)= 0.

For stability we need only examine the sign of the least eigenvalue of (1.5) for
small e > 0. However, in 3 and 4 we find the limit of (e), the least (greatest)
eigenvalue of (1.5) as e$0 (eT0). More precisely with

(1.6a)

(1.6b)

p(x),q(x),r(x) C [0, ],

p(x) >= po >0, r(x) >= ro >0,

we show that

(1.7) i@)
r- q(1) + xxp(1) + O(e)

r- q(O)+ p(O) + 0@)

ife > O, bl :/:0,

ife < 0, a150.

The leading term in (1.7) is just the eigenvalue of the reduced eigenvalue
problem obtained by setting e 0 in (1.5a) and retaining (1.5b) if eT0 or (1.5c) if
$0 (see 3). A variety of results on the convergence ofthe eigenvalues of singularly
perturbed eigenvalue problems to those of the corresponding reduced problems
are known [7], 8], [9]. These results are generally of the form that each eigen-
value of the reduced problem is the limit as e+0, say, of some eigenvalue of the full
problem. Thus no particular information is obtained on the principal eigenvalue
of the unreduced problem. More complete information is given by Moser [9] (in
the self-adjoint case) where it is shown that each eigenvalue of the full problem
converges to some eigenvalue ofthe reduced problem. However, this result requires
the eigenfunctions of the reduced problem to be complete. This is clearly not the
case in our problem as at most one reduced eigenvalue exists. Thus it appears
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that none of these rather thorough studies has quite the result we require. The
simple proof of (1.7) given in 4 uses techniques that are completely different
from those in [7], [8], [9].

2. The stability problem. An equilibrium state yj(x, ) is asymptotically stable
(in the small) if the solution Y(t, x) of (1.1) with the initial data

Yo(x) =- y(x, ) + (x)
satisfies, for all sufficiently small Ill and smooth bounded perturbations if(x),

(2.1) lim Y(t, x) yj(x, e)l 0.
t--

The standard (heuristic) examination of stability is to seek a solution of (1.1),
with Yo(x) as above, in the form

Y(t, x) yj(x, e) + 6 e-
and to retain only lowest order terms in 6. This yields

(2.2a) qgx + qgx + [2 gr(x, y(x, e))]q 0,

(2.2b) qg(0)- aqg(0)= 0,

(2.2c) fz(yj(1, e), y(1, e))q(1) + f(yj(1, e), yj(1, 0)99(1) 0.

Here we have assumed that g(x, y) and f(y, z) have the appropriate continuous
derivatives. If the least eigenvalue of (2.2) is positive, then we expect that yj(x, e)
is stable in the sense (2.1). That this holds can be shown in many cases [5] and we
assume it to be the case here. Thus we say that an equilibrium state yj(x, t) is
stable, unstable or neutral, respectively, if the least eigenvalue (e) of (2.2) is > 0,
<0 or =0.

We shall examine the least eigenvalue of (2.2) for small e > 0. In this case we
can eliminate the dependence of the "coefficients" gr, fz and fr on e by evaluating
them at e 0. Indeed, in [3] it is shown that, uniformly on 0, 1] and for all in
0<e<el,_

(’2.3) lyj(x, e)- vj(x)l =< Ce.

Here v(x) is the solution of the reduced problem

(2.4) v’(x) g(x, v), v(1) j,

and j is the jth root in (1.3). Thus in place of (2.2) we consider

(2.5a) eq%, + 0x + [2 gr(x, v(x))]p 0,

(2.5b) qg(0)- aq(0)= 0,

(2.5c) fz(Vj(1), v)(1))0(1)+ L(vj(1), v(1))o(1)= 0.

Now if, as we shall assume, fz(vj(1), v(1)) - 0, it is easy to show that the least
eigenvalues of (2.2) and (2.5) differ by O(e). Hence the stability or instability (but
not neutral stability) for sufficiently small e > 0 can be determined by examination
of the least eigenvalue of (2.5).
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Obviously (2.5)is a special case of(1.5), where p(x) =_ r(x) =_ 1, q(x) gy(x, vj(x)),
a 1, ao -a, bl f(vj(1), v)(1)) and bo f(vj(1), v)(1)). So when (1.7) has
been established it follows that the least eigenvalue of (2.5) or indeed of (2.2) for
e > 0 is given by

i(e) L(vj(1), v)(1))g,(1, vj(1)) + f(vj(1), v}(1)) + o(e).
f(vj(1), v)(1))

Recalling (1.3a) and using (2.4), this can be written as

(2.6) (e) dF(%)/da + o().
L(,g(, ))

Thus (1.4) clearly follows if fz(Y, z) > 0 and e > 0 is sufficiently small.
We now turn to the demonstration of (1.7).

3. Reduced eigenvalue problems. The correct limiting values of the least and
greatest eigenvalues ,(e) of (1.5) are suggested by an elementary application of
singular perturbation theory. That is, if we simply set e 0 in (1.5), the problem
becomes

(3.1a)

(3.1b)

(3.c)

p(x)O(x + [2r(x)- q(x)]O(x)= O,

a,O(O) + aoO(O) O,

bltPx(1) + boO(l)= O.

Clearly a solution of the first order equation (3.1a) cannot, in general, satisfy two
boundary conditions as in (3.1b, c). Singular perturbation theory (see 2]) usually
tells us, or rather suggests, which if either of the boundary conditions is to be
retained. Indeed, since p(x) > 0 is assumed here, for e > 0 the theory suggests
that (3.1c) is to be imposed and for e < 0 that (3.1b) is applicable. However, it is
a simple matter to consider both possibilities, avoiding any real knowledge of
singular perturbation theory, and to show that the indicated behavior is correct.
Thus we define the two reduced problems: RP_ (3.1a, b) and RP+ (3.1a, c).

The general solution of (3.1a) is

(3.2) 0(x) c exp )()
with the constant c arbitrary. If c 0, then 0(x) =- 0 and both conditions (3.1b, c)
are satisfied for all 2. We seek values of2 for which nontrivial solutions of RP_ exist
such values are eigenvalues of the corresponding reduced problems. Using (3.2) in
(3.1b) or (3.1c) we find that the only possible eigenvalues of the reduced problems
are

(3.3) 2
2 = q(0) +--p(0)

al

2g q(1) + -p(1)

if a -7/: 0 for RP_,

if b 0 for RP+.

If a 0 (bl 0), then RP_ (RP+) has no eigenvalue.
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4. The limit results. It is of course by no means clear that the eigenvalues
(3.3) of the reduced problems are related to any of the eigenvalues of (1.5) as T 0
or $ 0. To show the relationship we first transform (1.5a) into the standard
Sturmian form"

(4.1) (P(e, t; x)qb,) + [2R(, t; x) Q(, t; x)](p 0,

P(e, t; x) eE(e, t; x);

by introducing the quantities"

(4.2)
E(e, t; x) exp p() d

Q(e, t; x) q(x)E(e, t; x), R(, t; x) =_ r(x)E(e, t; x).

Note from (1.6b) that R(e, t;x) > 0 and P(,t;x) > 0 or <0 on 0 __< x =< 1 if
> 0 or < 0. The variational characterization of the least eigenvalue can be used

in (4.1), (1.5b, c) taking account of this sign change with e to get"

+ Q(e,t" P(,t ;0)-2-q2(0)+ P(,t" 1)-q2(1)
(4.3) +.() min +

f R(e, x)q2(x) dx

Here ;.(e) is the least (greatest) eigenvalue of (1.5) for e > 0 (e < 0). Also we have
assumed that ab # 0and for the admissible functions wecan take sO’ C1[0, 1].
If a 0 (or b 0), we must drop the corresponding boundary term in (4.3)
and take d C1[0 1] {q(x)lq(0)- 0} (or {q(x)lq(1)- 0}). The sign (+)is
that of e # 0.

Now we note some basic properties of the integrating factor E(e, t; x). First,
by partial integration, it follows that

dx ,,f(1) f(0)
f(x)E(e, t" x)-- E(e, t" E(e, t"

o
(4.4)

e,
dxlp(x)

for all f(x) C1[0, 1]. Further by (1.6b), we get

(4.5a) 0 < E(e, 0;x) _< epx/" ife < 0, 0 =< x =< 1,

(4.5b) 0 < E(e, 1;x) ep(x-1)/e ife > 0, 0 x =< 1,

E(e, O O) E(e, 1;1) 1 if e-C0.(4.5c)

(4.6a)

Using (4.2) and (4.4) in (4.3) now yields

_i(e) min _+ N{q;e},

where
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Our basic results follow by obtaining upper and lower bounds on .(e) from (4.6).
In particular, we use the trial functions

(4.7a) q(x) if a b # 0,

(4.7b) q(x) x if a 0, b # 0,

(4.7c) q(x)-= 1-x ifaa #0, bl=0.
Then for e > 0 take 1 in (4.6) and recall (4.5b, c) to obtain

[0(1) b,]
(4.8a) 2(e) <

[_p(1)
+ + O(e)=- +O(e) ifba #Oande>O.r(1)
+ o()

()

Similarly for e < 0 take 0 in (4.6) to obtain

[q(O) + + 0()
(4.8b) ,()-> [-P

+O() ira1:/:0ands<0.
r(O)---+ o()
p(0)

Bounds on the other side are more subtle. We use the fact that the eigen-
functions (, x)can be normalized uniformly in by

(4.9) 0 q3(,x)_< 1; 0__<x=< 1, 0<lel__<eo.

Further, without loss in generality we can assume that q3(, x)6 C2[0, 1]. These
eigenfunctions in (4.6) give ,(e) {q3; e}. Then we use the fact that

fo {0 if e>0,
e q2E(e’t;x)dx

<=0 ife < 0,

to drop this term and get

(4.10) [q(1) bo] [q(O) ao;
i()

< dx

dx

E(e,t" 1)p-q32(e, 1)- E(e,t’O) q32(e, O)- xx ---I E(e’t’x)-

To proceed as above and get the opposite inequalities from those in (4.8) we must
first show that Ibx(e, x)l can be bounded independent of e on 0 < le[ -< eo, say.

From (4.1) with 2 (e), q b(e, x) and e > 0 we integrate over [0, x] and
use (1.5b) to get, setting 0"

x)dCx(, x) /o(, 0)E- 1(, 0; x) + [q() i(e)r()](e, )E(e, ;

If I()l # for 0 < e __< eo, then, recalling (4.5) and (4.9),

(4.11a)
1

ICx(, x)l < e-px/ + (llqllo + #llrlloo),
aa Po

e>0.
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If al 0, then the corresponding term does not enter. For e < 0 we proceed in
an analogous fashion, integrating (4.1) over Ix, 1] and setting 1 to get if

bo epo x)/e(4.11b) Iq3x(e,x)l =< 7- + q + #]lr[[oo), e < 0.
po

It only remains to show that l2(e)l =< #for0 < lel _-< eo and some # independent
of e. For 0 < e __< eo we have from (4.8a) that for some constant Ko,

).(e) =< 2- + Koeo.
A lower bound is obtained by means of Theorem 15 in Protter and Weinberger
[4, p. 38]. In particular, with w(x) =_ (x 1/2)2’ + b for sufficiently large integer
m _>_ 1 and sufficiently small 6 in 0 < 6 < 1/2, this result implies that

,.(e) => -( qlloo + 2ml[pl[OOrob + 4mZe if 0 < e =< Co.

Similarly, I(e)[ is bounded for 0 > e > eo and so Ib,(e, x)[ is uniformly bounded
for 0 < I1 <_- o as follows from (4.11).

Using (4.5) in (4.10) now implies with (4.8) that"

(4.12) (e)={2ff +O(e) ife>O, b 4:0,

2 +O(e) if e<0, a -0.

We have thus proven under conditions (1.4) that: when b 0 (al O) the least
(greatest) eigenvalue .(e) of (1.3) converges as e $ 0 (e T O) to the eigenvalue 2 (2)
ofthe reduced problem RP + (RP_). We stress that this phenomenon occurs only if
the boundary condition that is "retained" by singular perturbation theory is not
of the Dirichlet type. In the case of constant coefficients it is not difficult to show
that all of the other eigenvalues (including the principal one if b 0, e < 0 and

a O, e < O) diverge to + (- ) like [el- as e + 0 (e T 0).
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A STEFAN PROBLEM INVOLVING THE
APPEARANCE OF A PHASE*

J. R. CANNONf AND MARIO PRIMICERIO:

Abstract. The maximum principle is utilized in the demonstration of existence and uniqueness
results for the free boundary problem associated with the creation of an additional phase at the
boundary" i.e., the free boundary has its point of origin on the boundary of the region under con-
sideration.

1. Introduction. The physical setting of the problem discussed in this paper
is a slab of ice of unit thickness which at an initial point in time is uniformly
heated at one face while uniformly cooled at the other. This induces the creation
of the water phase at one face and a water-ice interface plane which moves into the
slab. The mathematical setting of the problem is the determination of u u(x, t),
v v(x, t) and s s(t) which satisfy

Lu =- lUxx l,/t O, 0 < x < s(t), 0 < =< T,

(1.1) u(0, t) f(t), u(s(t), t) O, 0 < <= T,

s(0) o,

L2v K2Vxx l) O, s(t) < x < 1, 0 < <= T,

(1.2) v(1, t)- g(t), v(s(t), t)= O, 0 < <= T,

v(x, o)= (x), o <= x <= ,
(1.3) (t)-- --KlUx(S(t), t) + K2vx(S(t), t), 0 < <= T,

where c kip[-tc , i= 1, 2, represent the diffusivities’, ki, i= 1, 2, the
conductivities; p, i= 1, 2, the densities; ci, i-1, 2, the heat capacities;
Ki kp L- , 1, 2 L is the latent heat of fusion; and all of the preceding
constants are positive. T is an arbitrary but fixed positive number, and the
functions f => 0, g =< 0 and =< 0 are the boundary and initial data for (1.1),
(1.2) and (1.3).

In this paper we demonstrate the global existence and uniqueness of the
solution of(1.1), (1.2) and (1.3). The results are based upon the maximum principle
and the results of our paper [11] in which (1.1), (1.2) and (1.3) was considered for
the case s(0) > 0. The analysis given in [11] depended heavily upon the fact that
s(0) > 0. The situation here is analogous to the papers of Cannon and Hill [4,
[6] in which a substantially different analysis was required for the two cases. As
in [11], we shall by necessity restrict ourselves to small data. The major point in
our existence argument here is the derivation of a nontrivial lower bound on the
free boundary s s(t). The analysis is similar to that in [4] and [6]. The paper is
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concluded with comments on results that can be achieved for the specification of
flux on the boundaries.

2. Definitions and hypotheses. We begin with a list of the assumptions needed
for the existence theorem.

(A) Let f f(t) be a bounded piecewise continuous function such that there
exist positive constants 1, ill, 2, A and y __< 0 such that

(2.1) min (01,2t +) =< f(t) <= min (1, At1 +)
for0< < T.

(B) Let g g(t) be a bounded piecewise continuous function such that there
exist two positive constants 2 and/2 such that

(2.2) -2 < g(t) < -02 < 0, 0 __< _< T.

(C) Let q(x) be a piecewise continuous function such that there exist two
positive constants a and r/such that

(2.3) 0 >= (x) >_ -a(1 exp {- r/x}).
(D) With respect to the constants fl, 1, 2, and a, we assume that

(2.4) max (2Kfllc71, 2K2/- max (f12, a)) < 1.

By a solution (u, v, s) of the Stefan problem (1.1), (1.2) and (1.3), we mean that"
1. s s(t) is a continuously differentiable function for 0 < __< T and con-

tinuous for 0 __< __< T, s(0) 0, and 0 <_ s(t) < 1.
2. u and v are such that"

(a) the derivatives appearing in the equations exist and are continuous
in their respective domain of definition;

(b) u and v are continuous in the closure of their respective domain of
definition except at points of discontinuity of the data;

(c) for such points of discontinuity, 0 __< lim infu __< lim sup u < oo and
-oo < lim inf v __< lim sup v _<_ 0 as each such point is approached
from the interior of the region in question;

(d) u and v satisfy (1.1) and (1.2) respectively.
3. u, v and s satisfy (1.3).

3. Existence. For all b > 0 and sufficiently small, let (ub, vb, sb), where
u Ub(X, t), V Vb(X, t), and s sb(t), denote the solution of (1.1), (1.2) and
(1.3), with the alterations s(O) b, ub(x, O) =-- O, 0 < X <-- b, f is replaced by f + b,
and @ is replaced by @b, where

@b(x) max (@(x), --a(1 exp {--c lr/(x b)}))
for b =< x < 1. The existence and uniqueness of (ub, vb, sb) are discussed in [11 and
the assumptions (A), (B), (C) and (D) guarantee the results derived in [11]. Con-
sequently, we have a family of functions s for b > 0 and sufficiently small. In
order to guarantee the existence of a solution of (1.1), (1.2) and (1.3) it suffices to
demonstrate that the family sb is uniformly bounded and equicontinuous. The
uniform boundedness of the family is obvious; i.e., 0 =< sb __< 1. The question of
equicontinuity of the family is a more complex matter which will occupy most of
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the remaining paragraphs.
Since

(3.1) (t) Ku(s(t), t) + K2vx(S(t), t)

and Since hasfor 0 < =< T, we begin an estimate of b by estimating u, Vx. vx
already been estimated in [11] we can state the following lemma.

LEMMA 1. For 0 < b < bo, where bo is sufficiently small and fixed, there
exists a To To(A), 0 < A < 1 2bo, such that

(3.2) sb(t) < 1 A

for 0 < <= TO and that

vb(sb(t), t) >= --max (a, fl2)x
(3.3)

[1 exp {-xf 1( iNbllo,o / rt)a}]-X(llNbllo,oa / rt), 0 < _<_ 0 __< To,
where for any function h h(t) defined on a < <_ b,

(3.4) Ilhll,,b sup Ih(t)l.
a<t<b

Remark. The proof of Lemma 1 follows from the argument given in [11] and
the fact that s(t)< s(t) which follows from the fact that f + b _<_ f + bo,

-< o, and b < bo; i.e., the monotone dependence of the free boundary upon
the data. Note that I111(o,0 < oo since it is shown in [11] that s is the uniform
limit of a sequence of equi-Lipschitz-continuous functions.

bIn order to derive an estimate of ux we must first derive a lower estimate for
s. Consider the problem

Ltz =0, 0 < x < a(t), O< <= O,

(3.5) z(0, t) f(t), z(a(t), t) O, 0 < <= O,
bit(t) -Kxzx(a(t),t g2llvxll, a(0) 0,

where f(t) <_ f(t), 0 <__ To, and via (3.3) and the remark above,

(3.6) Ilvxll sup Ivx(S(t), t)l < .
O<t<0

Suppose that a solution of (3.5) exists in the sense of a definition analogous to the
one given in 2. Then, we can demonstrate the following lemma.

LEMMA 2. For 0 < <= O,

(3.7) a(t) < sb(t),

Proof. Suppose (3.7) is false. Then since b > 0, there exists a first time to > 0
such that sb(to)= a(t0) and b(to) <= #(to). Since ub z >= 0 in 0 =< x =< a(t),
0 =< =< o the parabolic version ofHopf’s lemma yields ub(sb(to), to) < Zx(tr(to), to).
But,

bKxub(sb(to), to) + K2Vbx(Sb(to), to) > KlZx(tr(to), to) K2llvxll.
Hence, b(to) > #(to), which is a contradiction. Consequently, solutions of (3.5) are
of interest to us. However, such problems are generally difficult to solve for
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specified fl. Hence, we consider the inverse problem of defining simple boundaries
(t) and investigate the corresponding z(0, t) which arises from the solution of the
Cauchy problem

Llz O, 0 < x < a(t),

(3.8) z((t), t) O,

z(a(t), t) -K7 16"(t) K71K2] Vx[.

O<t<__O,

O<t<_O,

For smooth data, Hill [18] has shown that the solution of(3.8)may be represented

Zx(er(t), t)t

KTK2[vx[

as

(x r(t))2j+1
(3.9) z(x, t)

= (c{ (2j + 1).

From (3.8) we see that

G3 {’K-{ (X O(t))2j+l
z(x,t)

(2j +j=

(3.10) 1 (x- (t))2+

z(x, + z(x, .
Recalling the hypothesis (A) concerning the asymptotic behavior off as --+ 0 and
the analysis in [4, p. 13], we consider (t) ptL where p > 0, 1 + 7 and
fl 1 + 2,/. Then for x 0, the first series zl in (3.10) satisfies

(3.11) KIK7 l(exp {al./2K ltt} 1) _< z(0, t) treKS-l(exp {flp2/ 7 ltt} 1)

which can be verified by an argument and analysis similar to that of Cannon and
Hill 4, p. 18]. Turning to zi(x, t) which is the second series in (3.10), we see that

o//2j+l 1 "iHi [(2J q- 1)0 k] t(ij+ l,z2(0, K-1KzllVxl tc (j + 1)" [(2j + l)- k]j--
(3.12)

,K7 ag2llvl p-lt-e
1 [(2j + 1)0 k]

j=o(J + 1)(p2c7 [(2j + 1)- k]

Hence,
-1 b at t/} 1 Z2(0 t)caK[ 1K21 v lit /(exp {cz#2c7 <

-lt=- e}-l)-< fl 1KIK 1Kel}Vx[[] t(exp {]AiK7
(3.13)

since

(3.14) _< (2j + 1) k
</3

(2j + )_ k

for k 0,..., j- 1. Combining the respective upper estimates of the zi(0, t),
1, 2, we obtain an upper estimate for z(0, t) which is

z(0, t) =< [clK7 + fl-11K71K2 Ilvxll
(3.15)

(exp {fl#271t} 1), 0 O.
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Let Yo be the solution of

(3.16)

and let

exp{y}- 1 =2y

(3.17) Tu (YoKlfl- lA- 2) 1/ll.

From the convexity of exp {y} 1, it follows that for 0 =< =< 0 =< Tu,
t.(3.18) z(0, t) <= 2flpEK-( lta + 2pK-( ’K211Vxll

In order to apply Lemma 2, we must have z(0, t) <= 2t". This is accomplished by
selecting/ > 0 such that

b < 2t.2tip2K - Ita + 2#K - K2 Vx

Fort=< 1, set

2X/2flK )-,(3.19) # XK(2K211vII +
where this value for/z was derived from the best possible choice of/ > 0. From
Lemma 2, we see that

(3.20) s(t) > t
for 0 __< =< 0 __< min (1, T, To, (aA-x)x/). We can now estimate lu(sb(t), t)] via
the maximum principle by considering the function

Y(x, t) 2A(1 exp {- llbllo,o(X sb(O))} ub(x, ),
(3.21) llbllt0,0

0 <= X <__ s(t), 0 < <__ O.

Observe that

(3.22)

and that

L Y <= O, 0 < x < s(t),

Y(x,O)_> O, O <_ x < b,

y(sb(t), t)= O, 0 < <= O,

O<t<_O,

Y(O,t) 2A{1 exp {--ll]bll(O,olSb(t)} f(t)
(3.23)

/ b (0,0]

2A:1>_ --{1 exp {_/;1 ,b[ (O,OPt}} At >_ 0
l 11o,0

provided that 0 min (1, Tu, To, (1A- 1)x/)and

xxlog2
 3.24) 0 z

Remark. Note that the limitation on 0 involves ]]Jllo,01 as explicitly shown in
b(3.24) and implicitly contained in v in (3.17) using the definition in (3.19).

Consequently, the range of (i.e., 0) depends upon b. If for each b and all admis-
sible 0 associated with it we can derive an upper estimate of II o,0a which is
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independent of b, then (3.24), (3.17) and (3.19) will define a positive 0 over which
the b can be estimated independent of b.

Considering Yx(Sb(t), t), we see that

(3.25) lub(sb(t), t)l =< 2A/# for 0 < =< 0.

Recalling (3.1), (3.3) and (3.25) we can write

(3.26)
bllto,01 __< 2K1A/# + max (a, fl2)/- K2

[1 exp {-- 1( [b][o,o + r/)A}]-(][b[[O,O + r/).

From (3.19) we see that (3.26) can be written in the form

(3.27)

where

(3.28)

and

(3.29)

F 8K2A,;t,- + max (a, flz)K- 1K2

r/1 r/ + 4Av/K12-1fl.
Employing the argument of Lemma 2 in [11], we can state the following lemma.

LEMMA 3. /f F < 1, then

(3,30) IIllo,0 __< max --log 2

Consequently, IIb]l(o,01 is bounded uniformly with respect to b in each ad-
missible interval and thus from (3.24), (3.17) and (3.19) we see that there exists
a 0o > 0 such that (3.30) holds for each b > 0 and sufficiently small with 0 replaced
by 0o which is independent ofb. Utilizing the Ascoli-Arzela theorem, the maximum
principle, and arguments similar to those used in [4], [5], [6], [9], [10], [11],
[12], we can state the following theorem.

THEOREM 1. Under the assumptions (A), (B), (C), (D) and

8K2A2-1 q.. max (a, fl2)/- 1K2 < 1,

there exists a solution to (1.1), (1.2) and (1.3) for each T > 0 in the sense defined in

2.

4. Stability, monotone dependence and uniqueness. The results of this section
require the additional assumption that the initial data , be continuously differ-
entiable in a neighborhood of x 1. Specifically we assume that

(E) there exists a 6 > 0 such that is continuously differentiable in 1 6
<x<l.

Using the arguments, techniques and analysis of [3], [4], [6], [10], [11], [12] we
can state Theorem 2.

THEOREM 2. Let (ui, vi, si) denote the solution of the Stefan problem (1.1), (1.2)
and (1.3) for the respective data f, gi and qi, 1, 2, which satisfy the assumptions
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(A), (B), (C), (D) and (E). Then there exists a constant C which depends upon T,
Ki, a, ei, fli (i 1, 2), r/, 2, A and such that for 0 <__ <= T,

(4.1)
/ II’x ’211o,1 / II"

where the various norms used in (4.1) are the obvious modification of the definition
given in (3.4).

Proof. The proof is omitted. See [3], [4], [6], [11], [12] for the necessary
arguments and techniques. From Theorem 2 we have the following theorem.

THEOREM 3. Using the notation and assumptions of Theorem 2, if fl <- f2,
gl -<- g2, and O <= qt2, then s(t) <= SE(t for all > O.

Proof. The proof is omitted.
As a corollary of Theorem 2 and Theorem 3 we have the following theorem.
THEOREM 4. Under the assumptions (A), (B), (C), (D) and (E), on the data f,

g and , there exists at most one solution to the Stefan problem (1.1), (1.2) and (1.3).

5. Case of prescribed boundary flux. The specification of temperature at the
boundaries can be replaced by the specification of the heat flux. The existence,
uniqueness, stability and monotone dependence results hold for restrictions on
the size of the fluxes analogous to those for the temperatures stated above; i.e.,
for small data classical solutions exist, are unique, and depend continuously upon
the data. The technique involves the maximum principle and the right choice of
barrier function. The details and exact hypotheses are left to the reader.
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A GENERAL ADDITION THEOREM FOR
SPHEROIDAL WAVE FUNCTIONS*

B. J. KING AND A. L. VAN BURENt

Abstract. A general addition theorem has been obtained for the spheroidal wave functions
)St)(h, q)exp(imqg), j 2, 3, 4. This theorem gives the expansion of a spheroidal waveml

function with reference to one coordinate frame in terms of spheroidal wave functions with reference
to a second coordinate frame with arbitrary relative position and orientation. The expressions are

applicable whether the two spheroidal coordinate frames are both prolate, both oblate, or one prolate
and one oblate.

Introduction. The Helmholtz scalar wave equation

(1) (V + k) 0

is separable in both prolate and oblate spheroidal coordinates , r/, (p. Thus,
solutions to boundary value problems in radiation and scattering from spheroid-
shaped objects can be constructed from the eigenfunctions Ol(h; ,r/,tp)

(J) is the spheroidal radial wave function ofR(J)thmt )s(mll)(h, rl) exp (imp) Here
the jth kind, j 1, 3, 4, S is the spheroidal angle wave function of the first kind,
and h is equal to kd/2, where d is the interfocal distance of the elliptical cross
section of the spheroid, and k is the wave number. The radial functions R and

R are given by R + iR and R)- iRtm2), respectively, where R and R
are the two independent solutions to the separated ordinary differential equation
in .

The spheroidal wave functions ), O(m3 and ) play the same role in de-
scribing spheroidal waves as the spherical wave functions jl(kr)P(cos O) exp (imq)),
hl)(kr)P’(cos O) exp (imq)), and hlZ)(kr)P’(cos O) exp (imp), respectively, do in
describing spherical waves. Therefore, standing spheroidal waves, outgoing
spheroidal waves, and incoming spheroidal waves are represented by ), l
and q), respectively.

When a single spheroidal surface is involved in the radiation and scattering
process, every contribution to the resultant field can be expressed as a series of
spheroidal wave functions referenced to the coordinate frame in which the spheroid
is a natural surface. The unknown expansion coefficients can then be obtained by
application of the boundary conditions on the spheroid. When two or more
spheroidal surfaces are involved, the resultant field includes contributions from
each spheroid. The contributions from a given spheroid are expressed as a series
of spheroidal wave functions with reference to the coordinate frame in which
that spheroid is a natural surface. In order to apply the boundary conditions in
this case, one must be able to express spheroidal wave functions with reference
to one coordinate frame in terms of spheroidal wave functions with reference to
a second coordinate frame. Analogous transformations or addition theorems are

* Received by the editors September 21, 1971, and in revised form February 3, 1972.
]" Naval Research Laboratory, Washington, D.C. 20390.
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well known for both cylindrical wave functions [17] and spherical wave functions
[4]. Meixner l-9] develops an addition theorem for spheroidal wave functions for
the limited case where the two spheroids overlap and share a common axis of
symmetry. In this paper an addition theorem is developed for the spheroidal
wave functions t), t and )for two spheroidal coordinate frames with com-
pletely arbitrary relative positions and orientations. The addition theorem is also
valid for q/m2), although these wave functions do not correspond to spheroidal
waves and therefore are not normally used. The expressions are applicable
whether the two spheroidal coordinate frames are both prolate, both oblate, or
one prolate and one oblate.

A brief introduction to spheroidal wave functions is given in 1. The develop-
ment of the addition theorem follows in 2. The relation between coefficients
appearing in the expansions developed in this report and both the Wigner 3-j
symbols 18] and the Clebsch-Gordon coefficients [2] is described in the Appendix.

r/= const.

const.

FIG. 1. The prolate spheroidal coordinate system
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1. Spheroidal geometry and wave functions. The prolate spheroidal co-
ordinates , r/, q9 are related to rectangular coordinates by the transformation

(2)

x (d/2)(1 2)1/2(2 1)/2 cos

y (d/2)(1 ]2)1/2(2 1)1/2 sin

z (d/2)q,

where -l__<r/=< 1, 1 =< < oe, 0<_q9 <2r, and where d is the interfocal
distance. This geometry is shown in Fig. 1. The corresponding transformation for
the oblate spheroidal coordinates is

(3)

x (d/2)(1- r/2)/2(2 + 1) 1/2 cos q,

y (d/2)(1 r/2)/2(2 + 1) 1/2 sin

z (d/2)rl,

where now -1 _< r/=< 1, 0 __< < oe, 0 __< q9 < 2ft. The oblate geometry is shown
in Fig. 2. The oblate spheroidal coordinate system can be obtained from the
prolate spheroidal coordinate system by use ofthe interchange i and d id.
Expressions developed for prolate spheroidal geometry can be converted into
analogous expressions for oblate spheroidal geometry by use of the same inter-
change. Consequently, although the following discussion of spheroidal wave
functions is restricted to the prolate system, the corresponding oblate expressions
are also valid.

The spheroidal angle wave function of the first kind can be expanded in
terms of the corresponding spherical functions"

(4) S)(h,r/)= ’ d.(hlml)P,+.(rl)
n=O,1

where the P,+,(r/) are associated Legendre functions of the first kind, and where
the prime indicates that n--0,2,4,.., if l-m is even, and n 1, 3, 5,-.. if

m is odd. A recursion relation for the expansion coefficients d,,(h[ml) is obtained
by substitution of this expression into the separated ordinary differential equation
for S)(h, rl) and by use of known recursion relations for P’2(rl)"

(2re+n+ 2)(2re+n+ 1) hZd,,+
(2m + 2n + 3)(2m + 2n + 5) 2

(5) + [(m + n)(m + n + 1)- Aml(h +
2(m + n)(m + n + 1)- 2m2 1

(2m + 2n + 3)(2m + 2n- 1)

+
n(n- 1) h2dn_2 O.

(2m + 2n- 3)(2m + 2n 1)

hZ]dn

Here A,,(h) is one of the two separation constants. The other separation constant
is m, required to be an integer for single-valuedness and chosen, without loss of
generality, to be nonnegative. For fixed rn and h, the allowable values for Am(h)
are ordered numerically in an ascending sequence and labeled with the integers

m, m + 1, etc. Unnormalized values for d.(hlml) are obtained by use of
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r/= const.

/2

const.

0

FIG. 2. The oblate spheroidal coordinate system

the recursion relation and the boundary condition

(6) (d,+ z/d,) O.

The normalization of d.(hlml is determined by imposing restrictions on the
behavior of St)(h, r/). For example, Meixner 9] requires that

(7) [S,)(h, r/)] z dr/= 2(/+ m)!/[(21 + 1)(/- m)!],
-1

while Flammer [3] requires that

Sl)(h, O) P’(O), m even,
(8)

[dSl)(h, r/)/dr/],= o [dP(r/)/dr/], o, m odd.
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Because of this arbitrariness, all subsequent equations will be written in a form
that is independent of the normalization of the spheroidal angle wave functions,
i.e., the equations will be valid for any d,(hlml which satisfy (5) and (6).

The spheroidal radial wave functions are also expanded in terms of the
corresponding spherical functions:

Xml"’,l(J)[la ) {[(2 1)l2]m/21Mmt} , i" +m--ld,,(h[ml
(9) ,=0,1

[(n + 2m)[/n .j-.-,lqaJ)+ m(h), j 1, 2, 3, 4,
where

(lO) M,.t ’ d.(hlml)(n + 2m)!/n!,
n=0,1

and where the "’nCb(J)+ m(h are the spherical Bessel functions of the first and second
kind and the Hankel functions of the first and second kind when j 1, 2, 3 and 4,
respectively. Since Rl)(h,) - as 1 in prolate geometry, the following
discussion will be limited to > 1 for prolate geometry when j 4: 1. Extensive
tables of both prolate and oblate spheroidal radial wave functions and their first
derivatives have recently been published [5], [6]. The FORTRAN computer programs
used to generate these tables and a FORTRAN computer program used to calculate
both prolate and oblate spheroidal angle wave functions and their first and
second derivatives are described in [7], [16] and [8]. The availability of the tables
and computer programs should greatly increase the usage of spheroidal wave
functions.

2. A general addition theorem. Consider two rectangular coordinate
systems A and A2 with completely arbitrary relative positions and orientations,
as shown in Fig. 3. The corresponding spheroidal coordinates are given by (2)
or (3). The relative positions of A and A2 are defined by the vector r 12 extending
from the origin 02 to the origin O1. The relative orientations are defined by the
three Eulerian rotations with angles 0, / and which when applied to A1 will
make this system parallel to A2. An arbitrary point P has spheroidal coordinates
(1, r/l, q91) with respect to A1 and (2, q2, q2) with respect to A2.

The expansion of a spheroidal wave function in A2 in terms of spheroidal
wave functions in A will be obtained using the following four-step procedure.
First, a spheroidal wave function in A2 will be expanded in terms of spherical
wave functions in A2. Second, the spherical wave functions in A2 will be expanded
in terms of spherical wave functions relative to a rectangular coordinate frame A 3

with origin 0 and with coordinate axes parallel to those ofA2. Third, the spherical
wave functions in A 3 will be expanded in terms of spherical wave functions in A 1.

Finally, the spherical wave functions in A will be expanded in terms of spheroidal
wave functions in A 1.

The expansion of a spheroidal wave function in A2 in terms of spherical wave
functions in A2 is given by

q2 q92) O(J)tb, 2)Sl)(h2 ?]2) exp (imqg2)ml’l2 2 "’ml,2

(11) ’ ld,_,,(h21ml)J)(krz)fm, (oz qg z),
’=m,m+

j= 1,2,3,4, m>=0,
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r12

FIG. 3. Two coordinate frames with arbitrary relative positions and orientations

where the prime indicates that the sum includes terms for r m, m + 2, m + 4,
if l- m is even and r m + 1, m + 3, m + 5,... if l- m is odd. The angular
dependence ofthe spherical wave functions is given by the unnormalized spherical
harmonics fm(02, q2) P’(COS 02) exp (imqg2). Here (r2,02, q92) are the spherical
coordinates of the point P with respect to A2 The spheroidal wave function and
its corresponding expansion coefficients dr_m(hzlml may be either prolate or
oblate. This formula can be obtained as a special case of the addition theorem
given by Meixner [9]. Flammer [-3] also derives this formula, except for the un-
fortunate omission of the factor , for the single case j 1, although his method
can be used to obtain the analogous expressions for j 2, 3, 4.

Spherical wave functions in A 2 can be expanded in terms of spherical wave
functions in A 3 by use of the sphericaI addition theorem first derived by Friedman
and Russek [4]. An alternative formulation of the expansion coefficients was ob-
tained by New [10] using a procedure outlined by Sack [14]. This latter form will
be used below because it requires considerably less numerical evaluation. Let
(r3, 03, 993) be the spherical coordinates of the point P with respect to A3. Let
(r12,012, q)12) be the spherical coordinates of the origin O1 with respect to A2.

Then

(12)

j= 1,2,3,4, m>=0,
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where

a(s, t, r, u, m) is+t-r (2S + 1)(2t + 1)(S U)!(t m + u)!(r + m)![(s__+, t_ _+. _r)/2_]
[.[ t- s)/2] ![(r + s- t)/2] ![(s + t-- r)/2] !(s + + r + 1)!J

s+t--r
(-1)’

(s+t-r)/2+w (t+r-s)/2+rn-u+wmin

s+r--t

(s + r-- t)/2-- u + w

with

(14) ) a.!/[b !(a b) !]

(15) 2wmin=max(r-s-t,s-r- t-2m+2u, t-s-r+2u),

(16) 2wmax=min(s+t-r,r+t-s-2m+2u, r+s-t+2u),

and where

(17)

(r<, O<, O<)
(r12,012,12),

03, (03),
(r>, 0>, cp>)

(r12,012’

ifr < r12,

if r3 > r2,

ifr3 > 1"12,

if r3 < rl2.

The prime on the summation over indicates that is incremented in steps of two.
Terms involving negative values for u or m u can be evaluated with the use of
the definition

(18) P;m(x) (-1)"P(x)(n m)!/(n + m)!.

The relation between the coefficients a(s, t, r, u, m) and both the Wigner 3-j symbols
18] and the Clebsch-Gordon coefficients [2] is discussed in the Appendix.

Spherical wave functions in A 3 can be expanded in terms of spherical wave
functions in A by use of a rotation formula. Since A3 and A2 are parallel, , fl
and ? are the angles for the Eulerian rotations which transform A into A3. Let
(r, 0, q) be the spherical coordinates of the point P with respect to A1. The
radial dependence of the spherical wave functions is unaffected by a rotation, i.e.,
r r3. The required transformation for the angular dependence is given by
Rose [13]:

(19) ’vP(03, q)3) Nvp i ’qv(01 q)l)O/p(, fl’ ]))/Nqv

where

(20) N’ {(2v + 1)(v- rn)!/[4n(v + m)!]} 1/2
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and

(21) Dp(a, fl, ) exp (-iqa)dp(fl) exp (-ip7).

The matrix elements dqp(fl) are defined by

(22) [(v_p)!(v+q)ill/2d;.(fl) + p)!(v_ q)
[cos (fl/2)] zv+ P-q[- sin (fl/2)]q-

2F,[q v,-p v; q p + 1; -tan2 (fl/2)]/(q p)!, q > p,

where 2Fl(a, b; c; z) is the hypergeometric function. Values for q < p are obtained
from the relation

(23) dp(fl) (- 1)q- Pdq(fl).

The transformation is completed by expanding the spherical wave functions
in A1 in terms of spheroidal wave functions in A. This can be accomplished
using the formula

(24)
(J)(kr,)t)(O,, q,) [C(v, q)/(2v + 1)] ’ (iv-"/B,,.)

n=q,q +

d._,,(hllql n)R,,.(hxJ) )S,,.(h) rl ) exp (iqq), j= 1,2,3,4,

where

(25) [ (v + q)!/(v- q)!, q_> O,
C(v, q)

(26) (- 1)q, q < O,

(27) B,q,n ’ d(h,]lqln)(l + 21ql)!/{l![2(1 + Iql) + 1]},
/=0,1

and where the sum includes terms for n Iql, Iql %- 2,... if v -Iql is even and
n--Iql %- 1,1ql %- 3,-.. if v- Iql is odd. This formula is a special case of the
addition theorem given by Meixner [9]. Flammer [3] also derives this formula for
the case j 1. Note that the interfocal length d 2h/k for the spheroidal co-
ordinate frame in A1 is not necessarily equal to the interfocal length d2 2h2/k
for the spheroidal coordinate frame in A2. The spheroidal wave functions appear-
ing in (24) and their corresponding expansion coefficients dv_,q,(h[Iqln) may be
either prolate or oblate.

The general addition theorem for spheroidal functions is obtained by com-
bining the four transformations given by (11), (12), (19) and (24).

r+s

c’ml,"2’lt(J)tla ,’2 q2, (’/02) 2’ ir-ldr- (hzlml) ’r=m,m+l s=0 t=r-s
>_m--u

a(s, t, r, u, m)

((28) cont. following page)
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(28)

[NT’-"/(2t + 1)]’)(kr,2)(012, (0,2) [C(t, q)Otq,m_,(a, fl, y)/Nq]

’ [it-"dt_,q,(h,lqln)/B,q, ) (,).]R,q,n(h. )S,q,n(hx . ) exp (iq ).
n=q,q + r > r12,

or

[N/(2s + 1)]OlJ)(kr12)f7’-"(O,2, q012) [C(s, q)Dq,(a, fl, y)/Nq]

n=q,q +
iS-"ds_,,(h lll ql n)/B,,,]R q,),(h 1)S q,).(h r ,) exp (iqq) ,),

l*l ’12,

j= 1,2,3,4, m__>0,

where rl d1(2 + r/ 1)’/2/2 or d1(2 r/ + 1)1/2/2 depending on whether
the spheroidal coordinates (1, r/,, q,) are prolate or oblate, respectively. Here
(1, r/,, q01) are the spheroidal coordinates of the point P with respect to A,,
(2, r/2, q02) are the spheroidal coordinates of the point P with respect to A2 and
(r12,012, qo,2) are the spherical coordinates of the origin O, with respect to A2.

Note that in order to use (28) it may be necessary to obtain the spheroidal co-
ordinates ( 1, r/1, 01 in A, corresponding 0 the spheroidal coordinates (2, r/2, qo2
in A2. This can be accomplished by transforming (2, r/2, q2) to rectangular co-
ordinates in A2, performing the required translation and rotation in rectangular
coordinates to obtain the corresponding rectangular coordinates in A,, and then
transforming back to spheroidal coordinates to obtain (,, r/l, ql).

Equation (28) is valid only for nonnegative values of m. However, expansions
in spheroidal wave functions usually contain terms for negative values of m.
Consider the spheroidal wave functions "’mlV’,OJ)t’ )Sl)(h, rl exp (imq)), rn < 0. Since
the spheroidal radial and angle wave functions for m negative and those for m
positive are not linearly independent but are related through the definitions

(29) S)ml(h, r/) (- 1)m(/-- m)!Sl)(h, rl)/(l + m)!,

(30) o( t, )= ot,
mll,l, "’m/," ),

spheroidal wave functions with m negative can be replaced with the equally
suitable wave functions RtJ)thmlt, )Sl)(h, rl) exp (- imq)), m > 0. An addition theorem
for these functions can be obtained by taking the complex conjugate of (28).
Note that Rl)(h, ), R)(h, )and (I)13)(kr), l’)(kr)are complex conjugate pairs,
and that the complex conjugate of ftT’(0, q) is PT’(cos 0) exp (- imq)).

When the two coordinate frames A, and Az are parallel, a fl /= 0, and
the rotation given by (19) becomes the identity transformation. In this case the
addition theorem is simplified by setting

(31) Otq,m_u(O O, O) (q,m--u
and

(32) D.(0, 0, 0) 6q.,
where 6. is the Kronecker delta.
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When the two coordinate frames A and A 2 are parallel and share a common
z-axis, the axis of symmetry for spheroids, such that 012 0 or n, the addition
theorem reduces to the form,

v’m,t"l’(J)tl’’2"2, r/2 (4)2)= Z’ ir-ld- (h2lm/)Z
r=m,m+ s=0

(33)

where

r+s

t-lr--sI
t>_m

or

r+s

t=lr--$1

{a(s,t,r, O, m)(t + m)!/[(t m)!(2t + 1)])01) (krE)P(cosO12)

n=m,m+
it-n[dr-m(halmn)/Bm.]@)n(hl ;1,//1, (491), rl > El2,

{a(s,t,r,m,m)(s + m)!/[(s- m)!(2s + 1)]}lJ)(krE)P(cosO2)

’ is-"[ds-m(hllmn)/Bm,]/(mX),(hl," x, fix, (Pl), rl < rx2,
n=m,m+

j= 1,2,3,4, m>=0,

(34) Po(cos 012 1, if 012 0,

(35) Pv(COS 012 (-- 1), if 012 .
For the special case where m 0, the coefficient a(s, t, r, 0, 0) can be evaluated
from a single term, as shown in the Appendix.

Appendix. The coefficients a(s, t, r, u, m) defined in (13) can be related to
the Wigner 3-j symbols [18] and the Clebsch-Gordon coefficients [2]. Equation
(13) can be written as

a(s, t, r, u, m) (-1)+m+Ar(2s + 1)(2t + 1)(s- u)!(t- m + u)!(r + m)!A!](2A + 1)!2 !21L J(A.1)
g
m -u u-m

where

(A.2)

and

U
r s

m -u u-m

(_ 1)-A +w-m
nlin 2+w 21 +m-u+w

A=(r + s + t)/2, 21 =A-s,
(A.3)

2=A-r, 2=A-t.
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Sack [14] relates the coefficients a(s, t, r, u, m) to the Wigner 3-j symbols by use of
the expression

U J1 J2 J3)___ (1 J2 J3
ml m2 m3 m2 m3

(A.4)
(Jl + J2 + J3 + 1)!(Jl + J2 --J3)!(Jl + J3 J2)!(J2 + J3 Jl)!l 1/2

L -1 - ni!(Jl -F iii2 m2)!(j2 + m2)!(j3 m3)!(j3 q- m3)! J
where (Jl J2 J3

is the Wigner 3q symbol"
ml m2 m3

The relation between the Wigner 3 symbols and the Clebsch-Gordon co-
efficien is given by [18]

(A.5) (Jl J2 J3)=[(_l)jl_j2_m3/(3+l)l/2](jlj2mlm2[jlj2J3_m3),
ml m2 m3

where (jlj2mxm2ljlJ2J3 m3)is the Clebsch-Gordon coefficient.
Combining (A.1), (A.4) and (A.5) and simplifying, one obtains

a(s, t, r, u, m) (- 1)s+"(2s + 1)A!(rsm ulrstm u)/(2!21 !22!
(A.6) (r + m)!(s u)!(t m + u)!(2t + 1)(22) !(221)!(222)!.

(r m)!(s + u)!(t u + n. - iji
For the special case u rn 0, the Clebsch-Gordon coefficient (rsOO]rstO) has
been expressed as a single term by Racah [11],

(A.7)
(rs001 rstO) (- 1)’ + A(2t + 1)1/2A

[(22)!(221)!(222)!]1/2/{2!21 !2 ![(2A + 1)!]1/2}.
Thus the corresponding coefficient a(s, t, r, 0, 0) can also be expressed as a single
term,

(A.8) a(s, t, r, O, 0)=(- 1)(2s + 1)(2t + 1)(22)!(221)!(222)!(A!)2/[(2A + 1)!(2!21 !22!)2].
It is interesting to note that the Clebsch-Gordon coefficients and, con-

sequently, the coefficients a(s, t,r, u,m) are related to the generalized hyper-
geometric functions 3Fz(a, b, c d, e; 1) by the expression [12]
(jljzmlm2[jlJ2J3m3) (-- 1)j+m

[ (j3_bjl_J2),(jl.k_j2_J3),(j3_m3),(jl_ml),(2j3+l) ]1/2(J3 Jl + Jz)!(Jl + J2 + J3 + 1)!(J3 + m3)!(Jl + ml)!(J2 m2)!(J2 + m2)!
(J3 + J2 -b ml)!
(Jl J2 m)!

3F2(-J3 -k- Jl Jz J ml + 1, --J3 m3

Jl J2 m3 + 1, --J3 J2 ml 1).

Many of the properties of the coefficients a(s, t, r, u, m) can thus be obtained using
the well-known properties of the generalized hypergeometric functions [1], [15].
For example, (A.7) and therefore (A.8) can be obtained from (A.9) by the use of
Dixon’s theorem [15] to evaluate 3Fz(-j3 + Jl- Jz,Jl + 1,-J3; Jl- J2 + 1,
--J3 J2; 1).
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THE BEHAVIOR AS : 0 + OF SOLUTIONS TO eV2w (t/t3y)w
ON THE RECTANGLE 0 __< x __< 1, lyl _-< 1.

L. PAMELA COOK AND G. S. S. LUDFORD"

Abstract. The title problem is first examined in the limit of the semi-infinite strip , for
boundary data w(x, 1) f(x), w(x, 1) g(x), w(0, y) h(y). Here f, g, h are infinitely differentiable
except at the corners where one-sided derivatives of all orders exist. Previous work on the infinite
strip covers cases where h 0 so that (by superposition) the present discussion may be narrowed to
cases wheref g 0" for these the solution is asymptotically zero for x __> Xo > 0. Near x 0 four
regions are distinguished" the parabolic boundary layer y __< Yl < 1, excluding e-1/2x <= X0, + y

=< Y- 1, which is determined by the singular region e- 1(1 + y) __< Y,o" and the two parts of the hyper-
bolic boundary layer e-l(1 y) <__ Yo, namely F,-1/2X X > 0and the transition zone e-ix __< x,,
both of which are determined by the parabolic layer. By means of Fourier sine transforms the method
of matched asymptotic expansions is proved valid to all orders in in each of the regions, which can
be extended to overlap. Other assumptions about h are also considered. Finally the corresponding
results for the rectangle are shown to follow from the superposition of two semi-infinite strip problems.

1. Introduction. We propose to examine the asymptotic properties as e - 0 +

of the solution to the equation

(la) 3(t2/tX2 -k- t2/y2)W- (/ty)W-- 0

on the semi-infinite strip lY] =< 1, x >= 0, under the boundary conditions

(1 b) W(x, 1) g(x), W(x, 1) f(x), W(O, y) h(y).

Our goal is to prove that the method of matched asymptotic expansions does
give the correct approximation to W to all orders in e.

The method of attack is similar to and an extension of that used in our
previous paper (Cook and Ludford [2]). In 10 we shall show how to extend these
results to cover the asymptotics of the equation (la) in a rectangular region, the
latter being of greater physical interest than either the infinite or semi-infinite
strip.

Before outlining the method ofproof, we simplify the problem in the following
manner. The solution W, under the boundary conditions (lb), is the sum of the
solution w satisfying the boundary conditions

(lc) w(x, + ) o,
(ld) w(0, y) h(y),

and the solution v satisfying the boundary conditions

v(x, 1) g(x), v(x, 1) f(x), v(O, y) O.

Now consider u(x, y) which solves (la) on the infinite strip - < x < , with
the boundary conditions

u(x, 1) G(x), u(x, 1) F(x),
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where G, F are the odd extensions of g, f respectively. Clearly u(x, y) is an odd
function of x, so that u(0, y) 0 and v(x, y) u(x, y) for x _>_ 0.

The proof that the method of matched asymptotic expansions is valid for u
is found in Cook and Ludford [2]. The results depend on the differentiability
properties of G and F. For example, if right and left derivatives of G, F exist at
zero to order k0, and if G(k), F(k) are integrable for k =< k0 + 1, G and F being
infinitely differentiable except at zero, then the results of the method of matched
asymptotic expansions are valid to order e where rn =< 2[(k0 + 1)/4].

Since v is covered by the u of our previous paper, we may concentrate on w
here. As in [2] the proof depends on having an explicit representation of the exact
solution in terms of the Green’s function, the latter consisting of the fundamental
solution and its images in the (extended) boundaries. It can be seen immediately
that, of the infinity of such terms, all but the first four can be ignored because they
are a.e.s. (asymptotically exponentially small) throughout the strip. However,
manipulating the remaining terms is difficult, and instead we consider their
Fourier sine transforms. The latter are easily managed by expanding in Taylor
series in e. The basic difficulty is to prove that term-by-term inversion of the ex-
pansions in the transform plane does produce asymptotic expansions whose
terms are those obtained by the method of matched asymptotic expansions.

2. The method of matched asymptotic expansions. As in our previous paper
[2] we shall assume the reader is familiar with this method;see, for example,

h(y)

-1

,Y g(x) :o

f(x)=O

FG.

Chapter 4 of Cole’s book [1] where its application to problems such as ours is
considered in some detail. In particular Cole discusses the locations oftheboundary
layers and their orders ofmagnitude, as well as the physical situations in which they
occur (cf. also the Introduction of [2]). In this section we are solely concerned with
collecting the results obtained by the method in a form that is suitable for our
later proofs, without reproducing Cole’s arguments for each step.

Figure 1 shows schematically the various regions of validity of the expansions
referred to in the present section.
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Assuming an expansion

(2) w ekwlk(X, y)
k=0

of the solution to the boundary value problem (la), (lc), (ld), we obtain the
recurrence relation

(3) (C/cy)Wk (C2/CX2 + t?2/@2)Wk_l

for the coefficient functions, by direct substitution. We must therefore take

w(x, y) 0

in order to satisfy the boundary conditions (lc). It is clear that the expansion can-
not be uniformly valid since it does not satisfy the boundary condition at x 0.

Therefore, we consider the substitution

(4) X e- 1/2X

in order to make et2/OX2 2/X2 comparable to t?/@. Then with an expansion

(5) w ekWk’_ I(X, y),
k=0

we obtain the recurrence relation

(6a) (c2/t?X2 t?/t?y)Wk(X, y) (O2/t?y2)WIk- I(X,.Y).,

for the coefficient functions. The appropriate boundary conditions for this in-
homogeneous parabolic equation are

(6b) wntX-1)=O,k, WI(o, Y)= {ho(Y fork=fork > 0.0’
Such an expansion cannot be valid near X 0, y 1, as is easily seen for the
case h 1: The functions

w erfc [X(y + 1)-1/2/23,
(7) w Xa/[Srrl/Z(y + 1)5/2] exp [- XZ(y + 1)- 1/4]
satisfy all conditions, and wI becomes unbounded in a neighborhood of X 0,
y 1. In fact, it is not even uniquely determined since, if singularities are ad-
mitted at X 0, y 1, certain solutions of the homogeneous diffusion equation
may be added.

Such difficulties could have been anticipated since we are attempting to
represent an elliptic singularity by means of solutions of parabolic equations. To
consider the singular region we introduce the stretched coordinates

(8) X, e-1/2X, y, e-l(y + 1)

in order to make all derivatives in (la) of comparable order. With an expansion

(9) w ekWkI’(x,, y,),
k=O



164 L. PAMELA COOK AND G. S. S. LUDFORD

we then see that the coefficient functions must satisfy the full elliptic equation

(10a) (c2/X,2 "k- 2/ty2, /ty,)WkI* 0

and the boundary conditions

(10b) Wk’*(X,, 0) 0, WII*’0k, Y,) htk)( 1)yk,/k !.

The w* are unique if in addition we require that they do not grow exponentially
as y, - , a condition which is necessary in order to match with (5). This match-
ing then uniquely determines the coefficients of the expansion (5). More precisely,

2 -- c) and we find that only fullX,/y, (= xZ/(y + 1)) is fixed as e 0 (though y,
powers of e are involved. Consequently, no half powers of e are required in region
II, as was anticipated in writing the expansion (5). In particular, we find that the
homogeneous solution 3X/[4zl/Z(y + 1) 7/2] exp [- XZ(y + 1)- 1/4] must be added
to the w in (7).

Finally we consider the boundary layer at y 1 which is needed to correct
the II-expansion for the boundary condition at y 1. With X and the stretched
variable

(11) Y- g-l(1 y)

(so that ,tZ/Oy2 e-lc32/y2 is comparable to c/y e-l/Oy), we assume an
expansion

(12) w 2 ekwIkll(x’ Y)"
k=O

The recurrence relation for the coefficient functions is then

(13a) (t32/c3 rE + 3/c y)Wlkn _(2/X2)Wk_In
and the boundary condition

(13b) wII(x, 0) 0.

At each stage an integration constant is obtained, and is uniquely determined by
matching with the expansion (5). It is now clear that the boundary layer must
occur at y l, and not at y -1, in order to obtain exponentially decreasing
functions for the matching.

Once again this expansion cannot be uniformly valid in the boundary layer,
as can be seen fromw C01 exp Y)] where Co(X) is obtained by matching
in particular C0(0) h(1). This violates the boundary condition on the y-axis for
a distance e down from y 1.

Finally, to consider the top corner region we introduce

(14) x, e- 1/2X

so as to make gt2/tX2 t2/tx2, comparable to 2/tY2 + t/tY. Setting

(15) w X ek/Zwkn*(X,, Y),
k=O

the recurrence relation for the coefficient functions is

(16a) (c2/x2, + c2/c y2 + c/ Y)Wkn* O,
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and the boundary conditions are

{(kI(1)(--Y)k/k’(16b) WII*(X,, O) O, WllI*/Ok Y)
for k even,

for k odd.

Such Dirichlet problems have unique solutions under the additional require-
2 + y2)1/2ment of exponential decay as (x, with x, q: O. Without such a

requirement there are solutions with algebraic growth, but these are precisely
what are needed to match the expansion in II. We may think of the solution in II
running through the region III,, which reacts to the violation of its boundary
conditions with a correction that dies out exponentially away from Y O. Note
that half powers of are induced in the III,-expansion, since the II-expansion (5)
will involve powers of 1/2 after the substitution of (11) and (14). Such terms did
not appear in II,.

These then are the results obtained by the method of matched asymptotic
expansions. We shall now show them to be valid approximations to order m,
where m depends on the differentiability of h. However, to begin with we assume
that

(17a) h is infinitely differentiable on (- 1, 1),

(17b) h(k)( -1 +0) and h(k)(+l-0) exist for allk,

for which the method as given above can be carried on indefinitely. The regions
of validity for the expansions are (see Fig. 2)

I" Xo <X, -1 <=y<= 1;
II’ 0< X, -1 =<y =<yl < excluding

II," 0=< X,, 0<y, <y, oo;
III" X <= X, 0 =< Y =<

III," O < x, < x,,, O< Y <= Y.

O=<X__<Xo,
Oy+ Y-1;

FIG. 2a
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FIG. 2b

Y

,

FIG. 2c

FIG. 2d
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Here Xo, Yl, Xo, Y-1, Y,o, X1, Yoo, X. are first assumed to be fixed positive
numbers, but it is later shown that the regions of validity can be extended to

X0 0(1/2-a), Yl 0(1-5), Xo 0(F’1/4-5), Y-1 0(F’1/2-5),

Y, O(g,- +5), Y.) O(E- +5), X 0(F,1/2-5), x:oo O(g,- 1/2 +5).
Here 6 > 0 is arbitrarily small.

The regions II, and III, at the bottom and top corners both arise from dis-
continuities in the boundary data, but otherwise they are quite different" the
expansion in II is determined by that in II, whereas the opposite is true of II and
III,. We may say that the parabolic layer on x 0 is completely determined by
its singular origin x 0, y -l, and in turn determines the top singularity
x 0, y 1. That the structures of II, and III, are the same as in [2] can be seen
from dividing the solution into three parts. The first is an infinitely smooth solution
satisfying the data on x 0, but not on y 1 where it is in general nonzero.
The second part nullifies the first on y 1 and is zero elsewhere on the bound-
ary, while the third does the same for y + 1. The first part does not require the
regions II, and III, (nor for that matter III). As was shown in the Introduction,
the other two are covered by our previous paper [2], albeit extended to data
depending on e. They therefore involve regions II, and III,, respectively, of the
type found there.

We have been unable to exhibit these three parts explicitly, but at least the
asymptotic existence of the third is clear from our analysis. As indicated above,
the III,-expansion has two components" the II-expansion written in the x,,
Y-variables, corresponding to the sum of the first two parts; and a correction for
the boundary conditions on y 1, corresponding to the third part.

3. The exact solution. Taking the Fourier sine transform

(-2) (.)sin x dx

of the differential equation (la), we find

(-e + ea/y /a),) eh(y),

where the boundary condition (ld) has been incorporated. The boundary con-
ditions (lc) then give

/l

(, y) e N(y, y’ , e)h(y’) dy’,
-1

where the Green’s function

N 2 exp [(y- y’)/Ze]/{(1 + 4e22) 1/z sinh [(1 + 4ezz)1/z/ze]}
(18) fsinh [(1 + 4ezz)1/Z(y + 1)/2e]sinh[(1 + 4ezz)1/Z(y’- 1)/2e] for y < y’,

sinh [(1 + 4ezz)1/Z(y’ + 1)/2el sinh [(1 + 4ezz)/Z(y- 1)/2el for y’< y

is actually the transform of that for the original problem. The exact solution of
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(la) under the boundary conditions (lc), (ld) is then

w(x, y) _2 ff(, y) sin x dx.

We are not concerned with a.e.s, contributions to the solution, so that terms
which are uniformly a.e.s, for on the real axis may be neglected. Thus, since
exp [-(1 + 4)//e] is uniformly a.e.s., we may write

5 (1 + 422) 1/2 exp [(y y’)/2e]{exp [--(1 + 4;22)1/2(y + y’ + 2)/2e]

(18’a) exp [-(1 + 4ezz)l/zl)z- y’l/2e] + exp [(1 + 4ezz)l/Z(y + y’- 2)/2e]

exp [(1 + 4ezz)/Z(ly Y’I 4)/2e]},
as will be needed in regions III and III,. But c5 may be further simplified for y
away from 1, so that

(1 + 4e22) 1/2 exp [(y y’)/Ze]{exp [-(1 + 422) 1/2 (y + y’ + 2)/2e]
(18’b)

exp [-(1 + 4e22)1/2 ly- y’l/2e]}

will be used in regions II and II,.
We could also write the exact solution in terms of the fundamental solution

of equation (la) and its images in y 1 together with their images in x 0.
The same result is obtained by expanding the denominator of a3 in (18), to obtain
the terms

(1 + 4;22)- 1/2 exp [(y y’)/2e] {exp [(1 + 4;22)1/2(y 4_ y, 2 4r)/2e]

exp [.-(1 + 4e22)/2(ly Y’I + 4r)/Ze]

+ exp [-(1 + 4ezz)/Z(y + y’ + 2 4r)/2e]

exp [(1 .+ 4ezz)/Z(ly y’] 4 4r)/Ze]}
with r 0, 1, 2,.... The inverse sine transforms of these are the Bessel functions
obtained by the imaging process above. To uniformly a.e.s, terms then the solution
could also be written

I f h(y’) exp [(y y’)/2e] (/x)
-1

{Ko[(X2 + (y -y’)2)/2/2] K0[(x2 + (y + y’ + 2)2)/2/2e]

Ko[(X2 + (y + y’- 2)2)1/2/2e] + Ko[(X2 + (y’- y + 4)2/2e]} dy’.

4. The core region I. Consider this last representation of the exact solution in
terms of Bessel functions. In the core region we have

w(x, ) o
to a.e.s, terms since x => xo > 0.

Extension of the core region inward is limited by the behavior of

exp {[y y’-(x2 + (y y’)2)/z]/2e}
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which arises from the first Bessel function when its argument is large. With

XO /3t

the argument in the exponential is negative and at least 0(/32"- 1) for ]y Y’I =< 2
and x __> Xo. Hence w(x, y) remains a.e.s, when

(19) / < 1/2.

The core-region expansion is valid for 1 =< y __< 1, i.e., even into the bound-
ary layer region for x restricted as above. This is to be expected since the zero
expansion does in fact agree with the given boundary condition at y 1. In other
words, data at x 0 has no asymptotic influence away from x 0.

5. The side layer II. As suggested by the limitation (19) we introduce the
stretched variable (4) in order to describe the solution near x 0. In terms of the
appropriate transform variable

(20) w(X, y;e) _2 sin r/Xk(r/, y’e), c3r/,

where

(20’)
# r/(1 + 48r/2)-1/2 h(y’) exp [(y y’)/2]

-1

{exp [-(1 + 4er12)l/Z(y + y’ + 2)/2e

exp [-(1 + 4er/z)1/Zly y’l/2e]} dy’.

On expanding in a Taylor series in e we obtain

rn-1

(21)
k=0

it is not necessary to write down , and explicitly. We now show that under
inversion" (i) the coefficient functions wItX y) satisfy the recurrence relation (6a)
together with the boundary conditions (6b); and (ii) Rm(X, y; e) is bounded in-
dependently of e in region II. Proof of matching with the expansion in II, will
however be postponed until the next section. From now on, we shall also use
(q, y;e) to denote its asymptotic approximation (20’).

(i) It can be checked that (-q2 + 82/y2 8/8y)#(q, y;e) -qh(y). Sub-
stituting the expansion (21) and equating coefficients of corresponding powers of
yields

(2 + /y)I {qh(y) for k 0,

2/y2I_ for k > 0.

Since k(r/, 1) 0, we also have

v,(r/, 1) 0 for all k.

Hence, provided the vI(r/, y) are invertible, a fact that will be proved when/m is
discussed, the inverses WIg’(X, y) do satisfy the recurrence relation and boundary
conditions as desired.
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(ii) Except for a constant factor, Rm(r], y e) is the mth derivative of #(r/, y; 5)
with respect to e, evaluated at st, 0 < < 1. It is not immediately clear that the
inverse of such a derivative exists from the form (20’), since expansion of
(1 + 4er/2) 1/2 alone generates powers oft/2 multiplying terms apparently bounded
as r/ oe. In order to see that the inverse does exist we integrate (20’) by parts m
times. Noticing that terms of the form (2e)k[1 + (1 + 4r/2)1/2] -k exp {[(y + 1)
(1 (1 + 4:t/2) 1/2) 2(1 + (1 + 4eq2)/z)]/2} can be ignored since they are
uniformly a.e.s, and those of the form

(22) (2e)(1 + (1 + 4eq2)1/2)- exp [(y 1)(1 + (1 + 4eqz)1/z)/ze]
can be ignored since they are uniformly a.e.s, for y away from 1, we obtain

--, q(1 + 4er/)

{(2e)+ 1(1 + (1 + 4gr/2)1/2) -k-1 (--1 -(1 + 4gr/2)1/2)k+ l(2r/2)-k-}
I_k=o

{h)( 1)exp [-2r/2(y + 1)/(1 + (1 + 4g12)1/2) h(k)(y)}

(_ ( + 4/(: h(y’
-1

exp [-2/(y y’)/(1 + (1 + 4e)1/)] dy’-(2e)m(1 + (1 + 4e)l/a)

h(m)(y’) exp [(y y’)(1 + (1 + 4gr/2)1/2)/2] dy’- h(m)(y’)
-1

exp[-ZqZ(y + 1)/(1 +(1 +4eri)l/z)-(y’+ 1)(1 +(1 +4erlz)l/z)/Ze]dy’t].
Note immediately that the last two terms are invertible and O(e,m) in the

X, y-plane, and hence can be dropped. This can be seen by integrating by parts
once more to obtain

q(1 + 4gq2) 1/2(2e)m+ 111 + (1 + 4q2)1/2]
times terms which are bounded independently of q, y and 5. The result then follows
on setting r/, gl/Zr in the inversion integral.

Thus we need only consider the expansion of the remaining terms which,
since 2511 + (1 + 4;g/2)1/2] -1= [--1 + (1 + 4g/’/2)1/2](2/’/2) can be written as

[k/Z] k + 1
r/-1 (_2r/2)- E 2t + 1

(1 + 48r/2)
k=O t=o

{h(k)( 1) exp [-- 2r/2(y + 1)/(1 + (1 + 4er/2)1/2)] htk)(y)}
(23)

q(1 + 48qz) 1/2 E- 1 (1 + 48rlz)l/z]m(2r12) h(’)(y’)
-1

exp [- 2r/Z(y y’)/(1 + (1 + 4erl2)1/2)] dy’.

Differentiating m times with respect to e gives terms of the form

rl-l(q2)-j+m+l(1 nt- 4g,r12)t-m/2-/2[1 q-(1 + 4gr12)l/2]-21-2(y q- 1)/hta(- 1)
(24a)

exp [-2qZ(y + 1)/(1 + (1 + 4erl2)1/2)]
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and

where

y

q(q2)/(1 4- 4;q2)(1 +re+at)/2(1 + (1 -- 4eq2)’/2)’- h")(y’)(y y’)
-1

exp [-2qZ(y y’)/(1 + (1 + 4eq2)1/2)] dy’,

0<=1+01 -F 02 < m, O<=j<_m-1.

Integrating by parts + 1 times on the last term in order to absorb the powers
q2 we can replace it with terms

(24b)
q(q2)-a’(1 + 43q2) -(1+m+’)/2[1 -+- (1 + 4gq2)1/2]

(y + 1)-a+a2+lh(m+a2)(-1)exp[-2qZ(y + 1)/(1 + (1 + 4eq2)1/2)],

(24c)
q-1(1 -F 43q2) -(1 +m+’)/2[1 q- (1 + 43q2)1/2] +

{hl")(y) h(m)( 1)exp [-2q2(y + 1)/(1 + (1 + 43q2)1/2)]},

(24d)

y

q-l(1 q- 4/3q2) -(1 +m+’)/2[1 q- (1 + 43q2)1/23.1 +’ h(m+#3+l)(y,)(y y,)B3
-1

exp [-2qZ(y y’)/(1 + (1 + 4gq2)1/2)] dy’,

where 0 <_ 2 1 1, 0 < 1 + 1, 0 < 3 1. The bounding of R is now
reduced to the bounding of the inverses of (24).

The integrand in the inversion integral of(24d) can be rounded by c/(1 + Ir/13),
where c is independent of q, y and e. (The bound for q large is obtained by inte-
grating by parts once more and bounding the resulting terms.) Thus, (24d) is
invertible and the result is bounded in e. The terms in (24c) are invertible as they
stand and the inverses are bounded as X 0. (The limit must be used to define
th inverse functions at X 0 since sine inversions automatically give zero there
--this point is discussed further when we come to the coefficient functions.)

In dealing with (24a), (24b) we note that the same difficulty occurs as in the
case of the infinite strip [2], leading to the exclusion of a region near X 0,
y 1. The inversion integrals are convergent and 0(1) in e for y away from 1,
since we then obtain help from the exponentials. Although each integral is diver-
gent for y -1, we can obtain convergence for X bounded away from zero
as follows. Rewrite sin r/X as (ei"x e-i"x)/2i and, in the resulting two integrals,
bend the ends of the integration line upwards into the complex q-plane in the first
and downwards in the second. They are then convergent for all y.

Thus we see that R,,(X, y;e) is O(1) in e in region II.
WIltXThe terms k Y) may be treated similarly. Using the expansion (23) with

m k + 1 and noting that #,(r/, y) is the kth derivative with respect to e evaluated
at e 0, we find that #(r/, y) is composed of terms

(25a) q-l(qz)-j+k+,(y + 1)’ exp [_qZ(y -F 1)]h(J)( 1),

(25b) q-l(qZ)t-a,(y + 1)/-a +a2+ exp [_qZ(y + 1)]h(+ +a)(_ 1),

(25c)
y

q- (y yt)3 exp q2(y y,)]h +3 + 1)(yt) dy’,
-1
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where 0 __< < k, 0 =</ < 1, 0 __< 2 /1 1, 0 13 1, and for k 0, the
additional term

(25d) - h0).
The inversion of these terms follows easily (when we deform the contour

again for the first two) except for r/-h(y). Then the inversion integral is not
uniformly convergent, so we must first take X va 0 and let X --, 0. Thus the sine
transform forces a zero value at X 0, whereas we want the limiting value as
X ---, 0, which is in general not zero.

Extension of region II upwards is limited to y e-6 because we have
omitted terms of the form (22) from the expansion and ignored the last two terms
in (18’a) as being uniformly a.e.s. Extension outwards is unlimited since no such
limitation was required for the above bounding.

Extension of region II into the corner is limited by the inversion of (24a),
(24b) which for points near Xo eK, y_ e with ,2 > 0 involves the ex-
ponential of -2qze’/[1 + (1 + 4er/2) /2] 4- irle in the integrands. After the de-
formation of the integration line both terms have negative real parts, one of which
may be prevented from vanishing in the limit e 0 by the transformation
r/- e-: when 2 >= 2 or r/= e-x/zr when 2 =< 2. The terms (24a), (24b) are then
of order e -4m or e-zxm at worst. Thus 2 can be arbitrarily large so long as

(26a) < 1/4,

and can be arbitrarily large so long as

(26b) 2 < 1/2.

6. The Singular Region If,. The limitations (26) are misleading" we must in
fact introduce the stretched variables (8) in order to describe the solution near
X 0, y -1. Using a hat to denote the appropriate Fourier transform (with
variable q, ;x/zq) we obtain

2/e

v q,(1 + 4r/2,) /2 h(ey, 1)
-0

(27) {exp [(1 -(1 + 4rlZ,)/Z)y,/2 -(1 + (1 + 4eri2)/2)y’,/2]

exp [(y, y’,)/2 -lY, y,[(1 + 4er/,)/2/2]} dy’,.

Expanding h in a Taylor series in e we find

m-1

(28) (r/,, y, ;e) Z ekv’*(r/,, Y,) + e"/m*(q,, y, ;e),
k=0

where

(28’a)
*= (r/,(1 + 4r/2,) /2h’)(-1)/k!) y

{exp [(1 -(1 + 4rlz,)/Z)y,/2 -(1 + (1 + 4rlz,)a/Z)y’,/2]
exp [(y, y’,)/2 -lY, y,l(1 + 4q2,)/2/2]} dy,,
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2/e, 2 1/2 ,m (m)R (q,(1 + 4q,) /m ’) 1y ,h (ety,
0

{exp [(1 -(1 + 4rlz,)l/Z)y,/2 -(1 + (1 + 4rlZ,)I/Z)y’,/2]
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exp [(y, y’,)/2 -lY, y,l(1 + 4r/2,)/2/2]} dy’,.
The integrals in #* have been extended to infinity, the added pieces being uni-
formly a.e.s, for y, bounded. This renders the coefficient functions independent
ofe.

It will now be shown that’(i) the w,* do satisfy the proper recurrence relation
and boundary conditions for region II,; and (ii) R*m is bounded independently of
there. We shall in addition complete the treatment of region II by showing that

its expansion matches the one here.
(i) Direct substitution shows that

(r12, + a/ay, 2 2 h(ey,- 1),/cy,)w 1,

where v denotes its own asymptotic expansion (27). Expanding about e 0 for
h(ey,- 1) and equating coefficients of corresponding powers of yields the
relations

2 2 II,(, + a/ay, a/ay,)w ,h(-)y,/,

Also it is clear that v(r/,, 0;e) 0. So in the original plane we have

2 _lt_ (2/ay2* 3/ay,)wI’,= O,

w*(x,, O) O, w"*O y,) h( 1)y,/k

as desired, provided * is invertible. The latter is covered by our treatment of

R below.
To investigate the matching of the II- and II,-expansions we note that for

y the integral (20’) can be written in the form

I(e/(y + 1),X/(y + 1)/2, h(-1 + ey;))
m-1

(e/(y + 1))l(X/(y + 1) /2, h(-1 + ey;)) + o(em),
k=0

where I is a linear operator on functions ofy which depends only on X/(y + 1) /2
and the order symbol refers to fixed X, y. This result can be obtained by setting

r/(y + 1) /2, y’=-1 + ey,, letting the y,-lntegraton range to infinity
instead of 2/e (thereby introducing a.e.s, error), and expanding on e/(y + 1) as in
5 (i.e., by integration by parts). Beyond 2/e the function h(- 1 + eye) is defined

as the polynomial= hP)(1)(y 2/)P/p, where N is sufficiently large to ensure
whatever continuity of derivatives at y 2/e is required in the following. It is
easily checked that, in operating on functions O(1) in e, 1 produces O(1) functions.
Consequently Taylor-series remainders can be ignored in writing the m-term
II-expansion

m-1 m-l-k

{e/{y + ))%{X/{y + )l/e, e2h2{_ )y{/j)
k=o j=o
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so that its n-term II,-expansion is

min(n- 1, k- 1)

(29) y,. y-k 2
k=O j--O

1/21)I(X,/y, y’J,)/j’

On the other hand, when r/, is replaced by "c/y,/2 the n-term II,-expansion given
by (28) is seen to be

n-1
1/2 2 eJhJ)( ’J "!)l(1/y,, X,/y, 1)y,/j

j=0

and its m-term II-expansion is

min(n- ,m- k-

(30) (e/(y + 1))
k=O j=O

eh()(_ 1)Ik(X/(y + 1)l/2,y’J,)/j!.

Clearly the expressions (29) and (30) are identical under the transformation
X 1/2X,, y + 1 ey, so that matching is established.

(ii) Integrating by parts the terms in ^*Rm which have y,(1 + (1 + 4r/2,) 1/2) in
the exponential, and noticing that (2/e) exp [-(1 + (1 + 4r/2,)l/2)/e] is uniformly
a.e.s., we obtain

R -2r/,(1 + 4r/2,) 1/2(1 + (1 + 4r/2,)1/2) -1

f 2/e
(m +y"h(m)(e.ty,- 1)+ [my,-lh(m)(ety’,- 1)+ y, gth 1)(ety’,- 1)]

oO

exp [y,(1 (1 + 4,2,)1/2)/2 y(1 + (1 + 4,2,)1/2)/2] dy’,

(m + 1)[my,-lh(m)(e.ty’,- 1)+ y, eth (ety,- 1_)]

exp [(y, y;)(1 + (1 + 4r/2,)1/2)/2] dy’,
+ r/,(1 + 4r/2,)- 1/2 y,,mh(m)(ety,, -1)

exp [(y, y,)(1 (1 + 4r/2,)1/2)/2] dy,.
All but the first and last terms are clearly invertible and their inverses are 0(1)
in e since, after integrating by parts once more, they behave like r/ 2 for r/, large,
independently of e. The first term can be rewritten as ht")(ety,- 1)y, times
(1 -(1 + 4r/2,)l/2)/(2r/,(1 + 4r/,) 1/2) (2r/,(1 + 4r/2,)1/2) -1 (2r/,)- and hence is
invertible with inverse 0(1). Note that the value for X, 0 must again be inter-
preted as the limit for X, 0. The last term inverts to

ff* ’mhtm)X, y, tety, 1)exp [(y, y,)/2]KI[(X2, + (y, y,)2)/2/2]

(X2, + (y, y;)2)- 1/2 dy’,,

and thus is 0(1) in e.
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The invertibility of ki, is also covered by the above analysis, since the same
terms, with m replaced by k and e set zero, are involved.

Extension of region II, outward is limited only by
-1+3Y, =3

which ensures that the original asymptotic expression (27) is still valid and that
the inverse of (28’b) is small compared to e -m. Nowhere was it necessary to bound
X,.

7. The boundary layer III. The expansion found in region II is not asymptotic
to w near y 1 since it does not include boundary layer terms. Such terms arise
from the parts of the exact solution which were omitted for being uniformly a.e.s.
away from y (see (18’) and (22)). Written in the stretched variable Y (1 y)/e,
these parts are given by the inverse of

(31)

r/(1 + 4er/2) 1/2 exp [-- Y(1 + 4er/2)1/2/2]

h(y’) exp [(1 y’)(1 (1 + 4erlz)/z)/2e] dy’

h(y’) exp [{(1 y’)(1 + (1 + 48r/2) 1/2

-1

+ [2e(1 + (1 + 4er!2)/2) -k-ahtk)(1)
k=O

4(1 + 4er/z)/z}/2e] dy’

Thus to obtain the expansion in the boundary layer we must consider the con-
tribution from the boundary layer correction z as well as that from the asymptotic
form used previously, now applied in the boundary layer.

Expansion of these two in a Taylor series in e gives
m-1

#(rI, Y; e).. ek#n(rl, Y) + ,m’3m(l, Y; e),
k=0

where it is not necessary to write out #, and m explicitly. The task is now to
demonstrate that (i) the Wkn(X, Y) satisfy the recurrence relation (13a) together
with the boundary conditions and matching mentioned there; and (ii) m(X, Y; e)
is O(1) in e in region III.

(i) By direct substitution we obtain

(32) (2/ y2 + 63/ y _/31v]2)1, r/h(1 e Y),

where again # stands for its asymptotic form; furthermore #(r/, O; e)= O. It
follows that

so that the transforms of the recurrence relation and boundary conditions are
satisfied. If the #i are invertible, as will be proved along with m, only the
matching remains.
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Notice that (r/, Y; e) is a solution of the homogeneous differential equation
(32) with (r/, 0; e) the negative value of (20’) at y 1;it is therefore purely the
correction for the boundary condition at y 1. Since (r/, (1 y)/e; ) is a.e.s, for
fixed y 4: 1, we need only prove that v- - matches with the of region II, that
is, we need only show that the used in region II satisfies the matching principle
in the variables y, Y. But this follows directly from Fraenkel’s Theorem 1 [3]" the
,,(r/, y) in (21) remains O(1) for all y in 1 < y =< 1 and the k,(r/, y), since they
have the forms (25), clearly satisfy assumption 2 of Fraenkel’s theorem. The
expansion in region III is now seen to match that in region II since inversion
preserves matching.

(ii) To consider the existence of the coefficient functions wmtX Y) and thek,

bounding of Am(X, Y; e), recall that the corresponding expansion is the super-
position of that for z(X, Y; e) and the expansion in region II rewritten in terms of
the boundary layer variable Y.

In treating the terms from region II, i.e. omitting the boundary layer terms,
the estimate of the remainder remains valid for y near 1. In other words the
expansion (21) holds uniformly up to the top boundary. Thus for its contribution
to the expansion in region III we need only substitute the boundary layer variable

~IfY and expand to order em. Since the w(r/, y) have the forms (25), the remainder
after Taylor series expansion in e has terms of the form

(33a) rl-l(rl2)-j+s+l+pym-s(2- .tY)t-m+Pexp(-2rl2 + etrlzY)htJ)(-1),
(33b) rl(rlZ)l-’+PYm-(2 etY)1-1+ +2-m+p exp (_2q2 + trl2y)h+ +2)(_ 1),

(33c) r/- y,h(m)(1 et Y),

r]- lr]2/1Y"-(2 e y)3-, y,)3 +ly,
.o

exp I-r/2(1 y’)(2-etY)]htS+a+(y’(2 etY) 1) dy’,

where 0 =< p =< m- s, 11 + Y l- + 72--m- s and the other parameters
satisfy the previous conditions still. The last term was obtained by replacing y’
by (y + 1)y’ 1 as the integration variable in (25c).

Inversion in the first two terms is valid and O(1) in e for Y bounded because
of the exponential convergence. The third term is also invertible and its inverse,
defined for X 0 again by the limit, is O(1) for Y bounded. In dealing with the
last term we must integrate by parts times, to obtain terms of the form

(33d)

(33e)

r]- l(r]2fz(2 /3Y)t3-’;:z-/+x Y’- exp [- r/2(2 etY)]h(+a3++-l)( 1),

1(2 BY)/3-’2-tt ym-s (1 y’)3 +r2+r3ytl--r2

exp [-q2(2- etY)(1 -y’)]hts+l+e+3)(y’(2_ etY)- 1)dy’,

where t 11 and 0 __< r2 + r3 =< 1. Again the terms are invertible and O(1) in e
for Y bounded. We conclude that the contribution to the remainder is uniformly
O(e’) in region III.

Treating now the contribution to the expansion from (r/, Y;e) we first
integrate (31) by parts m times"
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t1 [k/2]

)t k+l
1

=exp[-Y(1 +(1 + 4eq2)1/2)/2] q-l(-2q2) -k (1 +4eq2

k=0 t=0 2t +
[h() h( ) exp -4n/{ + ( + 4an)/:)]]

+ (1 + 4e) / [(- 1) (1 + (1 + 4)/)(2)-h((y’)
(4

exp [- 2(1 y’)/(1 + (1 + 4e)/)] + (2e)(1 + (1 + 4e)/)-h((y’)

[{(1 y’)(1 + (1 + 4eq2)/2) 4(1 + 4qz)a/z}/2e]] dy’}.
On integrating by parts once more and letting q. e/zq in the inversion integral,
it is clear that the last term is invertible and O(). Consequently we need only
consider the expansion of the first three groups of terms. By expansion in Taylor
series, their contribution to m is their mth derivative with respect to e evaluated
at ta, which produces terms of the form

(35a) qZ(m-k) exp [-Y(1 + (1 + 4qz)/z)/2]htk)(1)/[,(1 +
q2{m-k+) exp [-- Y(1 + (1 + 4eq2)1/2)/2 4q2/(1 + (1 + 4eq2)/2)]

(35b)
h(_ )/[,( + 4,)-,-/( + ( +

q2(-,)q exp [-g(1 + (1 + 4q)a/2)/2 4qz/(1 + (1 + 4q2) a/2)
(35c)

h(+)( 1)/[(1 + 4eq2) ++)/2(1 + (1 + 4eq2)/2)t--],

{exp [- Y(1 + (1 + 42)/2)/2]h((1)

(35d) exp [-Y(1 + (1 + 4eq2)/2)/2 4q2/(1 + (1 + 4eq2)/Z)]h(m)( 1)}
(1 + (1 + 4eq2)/2) + /[q(1 + 4eq2)( +.,+)/2],

exp [- Y(1 + (1 + 4eq2)/2/2] hm++ )(y’)(1 y’)
-1(Se)

exp [- 2q2(1 y’)/(1 (1 + 4eq2)/z)] dy’

(1 + (1 + 4eq2)/)’ + /[q(1 + 4eqa)

where

O<_ <_m, O<=ol +l<=m O<=fl <=l-1, O<--fl3 <--I

Notice that (as in region II) it was necessary to integrate by parts, after having
differentiated, to remove the powers of F]

2 which emerged.
The terms (35d), (35e) can be bounded under inversion in precisely the same

manner as (24c), (24d) in region II. The extra factor exp [- Y(1 + (1 + 4r/2)/2)/2]
only improves convergence of the inversion integral. The terms (35b), (35c) are
invertible and their inverses are bounded in e because they provide exponential
convergence.

The first term (35a) is clearly invertible for e - 0, Y - 0 but we require its
inverse for all e, Y. To this end bound X away from zero, so that the inversion line
can be bent upwards/downwards respectively for the exp _+ irlX), of which sin r/X
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is composed, to provide convergent integrals O(1) in e uniformly for Y => 0.
(There is no question of reaching X 0 by bounding Y away from zero, as there
was in region II.)

Thus we are assured that ’’m is O(1) in region III, as desired.
The sth coefficient function involves the same terms (33), (35) with m replaced

by s and e set equal to zero. With the exception of terms corresponding to (35a),
which are now positive powers of r/, the existence of the coefficient function is
therefore covered by our discussion above. The exceptional terms are also covered
if the inversion line is deformed before expanding in Taylor series.

Extension of region III downwards to Yo e- is restricted to

<1

because we have implicitly assumed 2 et Y is positive. Extension outwards in X
is unrestricted since it was nowhere necessary to bound it (e.g. terms of the form
r/2p+ exp (- 2r/2) invert into Xp exp - X2/2x/] which are bounded as X - ).

Extension into the corner is limited by the integrals resulting from deformation
of the inversion line. Letting r/X shows that the terms behave at worst like
X-2m, SO that for X e we must have

1/2.

8. The transition zone III,. Motivated by the last restriction, we introduce
the stretched variable x, e-I/2X in order to describe the boundary layer near
X 0. The structure of the III,-expansion is similar to that of the Ill-expansion
in that it is composed of two parts, namely the II-expansion, expanded in the
III,-variables, and the boundary layer correction. We shall show that

m-1

(36) w(x,, Y; e),- ek/Zwkn*(X,, Y) + em/Zs,,(x,, Y; e),
k=O

where" (i) the w,n* satisfy the recurrence relation (16a), the boundary conditions
(16b), and the appropriate matching conditions, and (ii) Sm is O(1) in e uniformly
in region III,.

(i) Once it is known that the asymptotic expansion (36) holds in region III,,
the fact that w (as formed from (18’a)) satisfies (la) and the boundary conditions
(lc), (ld) to within a.e.s, terms is sufficient to ensure that the wn* satisfy (16a),
(16b). The validity of(36)is established by the boundedness of S,, and the existence
of the wn* as proved in (ii) below.

As noted above, the III,-expansion is a superposition of the II-expansion,
expanded in the III,-variables, and the boundary layer correction terms. The
latter terms, as the name suggests, are a.e.s, out of the boundary layer; and so the
matching of the III,-expansion with the II-expansion is assured if the II-expansion
matches with itself expanded in the III,-variables. In the next section it is proved
that the w have asymptotic expansions in the III,-variables which are poly-
nomials in ,gl/2x,, and e Y. Therefore we are assured of matching by Fraenkel’s
theorem.

(ii) To order [(m + 1)/2] the III-expansion of the II-expansion is

(37) c0

[(m- 1)/21 2 r
L /3k-- JO kkI(r/’ Y) sin fiX drl + e[tin+ 1)]2]Q

k 0 7
[(m + )/2],
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where we have already shown that 5e(,,+ 1)/2] is bounded in e not only in III but
also in III,. To obtain the contribution of (37) to the expansion (36) we shall
deform the inversion line near r/= 0 in the complex q-plane so as to avoid later
convergence difficulties at that point. Now, in the boundary layer (5, is composed
of terms of the form (33), with e 0 and m replaced by k, and hence is an odd
func.tion of r/. Thus the integrals in (37), with X e-1/2X,, can be written

~II 1/2Xo)k(q, Y) sin (tie ,) dri
(38)

(2i)- IICOk(q, Y) exp (irlel/Zx,) dri (rc/2)rk(Y),

where rk(Y) is the residue of ebb, at its simple pole r/= 0 and hence is a polynomial
in Y. Instead of changing to the corresponding transform variable r/, el/2rl,
which would lead us to troublesome terms exp (- 2r/Z,/e), we would like to expand
exp (irls/zx,). But this contributes powers of r/to the integrand which apparently
destroy the convergence as r/ oe. Therefore we first rewrite the integral terms of
&,i by integrating by parts [(m 2k)/2] + 1 times with respect to y’, to obtain

(39a) rl- rl-22 ylh(3)(1),

(39b) r/- lq2, ysh(6)(1 exp (- 2r/2),

(39c) q-r/-2{(’-/+Y (1 y’)y’h((2y’- 1)exp[-2q2(1 y’)]dy’,

where

2k10__(72 ( + 1
2

The set of terms (39a), (39b) can be integrated explicitly in (38) to give powers of
ex2, and Y; so that they, as well as the residue terms, provide O(1) contributions
to the coefficient functions and remainder in III,. Having taken care of these
terms, we can expand the exponential in the integrand (38) for the remaining
terms without losing convergence. If &k denotes their contribution to 69,I, we have

2k

(2i)- &k exp (igl/2qx,) dq (i)- 1d/2 )-x,(2j &k dq

+ (i)-- (e/x,) (2(m 2k))- /- exp (ie/ax,) d,

where the Taylor series has been taken to a remainder providing O(e/) in (38).
Two things must be proved about this last expansion, namely that the integrals
in the sum exist and that the remainder integral is O(1) uniformly in III,. But these
facts are clear since for the former the integrands behave exponentially as n ,
while for the latter they converge at least as well as -. It was to obtain this last
convergence property that integration by parts was performed on the integral
terms of.



180 L. PAMELA COOK AND G. S. S. LUDFORD

The boundary layer correction terms (34) can be written as

exp [- Y(1 + (1 + 4eq2)1/2)/2]
(40)

(r/,e) + r/(1 + 4er/2) / E2e/(1 + (1 + 4e2)/)]+ ah)(1)
k=O

where

(1 + 4e) / h(y’){exp [(1 y’)(1 -(1 + 4e)/a)/2e]
-1

exp [{(1 y’)(1 + (1 + 4)/) 4(1 + 4e)/}/2e]} dy

is the approximation (20’) from which the II-expansion was obtained, evaluated
at y 1. So, as proved in the preceding paragraph,

D(X,, 8)
k=0

holds in III,. But we must now incorporate the exponential factor in (40), and the
fact that w is an odd function of q enables us to do this by convolution. Changing
to the variables x, and q, 8/2q, we find

2
exp[ Y(1 + (1 + ,)/)/2e ,, ,x, ,4 /(: / ) sin d

exp [- Y(1 + (1 + 4)/)/2e /(e- /,, e) exp (i,x,) d,

f2
exp (- Y/2) (x,, e)YK[((x, x;) + Ya)//2

((X, X;)2 + y2)-1/2 dx,
m-1

k/Eyexp( Y/2) n y)
k=O

[2((x, x) y2)1/2]- dx,

+ e/Yexp(-Y/2) /(x,,e)K[((x, x;) + Y)/;/2]

Since , S behave as polynomials in x, and

x.+ l[(x + g//(x + g-/ x .+r( + 1) Y"K_,(Y/2),

these integrals are bounded independently of e throughout III,.
Finally we must deal with the contribution to the expansion (36) from the

series in (40). But, under change of transform variable to ,, these terms become

exp [-Y(1 + (1 + 4)/)/2],(1 + 4)-

k=O
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each of which is clearly invertible. Each therefore contributes to one of the co-
efficient functions of (36) or the remainder.

This completes the proof that there is indeed a valid asymptotic expansion
throughout region III,.

Extension of region III

is limited to
X,o

2<1, /t < 1/2.

The restriction on 2 is a carry-over from the bounding of the remainder in region
III. The limitation on k/arises from the terms

k 2 4(x,)
which come from (39b). We obtain the worst behavior for k 0, when they
behave like (e- 2")"--hence the restriction on/.

9. Other ssumptions about h(y). It is of interest to see the effect of varying
the conditions (17) on h(y). First we strengthen them with

h(k)( + 0) 0 or h(k)(1 0) 0 for k =< ko,

and ask at what stage in the approximation of w it is necessary to introduce the
corner region II, or III,. Secondly we weaken them to

h is infinitely differentiable on (- 1, 1) except at y a,

h(k)(a -k- 0), h(k)( 1 + 0), h(k)(1 0) exist for all k,

when it is necessary to introduce a new region about y a.
If h(k)( 1 + 0) 0 for k __< ko, it is not necessary to introduce region II,

until m [ko/2] + 1. Thus, the exclusion of the lower corner from II arises in
bounding the terms (24a), (24b) and these now vanish for m __< [ko/2]. All re-
maining bounds extend into the corner. Similarly if h(k)(1 0) 0 for k =< ko, it
is not necessary to introduce the region III, until m ko + 2, since the terms
(35a) in III are zero for m _< ko + and again all bounds extend into the corner.

To facilitate the discussion when h and its derivatives are allowed a dis-
continuity at y a, we define a new function

h(y)

fory < a,
h,,(y)

(y a)kh(k)(a O)/k! for y _> a,
k=O

where M depends on m. The original boundary value problem (la), (lc), (ld) is
now written as the superposition of two semi-infinite strip problems with the
respective boundary data

WI(0 y) h,,(y), Wl(X, +__ 1) 0,

w2(0 y)= h(y) h,,(y), Wz(X, +_ 1)= 0.

Since the function h, has continuous derivatives to order M, the proof that the

method of matched asymptotic expansions is valid for w to order m is contained
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in the preceding portion of this paper, when M is taken sufficiently large for all
derivatives involved to be continuous.

For w2 the results for region II follow as before except that we must also deal
with terms

m-1

-r/(1 + 4eq2) -1/2 (-1 (1 + 4eqz)l/Z)k+l(Zr12) -k-1
(41a) k=O

{htk)(a + O)- htk)(a- 0)} exp --2r/Z(y- a)/(1 + (1 + 4er/2)1/2)],
for y > a, and

m-1

-r/(1 + 4er/2) -1/2 (2e)k+l(1 + (1 + 4rl2)1/2) -k-1
(41b) k=O

{htk)(a + O)- htk)(a- 0))exp [(y a)(1 + (1 + 4er/z)l/z)/2e],
for y =< a, which arise on integrating (20’) by parts due to the discontinuity at
y=a.

The terms (41a) present no problem for y > a + 6 (6 > 0) since even after m
differentiations with respect to e the inversion integral retains exponential con-
vergence. As for region II, (see 5), if we rewrite sin rlX as exponentials and deform
the integration contour, we obtain convergence for all y >_ a when X => Xo > 0.

The terms (41b) are uniformly a.e.s, if y =< a- 6, and analysis as in the
previous paragraph shows they have similar properties for y =< a, X > Xo > 0.

It is therefore necessary to introduce a "corner" region near X 0, y a,
similar to the II,-region. In terms of the stretched variables Ya e-l(y_ a),
x, e-1/2X and the corresponding transform variable r/, el/Zr/, we have

fi
l’- a)/e

r/,(1 + 4r/2,) 1/2 {h(e.y’

4- 2xlexp I((Y Y’o) lY y’[(1 / Ct, /2}/2] dy’,

to uniformly a.e.s, terms.
Now expand h h in its Taylor series about a to m terms and note that, as

in region II,, the upper limit of integration can be extended to o for these terms
(but not the remainder), thereby introducing only uniformly a.e.s, terms and
making the integral independent of e. Bounding follows precisely as in region II,.

The regions III and III, present no problem since the additional terms due
to the discontinuity at y a are invertible and the corresponding remainders are
O(d"). For instance in the formula (34) we must add

q(1 + 4eq2) 1/2 exp - Y(1 + (1 + 4e.q2)l/2)/2 / (a 1)2q2/(1 + (1 / 4e-q2)l/2)]

[(-1 (1 + 4er12)l/z)/Zr12]k+ l{htk)(a + O)- htk)(a 0)},

which always provides exponentially convergent inversion integrals.

10. The rectangle. We are now in a position to show that the method of
matched asymptotic expansions is valid for (la) on the rectangle 0 =< x =< l,
lY] =< 1 with the boundary data
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(42)
w(x, 1) f(x), w(O, y) h(y),

w(x, 1) g(x), w(l, y) (y).

The proof consists in writing w as the superposition of three functions, the first
two of which are solutions on semi-infinite strips and the third a solution on the
rectangle with data which is a.e.s.

In order to formulate these problems we define new functions fl, f2, gl, g2,

where

{fH for O <= x <= l, {f-f1 for O <= x <= l,
f

0 forx>l,
f2=

0 forx<0,

and gl, g2 are similar. H is an infinitely differentiable function of x such that

J’l for- <x<=1/4,
H

0 for31/4<=x<,

and is introduced purely as an artifice. That is, if we now let wl, w be the solutions
satisfying the respective boundary conditions

w1(0, y) h(y),

WI(X 1) f(x), wl(x, 1) gl(x) for 0 =< x < oe,

w(t, y) =4y),

Wz(X,- 1) fz(X), Wz(X, 1) gz(X) for -oe < x _<_ 1,

then the boundary data for w is zero in a neighborhood of x and that for w2
is zero in a neighborhood of x 0. It follows that wl(l, y) and w2(0, y) are a.e.s.,
a result on which the proof hinges. (The infinite differentiability of H ensures that
no spurious layers are introduced by w and w2.)

On the rectangle we may write w(x, y) Wl(X, y) + Wz(X, y) w3(x, y), where
w3 is the solution with the boundary values

(43)
w3(x, 1) O, w3(O y) w2(O, y),

w3(x, 1) O, w3(l, y) wl(l, y).

Note that these boundary values depend on, and are a.e.s, in, e; and that w3 is
the correction needed to annihilate the boundary values of wl and w2 at the sides
x and x- 0, respectively (which were omitted from their definitions as
solutions of semi-infinite strip problems). Note also that the data (43) is con-
tinuous on the boundary, including the corners. It now follows from the maximum
principle that Iw31 is bounded by its maximum on the boundary and hence is a.e.s.
throughout the rectangle. Its contribution to w may therefore be ignored.

The proof that the method of matched asymptotic expansions is valid for wl
and w2 separately is the preceding portion of this paper. Note that the entire
problem is linear so that the approximation to w obtained by the method of
matched asymptotic expansions in any region is the sum of the approximations
obtained there for w and w2. This shows that the method is valid for w.
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No mention has been made in this section about the differentiability properties
of the boundary data. The order to which the approximations can be carried out
will depend on these in the ways described in 9 and our earlier paper [2].
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BOUNDARY PROBLEMS OF STURMIAN TYPE
ON AN INFINITE INTERVAL*

WILLIAM T. REID?

Abstract. Two types of Sturmian boundary problems on (-v, ), with boundary conditions
specifying that the proper functions are of integrable square, are considered with the aid of the principal
solutions of the involved differential equation at and -, and the reduction of the given problem
to an associated Sturmian problem on a finite interval. For problems of the first type it follows from
classical Sturmian theory that the totality of proper values may be ordered as a simple sequence, with
the proper function corresponding to the jth proper value possessing exactly j zeros on (- , ).
Problems of the second type involve "turning points," and in this instance Sturmian comparison
theorems are used to establish the existence of a sequence of sets of proper values such that the proper
functions corresponding to parameter values in the jth set possess exactly j- zeros on (-, ).

1. Introduction. This paper is concerned with two types ofboundary problems
of Sturmian type for a real linear homogeneous ordinary differential equation on
the real line, in which the boundary condition prescribes that the proper functions
are ofintegrable square on (- v, ). Problems ofthe first type involve differential
equations whose coefficient functions possess monotoneity properties of the sort
appearing in the classical Sturmian theory, and the results obtained for this
problem are generalizations of those obtained many years ago by Milne [7].
Problems of the second type involve "turning points," and the coefficients of the
differential equation are monotonic of opposite character on complementary sub-
intervals of (-, ). The present consideration of problems of this latter sort
was stimulated by the paper [1] of Harris and Sibuya, who utilized complex
variable methods to establish the existence and asymptotic form of the proper
values for a problem of this kind.

The central feature of the treatment of the present paper is the reduction of
each of the considered problems to an associated problem on a finite interval,
through the use of the principal solutions of the involved differential equation at
the end points and . For problems of the first type the associated finite
interval problem satisfies the hypotheses of the classical Sturmian theory, so that
the totality of real proper values may be ordered as a sequence {2j}, with the
proper function corresponding to 2j possessing exactly j 1 zeros on (- , ).
For problems of the second type the associated finite interval problem does not
possess all the monotoneity properties so requisite for the Sturmian theory.
However, with the aid of Sturmian comparison theorems one may establish the
existence of a sequence Aj of sets of proper values, such that if 2 Aj, then 2 is a
proper value for which corresponding proper functions possess exactly j- 1
zeros on (-or, or). At the moment there remains unanswered the determination
of specific conditions on the coefficient functions ofthe differential equation which
will insure that each set Aj reduces to a single value.
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The real number line (-oe, oe) will be denoted by R, and R + will designate
the nonnegative ray {tit R, >__ 0}. If [a, b]c R and a function f:[a, b] R is
a.c. (absolutely continuous), then f’(t) denotes the derivative of f(t) at values
where the derivative exists and zero elsewhere. For a given compact interval
[a, b] c R the symbols [a, b], .[a, b], 2[a, b], [a, b] and 9.1[a, b] are used to
denote the class of functions f:[a,b] R which are respectively continuous,
(Lebesgue) integrable, (Lebesgue) measurable and f2 integrable, measurable and
essentially bounded, and a.c. on [a, b]. If functions f and g are equal a.e. (almost
everywhere), on a common domain of definition, we write simply f g. If
f:[a, b] R is essentially bounded, then ess sup,t,,b]f(t denotes the essential
supremum off on [a, b], that is, the smallest nonnegative number M such that the
set {tit [a,b], If(t)l > M} has measure zero. A function f:R --. R is said to be
locally integrable, of class 2, of class oo, or a.c., if f e [a, b], f e 2[a, b],
f e [a, b], or f e 9.1[a, b], for arbitrary compact subintervals [a, b] of R.

2. A problem of classical Sturmian type on an infinite interval. In this section
we shall consider a boundary problem

(2.1) Jr(t, 2)u’(t)]’ p(t, 2)u(t) O,

(2.2) u2(t) dt < ,
involving the real parameter 2, under the following hypotheses, where

R (-o, o) and A {21A1 < 2 < A2}.
(i) On R x A the functions r and p are real-valued, and r > 0.
(ii) For 2o e A, the functions r(t, 2o), 1/r(t, 2o), and p(t, 2o) are locally of

class o; moreover, for a.e. on R these functions are continuous in
2 at 2o.

(iii) For eR the functions r(t, 2), p(t, 2)are monotone nonincreasing
functions of2 on A, and such that for [a, b], an arbitrary nondegenerate
compact subinterval of R, the functional

Jo[rl 2la, b] {r(t, 2)q’2(t) + p(t, L)q2(t)} dt

is a strictly monotone decreasing function of 2 for arbitrary rl(t) 0
belonging to the class [a, b defined by

@[a, b] {1 e 9.I[a, b], r/’ e 2[a, b]}.
(iv) For a.e. on R,

lim p(t, 2)=
2--*A

(v) There exists a compact subinterval Io of R such that

lim p(t, 2) - for a.e. on Io.
2-A2

(vi) For 2 e A, lim inft_. + p(t, 2) > 0.
Under hypotheses (. (i), (ii)) a function u(t) is said to be a solution of (2.1) if
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there exists an associated v(t) such that (u(t); v(t)) is a solution in the Carath6odory
sense of the differential system

(2.1’) u’(O [/r(t, ,)]v(t), ’(0 p(t,

that is, u(t) and v(t) are locally a.c. on R and (2.1’) holds a.e. on R.
It is to be noted that the above conditions ( (i)-(vi)) hold for A R under the

following hypothesis:
r(t, 2) 1, while on R R the real-valued function p(t, 2) is continuous, has
a negative partial derivative with respect to 2, and

(.o) lim p(t, 2) + , lim p(t, 2) or,
,;t--’, 2--’,

lim p(t, 2) +

The conditions of (.o) are those imposed by Milne [7]; in particular, they are
satisfied if r(t, 2) 1 and p(t, 2) po(t) 2, where po(t) is a real-valued continuous
function on R such that limt + po(t) + .

LEMMA 2.1. Suppose that hypotheses (f9 (i)-(v)) are satisfied, [a, b] is a compact
subinterval containing the interval Io of (gO (v)), while fla(2), fib(2) are functions of 2
on A which are real-valued, continuous and nonincreasing on A. Then"

(i) for rl [a, b], and q(t) 0 on [a, b], the functional
(2.3) J[q;2la, b] fl,(2)rlZ(a) + flb(2)q2(b) + Jo[rl 2la, b]

is a continuous strictly monotone decreasing function of 2 on A;
(ii) for 2 A, the real proper values of the Sturmian boundary problem

Jr(t, 2)u’(t)] + [#- p(t, )]u(t)-- O,

(2.4) fl.(2)u(a) r(a, 2)u’(a) 0,

fl(2)u(b) + r(b, 2)u’(b)= 0,

involving the characteristic parameter #,form a sequence

(2.5) #,(2) < tt2(2) <...

such that
(a) a proper function u uj(t;2) of (2.4) corresponding to the proper value

# #j(2) has exactly j 1 zeros on (a, b);
(b) lim #(2) + for 2 A;

(c) for j 1, 2,..., the proper value #(2) is a strictly monotone decreasing
continuous function of 2 on A;

(d) there exists a 2 A such that

#1() > 0 if (A1, ).

In view of hypothesis (. (ii)), for r/ Ea, b] the functional JoEr/; 21a, b] exists
for all 2 A, and conclusion (i) is a ready consequence of hypothesis (. (iii)). For
each 2 A the existence of a sequence of proper values (2.5) of (2.4) satisfying con-
clusions (ii (a), (b)) is a consequence of classical Sturm-Liouville theory. In case
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the coefficient functions r(t, 2), p(t, 2) satisfy hypotheses (3 (i), (ii)), and are also
continuous in (t, 2) on R x A, this result is given in Ince [5, Chap. X, 10.71],
Hartman [3, Chap. XI, Th. 4.1], or Reid [10, Chap. V, Th. 7.4]. Also, under (S3 (iii))
and these additional hypotheses the strict monotone decreasing character of the
proper values #j(2) follows from a well-known comparison theorem for Sturm-
Liouville systems (see, for example, Reid [10, Chap. VI, Th. 4.1]), and the con-
tinuity of each proper value j(2) as a function of 2 is also a ready consequence of
the extremizing property of these proper values (see, for example, Reid [10, Chap.
VI, Prob. 5.8]). The proof for each of the above results may be modified to yield
the stated conclusions (ii (a), (b), (c)) when hypotheses (S3 (i), (ii), (iii)) hold, and the
functions r, p are not required to be continuous on R x A.

Now in view of hypothesis (. (iv)) we have that

(2.6) lim J[r/;21a, b] +oe for r/ e [a, b] and r/(t)0 on[a,b].

We shall proceed to show that there exists a value 2 e A such that

(2.7) J[r/;2la, b] >0 for2e(A,.) and r/e[a,b], r/(t)0 on[a,b].

Indeed, if there exists no value . such that (2.7) holds, then there exists a sequence
{i,, r/}, k 1, 2, ..., such that

ik + e (A, ik) C A, k 1, 2, lim i A
koo(2.8) rl(t) 0 on [a, b], r/ e [a, b], J[rl, ila, b] <= O.

Without loss of generality we may suppose that the functions r/k are normed so that

(2.9) ]]r/kl] 2 r/(a) + r/2(b) + r/(t) dt 1, k 1, 2,....

As

and

it follows that

J[rl; ila, b] -< J[rl; ila, b] <= O, k= 1,2,..-,

max {]fl,(i,)[, [flb(il)[ ess sup [p(t, i,)1},
e[a,bl

/(il) /0(il)ess sup r- l(t, il)
e[a, b]

(2.10) [r/,(t)] 2 dt __< tc(i,) r/
2 N(il), k 1,2,

Relations (2.9), (2.10) imply that the sequence of functions {r/k(t)} is uniformly
bounded and equicontinuous on [a, b]. Moreover, (2.10) states that the sequence
{r/,(t)} belongs to a bounded ball in 2[a, b], and hence there is a subsequence of
{r/,(t)} which converges weakly in 2[a, b] to a function 4). Also by the Arzelt-
Ascoli theorem there is a subsequence of the first determined subsequence which
converges uniformly to a continuous function rloo(t). Combining these results we
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obtain a subsequence of {r/k(t)}, which will still be denoted by {r/k(t)}, that con-
verges uniformly on [a, b] to a limit function r/oo(t), and the sequence {r/,(t)} con-
verges weakly in 2[a, b] to qS(t) r/(t). Moreover, in view of (2.9) we have
r/oo 1, so that r/oo(t) 0 on [a, b]. Then r/oo e [a, b], and since r(t, 2h) > 0 for

h 1, 2,..., we have the lower semicontinuity result

J[rIoo ihla, b] <= lim inf J[t]k ihla, b]
k

_< lim inf J[rlk .kla, b] <= O,
k-oo

which is contradictory to (2.6). Now if u(t) is a proper function of (2.4) correspond-
ing to a proper value/ #(2), then an integration by parts yields the relation

J[u;Rla, b3 (2) u2(t) dt.

Consequently, if [ is a value satisfying (2.7) we have that #1(2) > 0 for 2 e (A1, .).
The principal result to be established in this section is that of the following

theorem. For the particular case of r(t, 2) independent of 2 and p(t, 2) of the form
-2 + q(t), results of the nature of this theorem have a long history, dating from
the basic work of H. Weyl [12], [13] in this connection the reader is also referred
to the paper of Wolfson [14], and to references given by Hartman in connection
with 4 and 6 of Chapter XI of [3].

THEOREM 2.1. Under the above hypotheses ( (i)-(vi)) the real proper values of
the system (2.1), (2.2)form an infinite sequence

such that 2j A 2 as j oe moreover, for j 1, 2,... the corresponding proper
function uj(t) u(t, 2j) of this system has exactly j 1 zeros on R.

In view of hypotheses ( (i), (ii), (iii), (v)) it follows from oscillation results of
the Sturmian theory (see, for example, Ince [5, Chap. X, 10.6], Hartman [3,
Chap. XI, 3], or Reid [10, Chap. V, 5]) for an arbitrary positive integer m there
exists a value lm such that if u u(t, 2) is a solution of (2.1) for 2 > lm, then u(t, 2)
has at least m zeros on Io, where Io is the compact subinterval of( (v)). Moreover,
inviewofhypothesis((vi)),for2 Athereexistsaz z(2) > 0anda x(2) > 0
such that

(2.11) p(t, 2) _> x(2) for t(-oe, -z(2)] U Jr(2), ).

In particular, (2.1) is nonoscillatory on each of the intervals [z(2), oc) and
(-o, -z(2)], and consequently this equation has principal solutions uoo(t, 2) and
u_oo(t, 2) at o and o, respectively.

The principal solution uoo(t, 2), {u_oo(t, 2)}, is characterized by the property
that if for the given value of 2 the function u(t) is a solution of (2.1) which is not a
multiple of uoo(t, 2), {u_ oo(t, 2)}, then

lira
uoo(t, 2)

0, lim
u_oo(t, 2)

0.

The corresponding functions w woo(t, 2) -= r(t, 2)u(t, 2)/uoo(t, 2), {w w_ oo(t, 2)
r(t, 2)u’_ o(t, 2)/u_ oo(t, 2)} are solutions of the associated Riccati differential
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equation

w(t)
(2.12) w’(t) 4 p(t, 2) 0,

r(t, 2)

and are called the distinguished solutions of (2.12) at the respective end-values
and . For the case of real scalar linear homogeneous differential equations of
the second order the concept of a principal solution was introduced independently
by Leighton and Morse [6] and Hartman and Wintner [4], using different definitive
properties for such solutions. The extension to matrix systems is due to Hartman
[2] (see also [3, Chap. XI]) and Reid [8] (see also [10, Chap. VIII). Moreover, if
z [z(2), or) and s (, ), there is a unique solution u u(t, , 2), v v(t, , 2)
of (2.1’) satisfying the boundary conditions

(2.13) u(z, z, 2) 1, u(s, z, 2) 0,

and v(z, , 2) is a monotone nondecreasing function of s on (z, ) which is bounded
above. If v(z, 2) lim_ v(z, z, 2), then a principal solution u u(t, , 2) of
(2.1) at is determined by the initial conditions

(2.14) Uo(Z, z, 2) 1, V oo(, , ,) Voo(, ,).

Also the distinguished solution w(t, 2) of (2.12) at is given by

w(t, ) v(R)(t, , )/u(t, , ).
In particular,

(2.14’) w(z, 2) v(z, , 2) v(z, 2) for z e [(2), ).

As r(t, 2) and p(t, 2) are both positive on [(2), ) it follows that for
e [(2), v) the integral

(2.15) {r(, 2) [u;o(, , ,)]= + p(t, ) [uoo(, , 2)]=}t

converges and has the value Vo(Z, 2) w(z, 2); for this latter result see, in
particular, Reid [8, Th. 8.1]. Since p(t, 2) __> (2) > 0 for e [z(2), ),it follows from
(2.15) that Uo(’, 2) e 2[z(,), oz)). Now if for given 2 e A and e [z(2), ) we have
that u Uo(t), v Vo(t) is the solution of the equation (2.1) which satisfies the
initial conditions

Uo(Z) 1, Vo(V 1,

it follows that Uo(t) >_- 1 for e [z, ) and the integral fu)(t)dt is divergent. As
every solution u(t) of (2.1) is a linear combination of u(t, 2) and Uo(t), it then
follows that a real-valued solution u(t) of (2.1) is such that the integral j’uZ(t)dt
is convergent if and only if u(t) is a multiple of u(t, 2).

Similarly, if z e (- , z(2)] and s e (- , z), then there is a unique solution
u u(t, z, 2), v v(t, , 2) satisfying the boundary conditions (2.13) and v(z, z, 2)
is a monotone nondecreasing function which is bounded below on (-, ). If
V_o(Z, 2)= lim__ v(z, , 2), then a principal solution u_(t, , 2) of (2.1) at- is determined by the boundary conditions

(2.14o) u_ (z, z, 2) 1, v_ (z, z, 2) v_ (z, 2).
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Also, the distinguished solution w_ o(t, 2) of (2.12) at ov is given by w_ (t, )_
(t, z, )/u_ (t, z, 2), and

(2.14) w_ (z, 2) v_ o(z, z, 2) v_ oo(z, 2) for. z (- , z(2)].

Corresponding to the above results for the endpoint , we have that a real-
valued solution u(t) of (2.1) for a value 2 is such that the integral j’_ oouZ(t)dt is
convergent if and only if u(t) is a multiple of u_ (R)(t, 2).

Now under hypotheses (S5 (i), (ii), (iii)) it follows that if Ao {212’ <= 2 <= 2"}
is a compact subinterval of A, then 0 =< r(t, 2)=< r(t, 2’) and ]p(t, 2)1 =< ]p(t, 2’)l
+ Ip(t, 2")] for (t, 2) R Ao. Consequently, if [a, b] is a compact subinterval of
R, and j Ao, j 0, 1, 2,..., with limj_ j o, then with the aid of the
Lebesgue dominated convergence theorem it follows that the sequences {r(t, j)}
and {p(t, j)} converge strongly in [a, b] to the respective limit functions r(t, o)
and p(t, o); that is,

lira Ir(, j) r(, o)1 dt 0, lim ]p(t, j) p(, ,o)] & 0.

o v)eR R R, withConsequently (see, for example, Reid [9, Th. .1]), if (tj, uj,
the sequences {j}, {u}, {v} converging to to, u, v, respectively, then for the
solutions u u/(t), v vj(t) of (2.1’) for 2 j satisfying the initial conditions

o

we have that the sequences {uj(t)}, {vj(t)} converge on R to Uo(t), Vo(t), respectively,
and the convergence is uniform on arbitrary compact subintervals of R. Also,
since p(t, 2) >__ 0 for e[z(2o), ) U (- c,- z(2o)] and 2e(A1,2o], for the
principal solutions uo(t, 2), v(t, 2) and u_oo(t, 2), v_o(t, 2) of (2.1) satisfying

u(z(o), 2) 1, u_ (- Z(2o), 2) 1 for 2 e (A 1, 2o],

we have that voo(V(2o), 2) woo(Z(2o), 2) and v_ o(- Z(2o), 2) w_ oo(- (2o), 2) are
continuous functions of 2 on (A1,2o]. For a proof of this result stated precisely
in these terms, the reader is referred to Reid [11, Th. 3.2, Cor.]. For the case of
r(t, 2) 1 and p(t, 2) continuous in (t, 2) on R x A, this result is a consequence of
Hartman [3, Chap. XI, Cor. 6.6].

As a first step in the proof of Theorem 2.1, for a given 2o e A satisfying 2o >lm
let ro (2o) and xo X(2o) be determined as in (2.11). In view ofthe monotoneity
property of (f3 (iii)) we have

(2.11’) p(t, 2) >_ p(t, 2o) -> C(2o) for 1 t (A 1,10], e (-- C, Z0] U [Zo, O).

For 2 e (A 1,20] let u u(t, 2) u(t, o, 2), v v(t, 2) vs(t, o, 2) be the solution
of (2.1’) determined by the corresponding boundary conditions (2.13). For
A1 < 21 < 22 < 20 we then have

v(o, 2) u(o, 2)v(o, 2)

{r(t, 1)[U;(f, 1)]2 .qt_ p(t, 21)[us(t, 1)]2} dt

>= {r(t, 22)[u’(t, 21)] 2 + p(t, 22)[u(t, 21)]2} dt

(cont.)
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>= {r(t, 2)[u’(t, 22)] 2 + p(t, 2)[u(t, 2)]2} dt,

where the last inequality is a consequence of the fact that in view of the discon-
jugacy of (2.1) on Zo, s] for 2a the solution us(t, 2a) minimizes Jolt/, a[Zo, s] in
the class of arcs Zo, s] satisfying (Zo) u(Zo, ), (s) u(s, ) (see, for
example, Reid 10, Chap. V, Cor. 2 of Th. 3.1]). Moreover, we have

{m, )[u’(t, )] + p(t, )[u(, )]} d -(o, )v(o,)

-v(o,2),

and consequently --Us(TO,,I) --Vs(TO,,2) for A < ’1 < ’2 20" Finally,
since vs(To, 2,) v(To, 2,) w(To, 2,) as s , we have

--W(To, /’1) --Wo(TO’ 22) for A < ’1 < ’2 20"
In a similar fashion, we may establish that

w_(- To, 21) _>_ w_(-To,22) forA1 <21 < 22 <2o.
Now, for r/e 9[-To, To] and 2 e A, define

J[; ] w_ (- o, )2(_ o) w(o, )(o) + Join; 1 to, o]
(2.15’)

for 2 e (A1,20]

J[; ,] w_ (- o, o)Z2(- o) w(o, o)2(o) + Jo[rZ; 1 o, o]
(2.15") for 2 e (20, A2).

The functional J[r/; 2] specified by (2.15’), (2.15") is clearly of the form (2.3)
with a -To, b To, and

/o(2) w_ (- o, ),
(2.16)

]a(,,)-- /a(,O),

flb() w(To, 2) for

fib(2) fl(2o) for 2 (20, A2).

Consequently, in view of Lemma 2.1 the corresponding Sturmian boundary
problem (2.4) has an infinite sequence of proper values (2.5) satisfying the con-
clusions (a)-(d) of that lemma. Moreover, for 2 e (A 1,2o] the boundary conditions
of this problem (2.4) specify that the proper solutions are multiples of u(t, 2)
and u_(t, 2) on the respective intervals [To, ), (-, -To], so that for such
values of 2 the boundary condition (2.2) is equivalent to the two-point boundary
conditions of this associated problem (2.4).

As 2o has been chosen so that any solution of (2.1) for 2 2o has at least m
zeros on lo, and lo c (- To, To), we have that/,,(2o) < 0. Since each of the proper

values/h(2) is a strictly decreasing continuous function of2 on A, and g1(2) > 0 for
2 e (A1,2), it then follows that for j 1,..., m there is a unique value 2je A
such that #j(2j) 0. Moreover, in view of the inequalities (2.5), we have that

and for j 1,2,..., m the proper solution uj(t)- uj(t; 2j) of the associated
Sturmian boundary problem (2.4) is a solution of (2.1), (2.2) which has exactly
j 1 zeros on R.
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In view of the above result, for a given 2o e A there are only a finite number of
proper values 2 of (2.1), (2.2) on the interval (- A1,2o], and consequently for the
sequence of proper values {2.i} determined above we have that ),i A2 as j oe.

It is to be emphasized, however, that there is no condition on the order of
growth of the 2j specified by the hypotheses of Theorem 2.1. Indeed, let b(2) be
any continuous, positive monotone increasing function of 2 on [0, oe) such that
b(2) oe as 2 oe, and for A (0, oe) define r, p or R x A by:

,2 for e [--b(R), b()]
(2.17) r(t, ,) =-- 1, p(t, ,)

1 forte (-

In this case, for 2 e (0, ) one may choose z(2) b(2). Moreover, one may verify
readily that u(t, 2)= exp {-t + b(2)}, u_(t, 2)= exp {t + b(2)}, and the cor-
responding distinguished solutions of (2.12) are w(t, 2) -1, w_(t, 2) 1.
Hence u(t) is a proper solution of the corresponding system (2.1), (2.2) if and only if

u"(t) + 22u(t) 0 for e [- b(2), b(2)],

(2.8) u(-b()) u’(-b()) O,

u(b(2)) + u’(b(2))= O.

By elementary computation it may be verified that 2 e A is a proper value of
(2.18) if and only if it is a root of the equation

(2.19) ctn [22b(2)]

An associated proper function of (2.18) is then a nonzero multiple of

(2.20) 2 -1 sin (2It + b(2)]) + cos (2It + b(2)]),

and a corresponding proper solution of (2.1), (2.2) is a nonzero multiple of the
function u(t, 2) defined as

u(t, 2) exp {t + b(2)} (t e(-, -b(2)))

2- sin (2It + b(2)]) + cos (2It + b(2)]) (t e [-b(2), b(2)])

{2 -1 sin (22b(2)) + cos (22b(2))} exp + b(2)} (t e (b(2), )).

In particular, if {2} is any monotone increasing sequence of positive numbers
which tends to as j there exists a continuous positive monotone in-
creasing function of 2 on [0, ) such that b(2) as 2 and 2 2 is the
jth root of the equation (2.19).

In the above example the function p(t, 2) defined in (2.17) is discontinuous
along the curves b(2) and -b(2) in (t, 2)-space. However, by suitably
modifying p(t, 2) "near" these curves one may obtain a boundary problem with
continuous p(t, 2) that exhibits the same type of phenomenon as illustrated by the
presented example.

3. A Sturmian problem on an infinite interval involving "turning points." Let
g(t, 2) be a real-valued function defined for (t, 2) R R + which satisfies the
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following conditions:
(a) For 2o e R +, g(t, 2o) is locally of class oo on R moreover, for t.a.e, on R

this function is continuous in A at 20.
(b) g(t, O) O.
(c) For (- 1, 1),g is monotone nonincreasing in 2 on R +,and the functional

{r/’(t) + g(t, 2)(t)} dt
-1

(’) is a strictly monotone decreasing function of 2 for arbitrary (t) 0
belonging to the class [- l, 1].

(d) For t(-, -1) U (1, ), g is monotone nondecreasing in 2 on R +.
(e) There exists a subinterval a, b] c (- 1, 1) such that lim g(t, 2)

for a.e. on [a, hi.
(f) For 2 (0, ) there exists a (2) 1 and a (2) > 0 such that g(t, 2) (2)

for (- , z(2)) U (z(2), ).
We shall be concerned with the boundary problem

(3.1) u"(t) g(t, 2)u(t) 0,

(3.2) u2(t) dt <

for which we shall establish the following theorem.
THEOREM 3.1. Under the hypotheses (’ (a)-(f)) the real proper values of the

system (3.1), (3.2) comprise a sequence of disjoint subsets Aj, j 1, 2,..., of R +

such that if 2 Aj then there is a corresponding proper solution u u(t, 2) of (3.1),
(3.2) which has exactly j- 1 zeros on R, and these zeros all occur on the open
interval (- 1, 1). Moreover, {Aj} - in the sense that for each . R + there exists
an integer k k(.) such that Aj c (., ) for j >= k.

In view of hypotheses (.’ (a), (b), (d)), for arbitrary 2 R + the differential
equation (3.1) is disconjugate on each of the intervals [1, ) and (- , 1], and
consequently for each such 2 at these respective endpoints there exist principal
solutions uoo(t, 2), u_ oo(t, 2) which are different from zero on the respective intervals
[1, ), (- , 1], and corresponding distinguished solutions

woo(t, 2) u’(t, 2)/uoo(t, 2), w_ oo(t, 2) u’_ oo(t, 2)/u_ oo(t, 2)

of the associated Riccati differential equation. Moreover, by argument similar to
that employed in the preceding section, the functions uoo(t, 2), u’(t, 2), u_oo(t, 2),
u’_ (R)(t, 2) are continuous in (t, 2) on R R +, and therefore woo(t, 2) and w_ oo(t, 2)
are continuous in (t, 2) on [1, ) R + and (- , 1] x R+, respectively. Also,
in view of hypothesis (.’ (f)), a solution u(t) of (3.1) is such that condition (3.2) is
satisfied if and only if u(t) is a multiple of uoo(t, 2) on [1, ), and a multiple of
u_ oo(t, 2) on (- , 1]. That is, u(t) is a proper function of (3.1), (3.2) for a value 2
if and only if u(t) is a proper function corresponding to a proper value 2 of the
finite interval boundary problem

u"(t) g(t, 2)u(t) 0,

(3.3) w_ oo(- 1, 2)u(- 1) u’(- 1) 0,

-woo(l, 2)u(1) + u’(1) 0.
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The quadratic functional associated with this finite interval boundary problem is

(3.4) J[r/12] w_oo(-1,2)r/2( 1)- woo(1,2)r/2(1)+ {r/’2(t) + g(t, 2)r/2(t))dr.
-1

Now if u(t) u(t, 2) is for s > 1 the solution of (3.1) satisfying the end-conditions
u(1,2)- 1, u(s, 2)- 0, then as in the previous section we have that uoo(t, 2)

lim_ u(t, 2) is the principal solution at satisfying u(1, 2) 1, and in view
of conditions (SS’ (b), (d)) we have that the principal solution of (3.1) at thus
determined is such that uoo(t, 2) > 0 for [1, or) and u(1, 2) woo(l, 2) is non-
positive and monotone nonincreasing in 2 on R +. Similarly, the principal solution
of (3.1) at satisfying u_ oo(- 1, 2) 1 is such that u_ oo(t, 2) > 0 for (- ,

1], and u’_ oo(- 1, 2) w_ oo( 1, 2) is nonnegative and monotone nondecreasing
in 2 on R+. Consequently, the boundary term

w_ oo(- 1, 2)r/2( 1) woo(l, 2)r/2(1)
of (3.4) is a monotone nondecreasing function of 2 for arbitrary real-valued
functions r/(t), while for rt 9.1[-1, 1] with rt’ 2[_ 1, 1] the integral term

(3.6) {r/’2(t) + g(t, 2)r/2(t)} dt
-1

is a monotone nonincreasing function of 2, so that the functional (3.4) does not
possess the monotone properties requisite to insure the classical Sturmian theory
for the boundary problem (3.3). As 2 increases on R + the functional (3.6) tends to
attract zeros of solutions of (3.1) into the interval - 1, 1], whereas the functional
(3.5) tends to repulse zeros of solutions away from this interval.

As in the case of the problem treated in the preceding section, however, we
shall discuss the existence of proper values of (3.3) by the consideration of the
related system

u"(t) g(t, 2)u(t) + au(t) O,

(3.7) w_oo(- 1, 2)u(- 1) u’(- 1) 0,

woo(l, 2)u(1) + u’(1) 0,
which is linear in the characteristic parameter a. From standard Sturm-Liouville
theory (see, for example, Reid [10, Chap. V, Th. 7.4]) it follows that for each 2 R +

the proper values o o(2) of (3.7) are real, may be ordered as a sequence

0"1( < 02( <’’" < O’j() <’’’,

and a proper function u uj(t, 2) of (3.7) corresponding to a aj(2) possesses
exactly j 1 zeros on (- 1, 1). Clearly u(t) is a proper function of(3.3) correspond-
ing to a proper value 2 2o if and only if there exists a j such that aj(2o) 0 and
u uj(t, 2)is a proper value of (3.7)corresponding to a oj(2o).

As g(t, 0) 0 by hypothesis (.’ (b)), for 2 0 the equation (3.1) reduces to
u" 0, so that uoo(t,O) u_oo(t, O) =_ 1, woo(t,O) =_ w_oo(t, 0) 0, and conse-
quently al(0) 0. Also, in view of hypothesis (SS’ (e)), from the extremizing prop-
erties of the proper values of (3.7) it follows that each aj(2) is negative for 2
sufficiently large. Finally, as in the discussion of the boundary problem in 2, the
condition (.’ (a)) and the continuity of the functions w_ oo(- 1, 2) and woo(l, 2) on
R + imply that each %(2) is a continuous function on R+, and consequently the
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conclusion of Theorem 3.1 holds for Aj defined as the set of values 2 such that
%(2) 0. As limj_ aj(2) for each 2 e R +, if [0, .] is a compact subinterval
of R +, and k is an integer such that ak() > 0, then aj(2) > 0 for 2 e [0, .3 and
j k, k + 1, ..., so that A c (2, ) for j => k.

It is to be noted that one can estimate the position of the sets Aj through the
consideration of a second related boundary problem

u" g(t, )u(t) + vu(t) o,
(3.8) -w- o(- 1, 2)u(- 1) u’(- 1) 0,

w(1, 2)u(1) + u’(1) 0,

which is linear in the characteristic parameter v. For (3.8) the related functional is

(3.9) Jo[r/]] -w-o(- 1,2)r/2( 1) / w(1,2)r/2(1) + {r/’2(t) + g(t,2)q2(t)} dt,
-1

which is a monotone strictly decreasing function of 2 for each nonidentically
vanishing r/e [- 1, 1]. Consequently, the proper values v v(2) of (3.8) are real,
may be ordered as a sequence

(3.10) v1(2) < V2(2 < < Vj(/) < "’’,

and a proper function of (3.8) corresponding to a proper value v v.i(2) has
exactly j zeros on (- 1, 1). Also, each proper value vj(2) is a strictly monotone
decreasing function of 2 on R/ and v (0) 0. In particular, the real proper values
of the system

u"(t) g(t, 2)u(t) O,

(3.11) -w- oo(- 1, 2)u(- 1) u’(- 1) O,

w(1, 2)u(1) + u’(1)= 0,

may be ordered as a sequence

(3.12) ’1 < 2 <"" < j <"’,

where each .j has the definitive property of being the unique value on R + such
that vj() 0, and a proper solution of (3.11) corresponding to 2 j has exactly
j 1 zeros on (- 1, 1).

Now, as noted above, for 2 R + we have w(1, 2) __< 0 and w_ (- 1, 2) => 0,
so that the functionals J[r/12] and J0[r/12] defined by (3.4) and (3.9) satisfy the
inequality

(3.13) J[r/12] __> Jo[r/12] for q [-1, 1].

Therefore, by classical comparison theorems (see, for example, Reid 10, Chap.
VI, 4]), we have

(3.14) vj(2)=< aj(2)=< vj+2(2), j= 1,2,..., 26R+.

Consequently, the set Aj {212 R +, aj(2) 0} must lie in the compact interval
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Added in proof Subsequent to the completion of the present paper and the
associated one listed as [11] in the References, Philip Hartman has considered a
related problem. His paper, Boundary value problems for second order, ordinary
differential equations involving a parameter, has appeared in the Journal of
Differential Equations, 12 (1972), pp. 194-212. In particular, for second order
linear equations he has presented some results on principal solutions in more
detail than I have given, as well as an extension of the principal existence theorem
to some more general nonlinear problems.
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GENERALIZED CAUCHY AND POISSON INTEGRALS
AND DISTRIBUTIONAL BOUNDARY VALUES*

RICHARD D. CARMICHAEL’

Abstract. Let C be an open connected cone, and let O(C) denote its convex envelope. Cauchy and
Poisson integrals of distributions in [p, < p =< 2, corresponding to tubular radial domains
Ttc) R + iO(C) are defined; and properties of these integrals are obtained. The boundary values
of these integrals are obtained in the distributional sense on the distinguished boundary of T.
Functions which are analytic and have a specified growth condition in T are related to the Cauchy
and Poisson integrals of their distributional boundary values. The results concerning these functions
extend some well-known theorems concerning the Hardy HV(Tt)-spaces to our distributional
setting. Further, functions which are analytic in disconnected tubular cones are considered; and in
particular conditions are obtained under which such a function has an analytic extension to the convex
envelope of the tubular cone.

1. Introduction. The concept of distributional boundary values in )p has
been introduced by Tillman [1]. He has characterized functions which are analytic
in an octantB {z C" 6j(Im (zj)) > 0, 6 (61, "’", 6,), fir + 1, j 1, ..., n}
and which have distributional boundary values in the topology of ), using the
"Indikatrix" of U @,, 1 < p < , which is the analytic function

f(z)=(2ci)_ n(Ut, ii 1 , Im(z)-0, j= 1,...,n.
j= Zj tj

Tillman proves that the "Indikatrix" satisfies the following properties:

(1)

(2)

(3)

If(z)l M I-[ (- / + )-/-’) rt IIm (z)l -+-=1;
j=l P q

x) f(x + ie is bounded in,
6 j=l e>0

f U in the topology of as e 0.

Furthermore, Tillmann obtains the converse that if f(z) is analytic and (1) and (2)
hold, then f(z) is the Indikatrix of a distribution U s thus (3) holds for this U.
Luszcyki and Zieleny [2] have obtained results similar to Tillmann but for only
one dimension.

Beltrami and Wohlers [3], [4], [5], [6] have obtained results in which an
element U 2 is the boundary value of an analytic function from the upper or
lower half-plane. The topology used is that of 5e’; furthermore, they confine their
attention to the space 2 and work in only one dimension. By using the ’topology and thus considering )2 as a subspace of 5e’, Beltrami and Wohlers
are able to associate the generalized Cauchy integral (Indikatrix) with analytic
functions in the upper (lower) half-plane which satisfy

(4) If(z)l _-< Cr(1 + Izl)m, Im (z) >__ > 0,

a more general boundedness condition than that of Tillmann. Also available in

* Received by the editors November 15, 1971.
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this setting is the use of the Fourier transform in ’ with which Beltrami and
Wohlers show that the generalized Cauchy integral of U @)2 equals the Fourier-
Laplace transform ofan element V 5’ having support in a half-line. A generalized
Poisson integral for U ,2 has been defined by Beltrami and Wohlers [5,
pp. 70-71], and this generalized integral has been related to analytic functions
having growth as in (4).

In Carmichael [7] we considered p as a subspace of 5’ and generalized
several results of Beltrami and Wohlers concerning Cauchy and Poisson integrals
to octants and to distributions U e ,p, 1 < p __< 2. Further results concerning
distributional boundary values in ,, considered as a subspace of 5’ were
obtained in Carmichael [8], [9]; however, in [8], [9] we were concerned with
Cauchy or Poisson integrals.

In the present paper we define and obtain properties of a generalized Cauchy
integral (Indikatrix) and a generalized Poisson integral for distributions U
corresponding to tube domains Tc " + iCc C", where C is an open con-
nected cone, of which the half-plane in C and the octant in C" are examples.
These integrals (and their properties) have as special cases the Indikatrix of Till-
mann and Beltrami, Wohlers and the Poisson integrals defined by Beltrami,
Wohlers in 1 dimension and by Carmichael in n dimensions. In fact the present
definitions of the Cauchy and Poisson integrals are considerably more general;
for also included as special cases are integrals corresponding to such tube domains
in C" as the forward and backward light cones, which are important domains in
quantum field theory. These results will be contained in 3 of this paper along
with some needed preliminary theorems.

In 4 we shall prove that the generalized Cauchy and Poisson integrals of
U , attain boundary values in p. The boundary value theorem for the
Poisson integral of U ,, generalizes a well-known result concerning the
boundary value attained by the classical Poisson integral corresponding to tube
domains of LP-functions.

We relate the Cauchy and Poisson integrals of U @, in tube domains to
a space of analytic functions which will be denoted as G (see 3) and whose
elements satisfy a more general boundedness condition than that of Tillmann or
Beltrami and Wohlers (recall (1) and (4)). Our theorems concerning the distri-
butional boundary values of functions in G: (and in a special case of G) and the
relation of the functions to the Cauchy and Poisson integrals of the boundary
values, which are elements of ,,, are of importance because they may be viewed
as generalizations of known results concerning the Hardy HP-spaces in tube
domains. In our theorems the set of functions having boundary values and
representable by Cauchy and Poisson integrals of the boundary values is enlarged
from the HP-spaces to the space G (Hp c Gbc for all p, 1 <_ p _<_ o) and the set
of admissible boundary values is enlarged from the LP-functions to the
distributions (Lp ’Lp’) We accomplish this without altering the structure of the
classical Hp setting; however, we must replace pointwise and norm convergence
by weak convergence. Further, some of our theorems concerning boundary values
of elements in the space G have as special cases results obtained by Tillmann,
Carmichael, and Beltrami, Wohlers but again the theorems presented here are
considerably more general.
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In 5 we obtain theorems concerning functions analytic in tubular cones
TC= "+ iC c C", where the cone C is not necessarily connected. We are
especially interested in obtaining conditions under which a function analytic in
Tc has an analytic extension to Tc), the convex envelope (hull) of Tc.

Topics which will be considered in future research will be briefly discussed in
6. To obtain most of the results of this paper, we must restrict our attention to
Lp, 1 <p=<2.

2. Notation and definitions. The n-dimensional notation to be used in this
paper will be the same as that in Carmichael [8]. In particular we recall that by
D, 0 being an n-tuple of nonnegative integers, we mean D D D,]", where
D (1/2ni)(cq/cqt) or Dj--(1/2ni)(c/cqzj), j 1, ..., n. We put D’ or D to
distinguish between differentiating on the real variable (t1,"-, t,) or the
complex variable z (z l, ..., z,) whenever there is a possibility of confusion.
The Fourier transform for L1-functions 4) is defined as in [8] and is denoted by
(x) or [qS(t);x]. The inverse Fourier transform of qS(t) will be denoted- [(t); x3.

For the definitions of the function spaces g, ,, and Lp and the distribution
spaces ,9’ and @L we refer to Schwartz [10]. We recall that L,, 1 < p __< , is
the dual space of @,, lip + 1/q 1. We shall particularly be concerned with the
notions of convergence in , and ,_. A sequence of functions {bz} 5, con-
verges to 4 @L, as 2 -o 2o if

lira IID(b4(t) OS(t)) , 0,
4 4o

where is an arbitrary n-tuple of nonnegative integers. A sequence of functions

{b4} 5 converges to 4) 5e as 2 2o if

lim sup ItaD’(ck4(t)- b(t))l 0,
4--*40

where and/ are arbitrary n-tuples of nonnegative integers.
For all terminology concerning distributions we refer to Schwartz [10]. We

recall that the convolution of two distributions U and V is defined, when it exists,
by

(u v, ) (u, (v,, ( +

where b is an element of the appropriate function space. The Fourier transform is
a continuous isomorphism of ,9 onto 9 with the same being true of’ under the
definition

The support of a distribution U will be denoted by supp (U) with the same notation
for the support of a function.

The definitions of cone and compact subcone are the same as in [8]. If C is
a cone, O(C) will denote the convex envelope (hull) of C; and Tc + iC will
be called a tubular radial domain if C is a connected cone. If C is not connected,
then Tc will be called a tubular cone. The function

Uc(t)= sup (-(t,y})
yprC
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is the Indicatrix of C. (pr C denotes the projection of C, which is the intersection of
C with the unit sphere.) C* {t:Uc(t)<= 0} {t:(t, y) >= O, y C} is the dual
cone of C; and the number

Pc sup Uoc)(t___) C, "\C*,

characterizes the nonconvexity of the cone C.
Let C be an open connected cone. Let f(z) be a function of z Tc c C, and

let U be a distribution. By f(z) U in the topology (i.e., weak topology) of the
distribution space as y Im (z) - 0 (i.e., y 0, j 1, ..., n), y C, we mean
f(z), c(x)) (U, c(x)) as y - 0, y C, where b isan element ofthe appropriate
function space. U is then called the boundary value of f(z); and we note that it is
defined on the distinguished boundary of Tc, {z x + iy:x ", y (0, ..., 0)},
which is not necessarily the topological boundary of Tc.

Throughout this paper Lp denotes Lp(n), the equivalence class of Lebesgue
measurable functions over [" whose pth power is absolutely Lebesgue integrable.

3. Generalized Cauehy and Poisson integrals and preliminary theorems.
Throughout this section C will denote an open connected cone. Consider

/((z t) exp (2rti(z t, ri)) drl,

where C* {r/:Uc(q) _-< 0} is the dual cone of C and z is an arbitrary but fixed
point in TC)= " + iO(C). We call K(z t) the Cauchy kernel function and
note that kernel functions similar to K(z t) were first studied by Bochner 11].
IfO(C) contains an entire straight line, then by a result ofVladimirov 12, Lemma 1,
p. 222] the cone C* lies in some (n 1)-dimensional plane. Thus C* has measure
zero, and K(z t) 0. To avoid this triviality when working with the generalized
Cauchy and Poisson integrals, we assume throughout this paper that all open
connected cones C are such that O(C) contains no entire straight line.

THEOREM 1. K(z t) L,, 1/p + 1/q 1, 1 < p <= 2, as a function of for
fixed z Tc).

Proof. Let be an arbitrary but fixed n-tuple of nonnegative integers. For
z x + iy fixed in Tc), it follows from a result of Vladimirov [12, Lemma 2,
p. 223] that there exists a real number a > 0 such that (r/, y) >= alr/[ for all r/ C*.
From this and a well-known result concerning Lebesgue integrals (see Schwartz
[13, Theorem 32, p. 39]) we have

(- 1)11 .,cf* r/ e2’i<z-t">dtl
(5)

<= fc, [q[ e-2rta[q[ drl

,o=< S rI=1 +"- e 2=a dr <

where S, is the area of the unit sphere in ". By (5),

(6) D[K(z t) (-1)I’1 f,,=e2=’<=-’’"> dr/

exists, where the integral converges uniformly with respect to t. Thus K(z t)C
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since a is arbitrary. It remains to show that DK(z- t)e Lq, 1/p + 1/q 1,
1 < p __< 2; arguing as in (5), we have that (-1)lllc,(r/)r/ e2i(z’") e LI Lp,
1 < p __< 2, for fixed z T(c), where Ic,(rl) is the characteristic function of C*.
From (6), DK(z t) if- [(- 1)lllc,(q)q e2i(’">; t] and the Fourier inverse
transform can be interpreted as a limit in the mean. Thus by a well-known result
from Fourier transform theory, we have

DK(z t) L, II(- 1)l’llc,(q)q e2i(z’n)][Lv <
and DK(z t)e Lq as desired. The proof is complete.

We note that if the tubular radial domain Tc is either the upper half-plane in
C or the octant B(,...,)in C", then K(z- t) becomes (2i)-1[1/(t- z)] or

(2i)-"= l[1/(tj zj)], respectively. These are the classical Cauchy kernels.
Now let Ue, 1 < p N 2; and let z be an arbitrary but fixed point in

T(c). Put

(7) C(U;z) (Ut, K(z- t)).

From Theorem we see that C(U z) is well-defined; and if Tc is the upper (lower)
half-plane in C or an octant in C", then C(U;z) is Tillmann’s Indikatrix. We
prove that C(U;z) is an analytic function and satisfies a certain boundedness
condition.

THEOREM 2. Let U , 1 < p 2. Then C(U z) is analytic in T(C); and
for any compact subcone C’ of O(C),

K(C’) Q(C’ a)
(8) IC(V z)l lyl./p + E lyla/O<llNm

where K(C’) and Q(C’ ) are constants which depend on C’ and C’ and , respectively,
m is a fixed positive integer depending on U, and d is a positive integer depending
o .

Proof. By the characterization theorem of Schwartz [10, Theorem 25, p. 201],
V 1Df’(t)’ L(t) e L, 1 < p N 2. Thus

C(U z) ( Df(t), K(z

(9)
L(t)

Now consider a fixed a, ]a] N m. Let Zo be an arbitrary but fixed point in T(c),
and suppose N(zo, 8) is a neighborhood of Zo of radius 8 such that the closure of
N(zo, 8) is a proper subset of T(c). Let z be an arbitrary point of N(zo, b); and
suppose fl is an arbitrary but fixed n-tuple of nonnegative integers. Using an
argument as in (5) we have that Ic,()+ e2’") L Lp, 1 < p N 2. Further,

Ic.(q)q+ e2ni(z-t’@ dq - [Ic,(q)q+ e2i(z’@ t],

1 1
(10) I1-X[Ic,(r/)r/+a e2’<’n) t]llL <= IIIc*(r/)r/=+a eZ=’<=’">llL, + 1.

p q

and
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Using H61ders inequality, (10), and an estimate as in (5), we obtain

(11)

Thus for each fixed e, Il < m, and any fixed fl,

D f. f(t) fR. Ic,(q)rl e2i<=-""> dq dt

| f(t)| Ic,(r/)r/+ e2rti(z-t’l> do dt;

and by (11), the differentiated integral converges uniformly with respect to
z N(zo, 6). From this and the arbitrariness of the point Zo Ttc) we have that
each term in the sum on the right-hand side of (9) is analytic in Ttc). Thus C(U; z)
is analytic in Ttc) as desired.

It remains to prove the boundedness condition (8). Let z be an arbitrary but
fixed point in Tc’, C’ being an arbitrary compact subcone ofO(C). By the character-
ization theorem of Carmichael [9, Theorem 6], there exists a constant R such
that if 1/p + 1/q 1,

(12)

C(U;z)l <= R , D[ fc* e2rti(z-t’tt> dq
Lq

For any fixed , I1 m, we have as in (10) that

(13) 1)ltl Ic,(r/)r/= e2ti(z t,rt> dr/
Lq

By the result of Vladimirov [12, Lemma 2, p. 223], there exists a real number
a > 0 depending on C’ such that (y, r/) > a]yl]r/I, r C*. From this and (13) we
have

1)1’1 lc,(r/)rl e2rti(z t,n> dr] <_ I,,’=1 e- 2,,p,,lyl I,1 dr/
Lq

(14)

<- S rIpI+n-1 e -2tparlyl dr,

where again S, is the area of the unit sphere in [". For the fixed e, I1 m and
e 4: (0, ..., 0), we integrate by parts d times on the last integral in (14), where d,
is an arbitrary but fixed positive integer depending on e such that IPI -t- n 1
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d => 0. We obtain

Sn rlpal+n- e- 2tparlyl dr

S,l--I-l([pa[-t- n- 1 -j)
(15) rlpl +n- -do, e- 2rparlyl dr

(2rtpalyl)d

< M(C,)s.l-I-=o (Ipl / n- 1 --j)

(2cpa[y[)d
where M(C’) is a constant depending on a which depends on C’. If (0, ..., 0),
then integrating by parts n 1 times we obtain

f "-2(n- l-J)
Sn r e- 2rtparlyl dr Sn

Hj 2rcparlYl

(2npa[ yl)’;-- e dr

(16)
"-2(n 1 j)SnHJ=0(2npa[y[)"

Applying (14), (15) and (16) in (12) we have

2 (n 1 j))x/p
C(U" z)l < R

(S. Hj o

(2rtpalyl)3

(S,M(C’) 1-’Ijd..=; (IPl + n- 1- j))’/P.+
o I1 <= (2npa]Y[)d-/p

and (8) follows from this estimate. The proof is complete.
We note the following more general setting for Theorems 1 and 2. Let b be a

fixed nonnegative real number, and let C be an open connected cone. Put
Sb {t:Uc(t) <= b}. If the cone C is such that {t :0 < Uc(t) b} is a bounded set
in ", then using essentially the same proofs as in Theorems 1 and 2 we have that

eZni(z-t,n) dq Lq,
1 1
-+-= 1, 1 <p=<2;
P q

and that

(17) +,fsbe2i(z-t’n) drl)
is analytic in Tc). A more general boundedness condition than (8) can be obtained
for (17) in which exponential factors appear. This more general setting will not
change the essential content of our results concerning the boundary values of the
generalized Cauchy integral and the methods of proofare the same for arbitrary b
as for b 0. Thus to avoid making the additional assumption on the cone C that
{t’0 < Uc(t) <= b} is a bounded set in [", we shall prove our results for b 0
and then note the corresponding results for arbitrary b >__ 0.

We now introduce the generalized Poisson integral of an element U
1 < p _< 2. Let z be an arbitrary but fixed point in Tc), C being an open con-
nected cone. We define the Poisson kernel related to Tc) by

(18) O(z t)
K(z- t)I,;(z- t)

K(2iy)
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where K(z- t) is the Cauchy kernel. Letting e be an arbitrary n-tuple of non-
negative integers and using the generalized Leibnitz rule we have

1+ DK(z- t)D[ K(z- t).(19) DQ(z; t)
K(2iy)

By Theorem 1, DK(z t) exists and is an element ofLq, I/p + 1/q 1, 1 < p <= 2.
By the same proof as in Theorem 1, DK(z t) exists for all n-tuples of non-
negative integers and by the same proofas in (5), DK(z t) is a bounded function
of [" for fixed z T(c). Thus for all fl and such that fl + , DK(z t)
DK(z t) exists and is an element of Lq, 1/p + 1/q 1, 1 < p =< 2. It follows
from (19) that any derivative of Q(z; t) exists and is in Lq. We have proved the
following theorem.

THEOREM 3. Let z T(c). The Poisson kernel Q(z; t)6 Lq, 1/p + 1/q 1,
1 < p <__ 2, as a function of t.

If T(c) is the upper half-plane in C1, then the Poisson kernel Q(z;t) defined
by (18) becomes

1 y
Q(z; t)=- z= x + iy

(t- X)2 + y2’

which is the classical Poisson kernel. We note that the Poisson kernel for general
tubular radial domains T(c) as defined in (18) was first introduced by Kor,nyi
[14] and Stein, Weiss and Weiss [15] and has been studied by these authors in
connection with the Hardy HP(T(C))-spaces.

Now let U Lp, < p =< 2; and put

(20) P(U z) ( U,, Q(z t)) z 6 T(c),
C being an open connected cone. By Theorem 3, P(U; z) is well-defined; and we
call P(U; z) the generalized Poisson integral of U @p, 1 < p =< 2. In Theorem 2
we saw that C(U; z), the generalized Cauchy integral, is analytic in T(c). In
general, however, P(U; z) is not an analytic function. In 4 and 5 we shall obtain
distributional boundary value results concerning both the generalized Cauchy
and Poisson integrals.

In the remainder of this section we shall obtain results which will be needed
in 4 and 5. It is well known that if f and g are in L2, then
(21) -f] f g,

where * denotes the usual convolution. Similarly if f and are in Lv, 1 < p < 2,
and iff and g are in Lq, 1/p + 1/q 1, then (21) holds. Furthermore, iff L2 and
g 6 L, then

(22) o[f, g]

in the sense of L2. It is obvious that under the above conditions both f* g and
f in (21) and (22) are elements of 5’.

LEMMA 1. Letf and , be elements ofL, 1 < p < 2 and let and g be elements
of Lq, 1/p + 1/q 1. Then [f * g] f, in 5".

Proof. Let be . By (21), (f, g, th)= (-t[f’], ). Since the Fourier
transform is a continuous, one-to-one mapping of’ onto b’, we have (-[f g],
4)) (f’, qS) as desired.
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Using (21), (22), and exactly the same proof as in Lemma 1 we have the
following lemma.

LEMMA 2. Let f L2, and let g L or g L2. Then [f * g] f, in 5’.
LEMMA3. Let f Lp, 1 < p <= 2. Let g Lq, 1/p + 1/q 1; and assume that- (g) exists and belongs to Lp. Then

(23) -f* g] - (f)-(g)
in ’.

Proof. Since f6 Lp, 1 < p 2, then -(f) exists and is an element of
L, lip + 1/q 1. Thus - (f)- (g) 6 ’. Also f* g exists as a classical con-
volution, and it is known that f* g 6 L’, 1/r 1/p + 1/q 1. Thus f* g 6 ’;
hence -f* g] 6 ’. Thus both sides of (23) are well-defined as elements of ’.
By a well-known result of Schwartz 10], the inverse Fourier transform in
converts convolution into multiplication; and (23) is obtained.

Schwartz 10, p. 270] has shown that ff U 6, 1 p 2, and V6 ,,
q 2, then [U * V] . We now obtain a variation of this result, where

we let one of the distributions be an element of, such that q does not have to
lieinl q2.

THEOREM 4. U U e k, 1 < p N 2, and V e, 1/p + 1/q 1, such that
P= , (-1)lx(x), (x) eLp, then U * Ve’ and [U * V] OP in ’.

Proof. By the representation theorem of Schwartz, U 1 D’ f e Lp,
1 < p 2, and V 11Dg g e gq, lip + 1/q 1. As in the proof of
Lemma 3, f * g e U, 1/r 1/p + 1/q 1. Thus f, * g e ’; hence the distri-
butional derivative D"+ (f, * g) e ’. Let 4 e Then

D+(f*g)’)
lalm Ifllr

(24)
I=lm Ifllr

Thus U * V e ’, and as a consequence [U * V]e ’. Using (24), the assumption
that (x)e gp, and Lemmas 1 and 2 we have

([U * V], (x))

(25)
I1

Now

(26)
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where f(x) Lq, lip + 1/q 1, since f(t) Lp, 1 < p __< 2. By assumption,
17 1//I =r (- 1)llx//(x), //(x) Lp. Using this assumption and (26), we see from
(25) that

(27) (o[U V], 4)) (0’, 4)

as desired.
We now obtain a converse result to Theorem 4. Recall that if Pc )q, then

by the Schwartz representat)on theorem, " ltl-<r D//g//, g// Lq.

THEOREM 5. Let Lp, 1 < p <= 2, and ’-’, 1/p + 1/q 1, such that
xt-V 21//I __<r [g//(t) x], where - a[g//(t) x] is assumed to exist and belong to

L’. Then [UV] (J * " in 5’.
Proof. It suffices to prove that

(28) --lit] l?] UV

in 5’; for the desired result follows immediately by taking the Fourier transform
of both sides of (28). It is evident that (28) can be proved by the same method as
was used to obtain (27) in Theorem 4 where we use Lemma 3 instead of Lemmas 1
and 2. We leave the straightforward details to the interested reader.

We note that by using the same calculation as in (26), one can show that if
U e @,, 1 __< p N 2, then U e 5’ has the form t I1 (- 1)l’lx x), where
f(x)iscontinuousandboundedifp l andf(x)eLq, 1/p + 1/q 1,ill < p __< 2.
Schwartz [10, p. 256] first recognized this result. We note further that in the case
p 2 in Theorems 4 and 5, some of our assumptions are redundant. For example
in Theorem 4 if p 2, then q 2. Thus the form of P can be proved as in (26),
and ,//e L2 by the Plancherel theory. In Theorem 5 the form of V can be proved
if p 2; and one does not have to assume that - l[g//(t); x] exists, for it auto-
matically does by the Plancherel theory and is an element of L2. The stated
assumptions are needed, however, for 1 < p < 2.

Beltrami and Wohlers [5, Theorem 1.36, p. 43] have considered Theorems 4
and 5 for the case p 2 and for one dimension. However, there is an error in their
method of proof; for they have used the supposed fact that if f and g are in Lz

then -[f* g] f, classically. This is incorrect since one can say only that
f * g e L and is continuous. Such a function does not necessarily have a Fourier
transform, and -[f*g] does not necessarily have meaning classically. The
correct approach is as we have stated in Lemmas 1-3 that is, o[f g] f and-- 1If * g] -- l(f)o- (g) as equalities in

In Carmichael [8] we have considered functions f(z) which are analytic in
Tc, C being an open connected cone, and which satisfy

(29) If(z)] =< K(C’)(1 + [zl)n e2(b+)l’l, z x + iy e rc’,
for all a > 0, where b is a nonnegative real number, N is any real number, and
K(C’) is a constant depending on C’, C’ being an arbitrary compact subcone of C.
We denote the set of all such functions f(z) by Gbc In the present paper we shall
need the following two theorems, the proofs of which can be found in [8].

THEOREM 6. Let f(z) e Gbc, and let f(z) U in the 5’ topology as y--. O,
y C’ C. Then U 5’; there exists an element Ve 5’’ such that supp (V)

_
Sb

{t’Uc(t b} and U ’; and f(z) (V, e2i<’), ze Tc’, C’ C.
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THEOREM 7. Let V 5’ and supp (V)
_

Sb for some fixed real number b >= 0
and some open connected cone C. Let q and C’ be an arbitrary compact subcone
of O(C). Then

((V, e2i<z">), ok) (V, e-2<r">), z Tc’.

For special cases of Theorems 6 and 7 and other related results we refer to
Carmichael [16]. We note that distributional boundary value results in 5’ using
boundedness conditions similar to (29) are of importance in quantum field theory
(see Streater and Wightman [17]).

We shall also use the following important result due to Vladimirov [12,
Theorem 2, p. 239].

THEOREM 8 (Vladimirov). Let C be an open cone and V 5’ with supp (V)
_

Sb
{t’Uc(t <= b}, b >= O. Then (V, e2ni(z’t)) is analytic in Ttc) and satisfies

(30) iDa(V, eZni(z’t))[ -- K(C’)(1 + [zl)N(1 + [yl-t)exp [2rcbpclY[],

z x + iy Tc’, where C’ is an arbitrary compact subcone of O(C), K(C’) is a
constant depending on C’, and M and N are nonnegative integers which do not
depend on C’.

Note that the cone C does not have to be connected in Theorem 8. Vladimirov
first proved this result in [18], where he introduced the concept of distributional
boundary values of functions analytic in tubular cones.

4. Distributional boundary values. In this section we shall show that the
generalized Cauchy and Poisson integrals for tubular radial domains have
boundary values in the distributional sense. We shall relate these generalized
integrals to the space of functions G and shall obtain theorems in which an
element f(z) Gbc has a distributional boundary value in @.p. It will be seen that
our results concerning the space G are generalizations of classical HP-space
theorems. Throughout this section C will denote an open connected cone;and
C’ c C or C’ c O(C) will denote that C’ is an arbitrary compact subcone of C or
O(C), respectively.

Let U _p, 1 =< p =< 2. Using the Schwartz characterization theorem for, and a calculation as in (26) we have

(31) -I(U) t’h,(t),

where h(t) is continuous and bounded if p 1 and h(t) Lq, 1/p + 1/q 1, if
1 < p 2. This representation of- (U) will be used frequently in this section
and the next.

To obtain the boundary value result for the generalized Cauchy integral, we
shall need two lemmas.

LEM 4. Let U , 1 < p 2, a e For fixed y Im (z) O(C),

(32)

Proof. By a proof as in Theorem 1 we have that fc, e2<’"> dq eL = ,,
liP + 1/q 1, as a function ofx. Thus by a theorem of Schwartz [10, Theorem 26,
p. 203], U * fc, e2<’"> dq exists and is an element of ,, 1/r lip + 1/q 1.
By a change of variable, we have
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so that

(33) (U,(K(z-t),dp(x))) =<U*fc, e2ni(z’n) drl,).
Thus by (33), the right-hand side of (32) exists. Using the characterization theorem
of Schwartz for U and a change of order of integration, we have

( U, (K(z t), b(x))) (-1)’’ f(t) I" DK(z t)c/)(x) dx dt
Il_<m dlR- ,R"

(--1)llfa qb(x)fa f(t)DK(z-t)dtdx

<< u, I<(z t)>, 4(x)>;
and (32)is obtained.

LEMMA 5. Let C be an open connected cone. Let Ic,(rl) be the characteristic
function of C* and 4) . Then

<K(z t), (X)> -- -l[Ic,(t/)(t/)
in the to1)ology of Lq, 1/1) + 1/q 1, 1 < p =< 2, as y Im (z) - O, y e O(C).

Proof. For the present let y be a fixed point in O(C). By a change of order of
integration, we have

<K(z t), b(x)> f Ic,(rl))(rl) e -2<y’"> e -2ti<t’"> drl;

and (q) e 5. Thus for a being an arbitrary n-tuple of nonnegative integers,

(34)
ID<K(z t), oh(x)> D- ’[Ic.(rl)P(tl) t]ll,

-’[(-l)lllc,(rl)rl%(rl){e -2=<’"> 1};t]llq;

and because of the inequality

(35) IIc,(r/)r/(r/) {e- 2<.,> 1 }1 =< 21%(n)1
and the fact that (r/)e9, we have that (-1)lllc,(rl)rl=p(rl){e-2<’">
[qL,1 <p=<2. Thus

(36)
i[--I[(__ l)lllc,(rl)rl(rl) {e- 2<,.>

=< Ic,(rl)rlp(rl) {e- z,<y.,> 1} .

(37) < U. <K(z t). dp(x)>> --, < U. .- ’[lc.(r/)(r/) t]> <.[lc.01)- I(U)],
as y Im (z) - 0, y O(C). The result is obtained by combining (32) and (37).

By (35), we can use the Lebesgue dominated convergence theorem to obtain

lim [" IIc,(rl)rl’p(rl) {e 2=<y,,> 1}1 p dri O.
yO ,JR"
yeO(C)

This fact combined with (34) and (36) proves the desired convergence.
We can now prove the following theorem.
Tx-IOM 9. Let U @’, < p <= 2. Then C(U z) -[Ic,(r/)-- (U)] in the

topology of ’, as y Im (z) - O, y O(C).
Proof. From Lemma 5 and the continuity of U we have for b 5 that
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We shall now obtain conditions on U p such that the boundary value of
C(U;z) is U. Under these conditions we shall see that C(U;z) is identical in 5’
to the Fourier-Laplace transform of an element Ve 5e’. The topology we use is
that of 5’.

THEOREM 10. Let U ’, 1 < p <__ 2, such that U , where V 5’ and
supp (V)

__
C*, C being an open connected cone. Then V 11 <=, th,(t)’ h(t) L,

1/p + 1/q 1;for any compact subcone C’ c O(C) we have

(38) (V,e2ti<z’t>) C(U;z), ze Tc’,

as elements of ,9’;and C(U;z)--+ U in the topology of ’ as y Im (z)--+ 0,
y C’ c O(C).

Proof. Since " U, then V ,- (U); and the representation of V follows
as in (31). Let {(r/)e such that {(r/) 1 for r/>__ 0, {(r/) 0 for r/__< -e, e > 0;
and 0 __< {(r/)=< 1. Put 7(t)= {((t, y)), y eO(C). By Theorem 8, (V,e2<’’>)

(V, y(t)e2=<=’’>) is analytic in TC); and by Theorem 7 we have

(39) (( V, eerti(z’t> )

z e Tc’, C’ c O(C), where b e 5e. Now supp (V)
___
C*;so that supp (h=(t)) C*

for each element h=(t) in the representation of V. Letting lc,(t) denote the character-
istic function of C*, we obtain

(40)
([Ic,(t)y(t) e- 2(y,o V], (x)).

By Theorem 5 and equations (32) and (33), we have

([Ic,(t)7(t) e -2=<y’’> V], q(x)5

(41)

Combining (39), (40) and (41) we have (38). It is straightforward to show that
y(t) e-Z=<Y">q(t) --+ 7(t)(t) in the topology of 5e as y -+ 0, y e C’ c O(C). By the
continuity of V and (39), we have

(42) (( V, e2ti(z’t)), (x)) -+ ( V, 7(t)q(t)) ( , q(x))

as y 0, y e C’ c O(C). Since U lP, then by (38) and (42), we have C(U; z) -+ U
in 5e’ as y 0, y e C’ c O(C); and the proof is complete.

COROLLARY 1. Letf(z) G converge in the 5’ topology to U e @’, 1 < p <__ 2,
as y Im (z)--+ 0, y C’ c C. Then f(z) C(U z), z Tc’, as elements of 5’;
and U is the Fourier transform of V t=l <== t=h,(t) 5e’’ h=(t) L, lip + 1/q 1,
such that supp (V)

_
C*.

Proof. By Theorem 6, there exists an element V e 5g’ with supp (V)_ C*
such that U 17" and

(43) f(z) ( V, e2i(z’’) ), Z Tc’, C’ c C.
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But for such a V, (38) holds. Thus by (38) and (43), we have f(z) C(U z), z e Tc’,
as elements of 5’. The representation of V follows as in (31) since V -- I(U).

We now give necessary and sufficient conditions that an element U e @p be
the 5’ boundary value of a function f(z) Gc.

THEOREM 11. Let f(z) G converge in the 5z’ topology to U ’Lp, 1 < p <= 2,
as y Im (z) O, y C’ c C. Then C(U z) O, z e Tc’, ’ C , where is any
open connected cone such that C* f’l {t "ue(t) < 0} .

Proof. V -I(U) has the representation as in (31); and by Theorem 6,
supp (V) C*. Now let be any open, connected cone such that C* f’l {t’ue(t)
< 0} . For each such let Vc(t) ((t, y)), y , where (r/) is defined as in
the proof of Theorem 10. Let le(t) be the characteristic function of {t’ue(t) < 0}.
By exactly the same calculation as in obtaining (38), we have

(44) C(O z) (Ie(t)V, Ve(t) eZi(z’t)), Z Tc’, C’ = C.

But supp (V) _c C* and supp (Ie(t)7e(t) e2i(z’t)) {t :U-(t) < 0}. Thus supp (V)
f’l supp (le(t)e(t) e’’>) , which implies that (le(t)V, e(t) e2’’) O.
This combined with (44) implies C(U z) O, z Te’, ’ .

THEOREM 12. Let U ’, 1 < p <= 2; and let C be an open connected cone.
Suppose there exists afinite number of open connected cones Cj, j 1, ..., m, such
that

"\{ = {t’Ucj(t) <= O} C*}, C* f’l {t’Ucj(t) <= O}, j= 1,..., m,

and

{t’Uc(t) < 0} f’l {t’Uc(t) 0}, j:/:k, j--1,...,m, k- 1,...,m,

are sets of Lebesgue measure zero and such that C(U; z)= 0, z Tc), C Cj,
0j 1,..., m. Then U is the ’ boundary value of a function f(z)eGoc as

y Im (z) O, 3’ e C’ O(C).
Proof. Let Ic,(t) be the characteristic function of C*; and for each C,

j 1,..., re, let Ice(t) bethe characteristic function of{t’Uc(t) <= 0}. V - l(U)
has the representation as in (31) and by hypothesis, we have

V-- Ic.(t)V + Icj(t)V
j=l

almost everywhere in [". Thus for 5 we have

(45)
j=l

By hypothesis and a calculation as in obtaining (38) we have for each Cj, j 1,
.., m, that

(46) 0 C(U; z) (lc(t)V, 7c(t) e2i(z’)

in 5e’ for z Tc), C C, where 7c(t) is defined as in the proof of Theorem 10 for
each Cj. Using the same proof as in (42) we have

(47) (Ic(t)V, 7c(t)e2i(z’t)) - [Icj(t)V]
in 5’ as y Im (z) --, O, y e C) Cj. By (46) and (47), we have that [Ic(t)V 0
for each Cj, j 1,..., m. Returning to (45) we thus have (U, ) (o,[lc.(t)V],
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b). Since the Fourier transform is a continuous, one-to-one mapping of 6e’ onto
St’, U [Ic.(t)V implies V Ic.(t)V. Thus supp (V)

_
C*; and we con-

0sider the function f(z) ( V, e2i<z’t> ) z Ttc) By Theorem 8, f(z) Gotc) and
by a proof as in (42), f(z) --* U p, 1 < p _< 2, in the topology of 5e’ as
y Im (z) - O, y C’ c O(C). The proof is complete.

Recall now the discussion in 3 in which we indicated that the generalized
Cauchy integral can be defined in a more general setting if the cone C is such that
{t "0 < Uc(t) <= b} is a bounded set in E". In this setting Lemmas 4 and 5, Theorems
9 and 10, and Corollary 1 all hold with C* replaced by {t "Uc(t) <= b}, b >= O, and
G replaced by G.

Tillmann [1] has shown that any U kp, 1 < p < oe, can be decomposed
into a sum of boundary values of functions analytic in the 2" octants. We wish
now to obtain a similar result for cones and U @, 1 =< p =< 2, using the tech-
niques in the present paper. Our method of proof yields more information about
the boundary values than Tillmann has obtained. Not only is each element in the
decomposition the boundary value of an analytic function, it is also the Fourier
transform of an element in 6e’ having support in a specified subset of E". We also
include the case p 1, which Tillmann has not done.

THEOREM 13. Let U ’, 1 <= p <__ 2. Suppose there exist open connected
cones Cj, j 1, m, such that

ff"\ I..J {t’Uc(t <_ 0}
j=l

and

{t’Uc(t)< 0} {t’Uc(t <_ 0}, j: k, j= 1,.--,m, k= 1,...,m,

are sets ofLebesgue measure zero. Then U .= in ’, where Wj,j 1,..., m,
0is the St boundary value of afunction f(z) e Gotc)as y Im (z) O, y e C’j O(Cj)

and Wj j, where Vje ’ and supp (Vj)_ {t’Uc(t <= 0}.
Proof. V if- I(U) has the representation as in (31). For each {t "Uc(t <= 0}

let Ic(t be the corresponding characteristic function. Let (r/)e such that
(q) 1, q >= 0, (q) 0, n =< -e, e > 0; and 0 =< (q) =< 1. Put j(t) ((t,y)),
ye O(Cj), j 1,..., m; and let V Ic(t)V, j 1,..., m. By the same method
used to obtain (45), we have

(48) (U, q5
j=

Since V e ’ and supp (V)
_

{t "Ucj(t <= 0}, then by Theorem 8, f(z) (
o TO(C),7j(t) e2ni(z’’)) is an element of Go(cj)for z e j 1,..., m. (Note that if

f(z) satisfies (30), then fj(z) satisfies (29) for any b >__ 0.) By the same proof as in
(42), we have fj(z) -, in the topology of 5’ as y Im (z) O, y e C} c O(Cj),
j 1,-.., m.. Putting Wj , j 1,..., m, and recalling (48), we have that
U j= W, where the W are the desired 5e’ boundary values of the corre-
sponding analytic functions.

We turn our attention now to the generalized Poisson integral of U e k,
1 < p =< 2. Kor/nyi [14, Prop. 3(c)] has stated that the Poisson integral of f Lp,
1 __< p < oe, corresponding to tube domains has f as boundary value in the
LP-norm topology. We shall show that the corresponding statement for the
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generalized Poisson integral of U ,p, 1 < p =< 2, holds where we use the
topology of [p. To do so we use several lemmas. Korfinyi [14 and Stein, Weiss
and Weiss [15] have obtained the following lemma, which states that the Poisson
kernel Q(z;t) as defined in (18) is an approximate identity.

LEMMA 6. Let C be an open connected cone; and let z be an arbitrary point in
T(c) Then

(49) Q(z; t) >= 0 for all " ;.

(50) f, K(x + K(2iy)iy) K(x + iy)
dx 1 y e O(C);

lim
K(x + iy)K(x + iy)

dx O.(51) ;in 0,
-0 Jlxl>_-, K(2iy)
yeO(C)

The following lemma was obtained by Korfinyi [14], who stated it without
proof. We shall sketch the proof here, for the method used will be important
in obtaining the boundary value result for the generalized Poisson integral.

LEMMa 7. Let C be an open connected cone; and let f L, 1 <= p < o. Then
the Poisson integral off converges to f in L as y Im (z) O, y O(C).

Proof. Performing a change of variable gives

fa f(t)Q(z t)dt fa f(x -t)K(t + iy)K(t + iy)
dr

K(2iy)
and by (50),

f(x) fu f(x)
K(t + iy)K(t + iy)

K(2iy)
dr, y e O(C).

We thus wish to show that

lim
yeO(C)

fn f(t)Q(z t) dt f(x)
L

lim
yO(C)

f(x t) f(x)}
(52)

K(t + iy)K(t + iy)
dt

K(2iy) Lp

(53) (P(U; z), dp(x)) ( U, (Q(z t), alp(x))).

The proof of Lemma 8 is similar to that of Lemma 4 and will be omitted.
We can now prove the following theorem.

THEOREM 14. Let C be an open connected cone; and let U ’, 1 < p <= 2.
Then P(U z) U in the topology of’ as y Im (z) O, y O(C).

Proof. Let tp 6. By a change of variable,

(54) f Q(z. t)dp(x) dx fn (x + t)
K(x + iy)K(x + iy)

dx.
K(2iy)

Using Lemma 6, this can be done by exactly the same method of proof used in
Hoffman [19, Theorem, pp. 17-19 see also Theorem, p. 32]. We leave the straight-
forward details to the interested reader.

LEMMA 8. Let U @’, 1 < p < 2; and let p 5e. Then forfixed y O(C), C
being an open connected cone,
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Let be any n-tuple of nonnegative integers. Recalling that Dck(t)= (t)
and using (54), we have

D Q(z; t)dp(x) dx Ddp(t)
Lq

(55)

f O(x + t)K(x + iy)K(x + iY)dx O(t)
K(2iy) Lq"

But 5 c L, Lq, lip + 1/q 1, 1 < p <__ 2; and by exactly the same proof
as in obtaining (52), we have that the right-hand side of (55) converges to zero as
y 0, y eO(C). Thus by (55), (Q(z;t), c(x)) ok(t)in L,, 1/p + 1/q 1,
1 < p N 2, as y O, y e O(C). By the continuity of U e, 1 < p N 2, it follows
that ( U, (Q(z; t), 4(x))) ( U, 4) as y O, y e O(C). From this fact and (53) we
obtain P(U; z) U in , as y 0, y e O(C); and the proof is complete.

A comparison of Theorems 9 and 14 shows that the generalized Cauchy and
Poisson integrals have distinct properties. C(U z) attains a boundary value which
depends on the cone C; while P(U;z) always has U as its boundary value ir-
respective of C.

For the special case that Tc is an octant in C", further results can be obtained
for the generalized Poisson integral. For the octant B {z e C" :6(Im (z)) > 0,
6 (61,’", 6,), 6j 1, j 1,..., n}, the generalized Cauchy integral for
U e, 1 < p N 2, becomes

C(U; z e Bo) (2i)- sgn y
j= j=l j-- zj/

where sgn yj represents the sign of yj, j 1,..., n. The generalized Poisson
integral for U is

__1 (sgn yj)y\P(U z Bo) (t)-" U,
Itj zjl 2 /"

Since

]tj zjl z - tj zjj=l j=l

then we have the relation

P(U;zBo) C(U; z6Bo) C(U;(Yzl, z2, ..., z,), z6B0) +
(56) + (-- 1)JC(U (I, j, zj+ 1, Zn), Z

_
Bo) +

+ (-1)nC(U;(5,...,Sn),ze

where there are 2" elements in this sum. Using (56), a stronger result than Theorem
14 can be obtained for the octant we can prove that P(U; z e Bo)- U in the
topology of 5z’ as Im (z) 0, z e B0. Further, consider the set of functions
f(z) e Go which are analytic in B0 and satisfy

l/(z)l _-< K(1 / Izl)u

in {z’fj(Im (zj)) >= 7 > O, j 1,..., n} where ; (;, ..., ;,). We can show
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that if U e kp, 1 < p __< 2, is the 5’ boundary value of f(z)e Ga for fixed 3, then
there exists an element Ve 5’ with supp (V)

_
{t" oe < 6jtj <_ O, j 1, ..., n}

such that

(57)
f(z) (V, e -2i<z’’>) C(U;zeB)

P(U; ze B), z e B.
Thus for the octant more can be said about the function f(z) than in Corollary 1
of the present paper. Conversely, if we have that U p, 1 < p =< 2, is the
Fourier transform of Ve 5’, supp (V) c_ {t: < (5jtj N 0, j 1, -.., n}, then
U is the 5e’ boundary value of a function f(z) G6 such that (57) holds. Details of
these results for the octant are contained in Carmichael [7].

Several of our results in this section are reminiscent of classical results in
which analytic functions are related to their boundary values. Hille and Tamarkin
[20], [21], [22] have obtained theorems concerning functions which are analytic
in a half-plane and which obtain boundary values and have applied their results
to the specific set of Hardy HP-spaces. Theorems 10, 11 and 12 and Corollary 1 of
the present paper have classical counterparts which have been obtained by Hille
and Tamarkin (see [20, Theorems and 3] and [21]). Zygmund [23], [24] extended
the classical HP-spaces to n dimensions by considering functions analytic in the
polydisc {z C":lzjI < 1, j 1,..., n} and in the octant B(1,...,1 ). A further ex-
tension of HV-spaces has been obtained by Korfinyi [14] and Stein, Weiss and
Weiss [15] in which the domain of analyticity is a tubular radial domain. Our
theorems concerning the space of functions G and the results stated above
concerning the space G6 of functions analytic in an octant can be viewed as
generalizations of H-space results. In our distributional setting the space of
functions having boundary values and representable by Cauchy (Poisson) integrals
has been enlarged from Hv to G(H(Tc) Gc), and the set ofadmissible boundary
values has been enlarged from LP-functions to -distributions (Lc k.)
Further, our theorems concerning the boundary values of the generalized Cauchy
and Poisson integrals generalize corresponding classical theorems. The distri-
butional setting is obtained without altering the essential structure of the classical
setting; that is, the relations between the analytic functions, the corresponding
Cauchy (Poisson) integrals, and the boundary values are retained in the distri-
butional setting. However, the topology employed in obtaining our distributional
results is weaker than that of pointwise or norm convergence.

5. Functions analytic in tubular cones. Let C be an open cone which is not
necessarily connected. In this section we shall obtain distributional boundary
value results for functions analytic in tubular cones Tc R" + iC. Some of the
theorems in this section are generalizations of results contained in 4.

Suppose C is an open cone which is the countable union of open connected
cones, C UaCa, 2 A. Let USe’ such that supp(U)

_
C*; and put f(z)

(U, e2i<z’t>), z e Tc). By Theorem 8, f(z) is analytic in T(c) and satisfies
(30) for b 0. Suppose now that y is restricted to Ca, 2 e A; and put fa(z) f(z),
z e T(c). Since fa(z) is analytic in Tc) and satisfies (30) for b 0 in Tc’,
C’z O(Ca), then by a theorem of Vladimirov [12, Theorem, p. 235] we have
fa(z) --. Wa e 5e’ in the topology of 5e’ as y O, y e C’ O(Ca), 2 e A. Assume
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now that Wzekp, 1 < p __< 2, 2e A. Since b 0, then by (30) we have
ofz(z) e Gotc), 2 e A. Applying Corollary 1 to each fx(z), we obtain fx(z) C(Wz z),

z Tca, C O(Cx); and Wa is the Fourier transform of an element

Va= thz(t),

where supp (Vx) {t’Uoc)(t 0}. This proves the following generalization of
Theorem 10.

THEOE 15. Let C be an open cone which is the countable union of open
connected cones, C= U a Cx, 2cA. Let U e ’ with supp(U)C*; and put
f(z) (U, e2ni(z’t)), z e T(c). Suppose the ’ boundary values Wz offz(z), which
exist in the ’ topology, are elements of, 1 < p 2. Then for all 2 A,

L(z) (V,e<z’’>) c(w;z), ze T, Ci = O(C);

and Wx is the Fourier transform of V 1 thx(t)’ hz(t) Lq, lip + 1/q 1,
where supp (Va) {t’Uo(c)(t) 0}.

We now wish to extend the generalized Cauchy and Poisson integrals to
tubular cones. In the proof of Theorem 1 one of the main objectives was to show
that differentiation under the integral sign in K(z t) was justified. To do this we
used Lemma 2, p. 223, of Vladimirov [12]. However, this lemma holds for any
open cone C C does not have to be connected. Thus using exactly the same proof
as in Theorem 1, we have that K(z- t)e L,, 1/p + 1/q 1, 1 < p N 2, for
fixed ze T(C){z’ye O(C), yj 0 for any j 1,..., n}, where C is any open
cone. But then using the same proof as in Theorem 3 we have for any open cone C
that Q(z;t)eL,, 1/p+ 1/q= 1, 1 <pN2, for fixed zeT(C){z’yeO(C),
yj 0 for any j 1, ..., n}. Using these facts and Theorems 9 and 14 we have
the following two theorems.

THeOReM 16. Let C be an open cone which is the countable union of open
connected cones, C U Cx, 2 A. Then the generalized Cauchy integral C(U z)
of U , < p 2, exists for ze T(C){z’y O(C), yj 0 for any j 1,

n} and for each T(c), 2 A,

in the topology of as y Im (z) O, y e O(Cx).
THEOREM 17. Let C be an open cone as in Theorem 16. Then the generalized

Poisson integral P(U; z) of U e, 1 < p 2, exists for z e T(C){z "y e O(C),
yj O for any j 1,..., n} andfor each Tc), 2 e A,

in the topology of as y Im (z) O, y e O(C).
Theorems 16 and 17 point out the basic difference in the boundary values

attained by the generalized Cauchy and Poisson integrals. The Cauchy integral
corresponding to T(c) converges to a boundary value which depends on 2cA;
while the generalized Poisson integral corresponding to T(c), 2 e A, always has
U as its boundary value.
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For the remainder of this section we shall be concerned with open, dis-
connected cones C which are the union of a finite number of open, connected
cones Cs, j 1,..., m. In the following theorem, which is a generalization of
Theorem 13, the fs(z),j 1, ..., m, represent the analytic functions whose
boundary values form the decomposition of U in Theorem 13.

THEOREM 18. Let C be an open cone such that C =1 Cj, where Cj,
j 1,..., m, are open connected cones such that the assumptions of Theorem 13
hold. Let U 6 ’,, 1 <= p <= 2. Suppose the boundary values W, j 1,..., m,
which form the decomposition of U, are equal. Then there exists an element V 5’,
with supp(V) {t’Uotc)(t <= 0}, and a function f(z), which is analytic in T(c)

and satisfies (30) for b 0 and z Tc’, C’ c O(C), such that mV -I(U) and
f(z) fj(z), ze Tc), j 1,..., m.

Proof. By Theorem 13, U jm= W, where W is the 5’ boundary value of
a function j.)(z)e Gc,), and W such that supp(V)_ {t :Uc(t) <= 0}. By
hypothesis W Wm, and we call this common value W. But V if- (Ws),
j 1,..., m. Thus V Vm, and we call this common value V. Hence
W " and since U "lPj,j=

then mV ff-(U). From supp(V) j 1
.., m, we see that V vanishes on U s= {t "Uc(t) > 0}. Now

Uc(t) max Uc(t),
,...,m

and from the definition of Pc we have Uo(c)(t) <_ pcUc(t). Thus

(58) Uo(c)(t) <-_ Pc max Ucj(t)
j= 1,".,m

and by a lemma of Vladimirov [12, Lemma 3, p. 220], 1 =< Pc < + . Now con-
siderthesetJ {t’Uoc)(t) > O}.IftJ, thenby(58),t {t’maxs=,...,mUc(t) > 0}.
Hence Us= {t’Ucj(t) > 0}, and on this set V vanishes. Thus V vanishes if
e J which implies that supp (V)

_
{t’Uotc)(t) <_ 0}. Putting f(z) (V,

z Tc), and applying Theorem 8, we obtain that f(z) is analytic in Tc) and
satisfies (30) for b 0. Further, since Vj V, j 1, ..., m, then by the definition
offj(z) from the proof ofTheorem 13, we havef(z) f(z),z TtC)., j 1,..., m,
The proof is complete.

THOR.M 19. Let C be an open cone such that C = CJ, where Cs, j 1,
.., m, are open connected cones. Let f(z) be analytic in the tubular cone Tc and

satisfy (29) for z Tc’, C’ C. For each C, j 1,..., m, suppose that

lira f z U ’ 1 < p <
yO

yeC) C

in the topology of ’ and assume that U U2 Urn. Then f(z) is analytic
TO(C) and satisfies (30) for z s Tc’, C’ U s=O(C); and f(z) has anin

analytic extension to Ttc).

Proof. For each j 1,..., m, f(z) is analytic in Tc and satisfies (29) for
z Tc), Cj = Cs, and f(z) - Uj e Lp, 1 <_ p =< , as y - O, y Cj = Cj. Thus
by Theorem 6, for each U there exists a V St’ such that supp (l/j)

_
{t’Ucs(t)

_< b}, Uo; and

(59) f(z) ( V, e:Z’i<z"> ) z Tc:, Cs= Cj, j= 1,... m.
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By hypothesis, U1 U2 U U. As in the proof of Theorem 18, we
obtain V1 V2 V,, V, where supp (V) c_ {t’Uotc)(t) <= bpc}. Since f(z)
is analytic in Tc, j 1,..., m, we have by Bochner’s theorem on analytic ex-
tension of tube domains [25, Chap. V] thatf(z) is analytic in Ttc), j 1, ..., m.

Ttc) By (59) Theorem 8, and the identity theoremThus f(z) is analytic in U j=

for analytic functions, we have f(z) ( V, e2i<z’’> ) z Tc), j 1, m;
so that

f(z) ( V, e2’’), z6 U T(c).

Applying Theorem 8, we see that f(z) satisfies (30) for z e Tc’, C’ U j= O(Cj);
and (V, e2<’>) is the analytic extension of f(z) to Tc).

We note that if p is restricted to 1 __< p __< 2 in Theorem 19, then the exact
form of V can be calculated as in (31).

6. Miseellnnes. In this section we briefly discuss some topics which will be
considered in future research.

It is well known that the classical Poisson integral of a function f e L([),
1 __< p __< oe, is a harmonic function in the upper half-plane (see Hoffman [19,
p. 123]). Korfinyi [14] has shown that the Poisson integral off e Lp(Nn), 1 <-_ p < o,
for tubular radial domains corresponding to homogeneous self-dual cones is a
harmonic function with respect to a Laplace-Beltrami type operator. (See Hua
[26] for the construction of such operators for the classical domains.) We have
proved in Carmichael [7] that the generalized Poisson integral of U
1 < p __< 2, corresponding to octants is an n-harmonic function with respect to the
usual Laplace operator. It would be interesting to obtain a Laplace-Beltrami type
operator such that the generalized Poisson integral for general tubular radial
domains, as defined in this paper, is harmonic with respect to this operator.

In this paper we have related U e kp to the space of functions G and have
obtained generalizations of classical HP-space theorems. To obtain our results it
was necessary to consider only the spaces Nk,, 1 < p __< 2, and in most of our
results @k, was considered as a subset of 5’. We conjecture that the generalized
Cauchy and Poisson integrals of U e @k,, 1 < p < oe, exist for tubular radial
domains and that results generalizing those of Tillmann [1 can be obtained using
only the topology of @k,. We shall consider these problems in a future paper.
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ON WIENER-HOPF OPERATORS ASSOCIATED WITH THE
HANKEL TRANSFORM*

G. GREGORY STEPHEN,"

Abstract. Asymptotic estimates ofdeterminants offinite section Wiener-Hopfoperators associated
with the Fourier transform were obtained initially by Szegi5 and Kac. In 1966, Davis and Hirschman
obtained similar results for operators associated with ultraspherical polynomials. In this paper we

develop such estimates for determinants of finite section Wiener-Hopf integral operators associated
with the Hankel transform. These estimates are continuous analogues of the Davis-Hirschman results.

1. Introduction. Let v be a fixed positive number and set d#(x) k lx2 dx,
where k 2 1/2F(v + 1/2). Let c be a function in LI((0, oo); dp) whose Hankel
transform " belongs to Lt((0, oo); d#). We denote by c(x, y) the Hankel transform
analogue of the translated function c(x y) (see 2). For each r > 0, we define
an operator T on L2([0, r]; dp) by

Trf (x) c(x, y)f(y) d#(y).

This is a nuclear operator (trace class). Let {2j(r)} be a sequence consisting of all
the nonzero eigenvalues of T enumerated in order of decreasing absolute value,
each eigenvalue repeated according to its algebraic multiplicity. The determinant
D(r) of I T is defined by

Define

D(r) FI(1 2j(r)).

G exp log(1 (t))dt

E exp log (1 (t)) e-itx d dx

extending as an even function. If j" Ic(t)l dl(t) < 1, then G is finite and we shall
show that

(1.1) [D(r)] 1/= G+o(1) as r

If we also have yff tlc(t)l d#(t) < , then E is finite and

(1.2) D(r)G-r= [1-O(0)]E+o(1) as roo,

where e (1 2v)/4. All logs and powers throughout the paper are principal
values.

Received by the editors June 11, 1971, and in revised form April 14, 1972.- Department of Mathematical Studies, Southern Illinois University, Edwardsville, Illinois 62025.
This paper is based on work contained in the author’s doctoral dissertation at the University of New
Mexico.
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The condition j" Icl d# < allows us to write

D(r)=exp -tr(n,r),
n=l g/

where tr (n, r) tr (TT) is the trace of (Tr)". In 4 and 5 we develop asymptotic
formulae for tr (n, r). In 6, following Kac [10], we combine these to obtain the
determinant estimates (1.1) and (1.2). Sections 2 and 3 describe the Hankel trans-
form theory that is needed.

The prototypes of these formulae, for determinants of finite sections of
Toeplitz matrices, were discovered by Szeg6 in 1915 and 1952; see [5]. In [10],
Kac, Murdock and Szeg6 introduced the continuous analogue of the Toeplitz
matrix, an integral operator with a displacement kernel, and proved a formula
like (1.1). Then, in [11], Kac obtained a formula similar to (1.2).

More recently, Davis and Hirschman [2] developed these estimates in a new
setting: for Toeplitz matrices associated with ultraspherical polynomials. Their
work represents the first such results outside of a Fourier transform setting. Since
the Hankel transform is the continuous analogue of the ultraspherical transform,
and considering the parallel between the Szeg6 limit theorems for the discrete and
continuous Fourier transform, one would expect estimates like (1.1)and (1.2).

The original Davis-Hirschman results have been improved [9] and extended
to a wider class of Jacobi polynomials [1]. New proofs resulting in stronger
theorems have been given in the Fourier case [8], [3], [6].

2. The Hankel transform. Let v be an arbitrary but fixed positive number
and set

d#(x) k x2" dx,

where kv 2 1/2F(v + 1/2). We denote by LP(f) the Banach space of complex-
valued measurable functions f defined on f c 0, ) for which

II/ p= f(x)lP d#(x <

We define

23 -5/2F(v + 1/2)2
o(x, y, z) r(1/2)r()

(x y z)’- A(x, y, z)- ,
where A(x, y, z) is the area of a triangle with side lengths x, y, z if there is such a

triangle; otherwise set D(x, y, z) 0. Finally, let

J(X) lvx1/2-vj l/2(X),
where J is the Bessel function of the first kind of order .

We have

(2.1) la(x)l

for all x, 0 N x < ;see [7]. Since

Ja(X) O(X-1/2) as x m,
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we have

(2.2) J(x)--- O(x -) as x --> .
Combining (2.1) and (2.2) we see that

(2.3) Id(x)l =< M(1 + x)-1

for all x => 0, where M is a constant which depends only on v.
The integral formula

(2.4) J(xt)J(yt) d(zt)D(x, y, z)dla(z)

is valid for x, y > 0 and __> 0; see [12, p. 367]. By setting 0 in (2.4) we obtain

z)dt(z) 1.Y,

Note that D(x, y, z) >= 0 and that D(x, y, z) is symmetric in x, y and z.
If a function f is locally integrable (with respect to d#) and y > 0, we associate

with f the "translated" function f(x, y) defined for almost all x by

f(x, y) ff(z)D(x, y, z)d#(z).

< fIff is bounded, then f(x, Y)I < f and iffe LP(0, ) then f(., y) p

If j; g e L(0, oe), the Hankel convolution off and g is given by

(f # g)(x) ff(y)g(x, y)dt(y).

This integral converges absolutely for almost all x, 0 < x <
_<_ f g (cf. Young’s inequality).

The Hankel transform of f e L(0, ) is defined as

Among the basic properties of this transform are the following"

(b) f is bounded and continuous on [0,
(c) if./ L(0, ), then (?)" f a.e.

These properties of the Hankel transform and convolution are developed in detail
in

PROPOSITION 2. I. Let f LI(0, c) Then

and ([’g f, then

g(x, y) f(t)J(xt)J(yt) dl(t).
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These are proved in the same way as their Fourier transform analogues with
identity (2.4) playing the role of the group character property Z(u)z(v) )(u + v).

We shall frequently work with functions f e Ll(0, ) for which
Such functions are essentially bounded and hence are integrable on (0, ) with
respect to ordinary Lebesgue measure.

3. A relation between the Hankel and Fourier transforms. For x > 0, we
define

bvx1-2v(x2 h2)v if 0 < Ih[ < x,
E(h X)

0 if 0< x < Ihl,

where by F(v + 1/2)/(F(1/2)F(v)).
LEMMA 3.1 (a) E(h, x) >__ O,
(b) j’_ E(h, x)dh 1,
(c) .f Ihlg(h, x)dh <= x, o >= O,
(d) j" E(h, x)eiht dh J(tx).
Proof. By evaluating the integral we obtain (b); (c) is a consequence of (b)

and the finite support of E; identity (d) is a variant of the Lommel integral rep-
resentation of the Bessel function.

For f e L (0, or) and > 0, set

Sf.(t) fo (t, x)f(x) d(x).

This formula defines Sf a.e. in (-oo, oo) and, moreover,

Also

ISf (t)l dt < If(x)l dH(x).

(Sf)(t) e -’’h dt f(x)a(hx) d(x).

Thus Sf is an even function in L l( oo, c) whose Fourier transform is equal to
the Hankel transform off.

The next two propositions indicate how we shall encounter the mapping S.
Both will be used in 4.

PROPOSITION 3.2. Let x, y, z be fixed real numbers, z > O. Then

lim k( l(r + x)V(r + y)D(r + x, r + y, z)= E(x y, z).

Proof. If u, v, w are the sides of a triangle and A(u, v, w) is the area of this
triangle, then

A(R, u, w)2 s(s bl)(S- U)(S- W),

where s (u + v + w)/2. Thus for Ix y[ < z and r large,

k( (r + x)V(r + y)D(r + x, r + y, z)

_+_ y)2 Z2"22-2bv{(2;;_Cx)(r+y v-1

Z 2V[z2 (X y)2]v-’



ON WIENER-HOPF OPERATORS 225;

It is now evident that the limit of this expression as r v is E(x y, z). When
Ix Y[ >= z, D(r + x, r + y, z) is zero for all r.

Formally, the next proposition follows from the preceding material. We give
a direct proof.

PROPOSITION 3.3. If C and its Hankel transform ? are in L(0, ), then

lira k (r + x)(r + y)Vc(r + x, r + y)= (Sc). (x y).

Proof. Set

I(r) k (r + x)(r + y)c(r + x, r + y).

Then, by Proposition 2.1,

I(r)- ?(t)[(r + x)t]/Jv_/[(r + x)t][(r + y)t]/2J_/2[(r + y)t]dt.

Since

zl/2Jv_ l/2(z) (2/)1/2 cos (z -?) + O(z-1

as z - or, and z/ZJ_ 1/2(z)is bounded, we have

z/ZJ- l/z(Z) (2/) 1/2 cos z - + R(z),

where IR(z)l <= M(1 + z)- for all z >__ 0 and M is a constant depending only on v.
Thus

I(r + x)t]x/2Jv-/z[(r + x)t][(r + y)t]x/2J_ /2I(r + y)t]

1 1
=-cos t(x- y)] +-cos [2rt + (x + y)t- vz]

so that

+(2/zt)l/2cosI(r+x)t-v-lR[(r
+ (2/rc)/2cosI(r+y)t--]RI(r
+ R(r + x)t]R[(r + y)t],

+ y)t].

+

I(r) _1 (t) cos [t(x y)] dt

+- (t) cos [2rt + (x + y)t- vrcl dt

-+-(2/Z) /2 a(t) COS (r + x)t-- R[(r + y)t] dt

(cont.)
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-+-(2//1:) /2 O(t) COS (r + y)t-- R[(r + x)t] dt

+ (t)R[(r + x)t]R[(r + y)t] dr.

It is clear that the last three integrals go to zero as r--+ oo. By the Riemann-
Lebesgue lemma,

as r --+ GO.

O(t)cos [2rt + (x + y)t- vrc] dt 0

4. Trace estimates. Let c L(0, ) and let tr (n, r) denote the trace of the
operator (Tr)". For n >_ 1,

tr (n, r)= f... fC(X1,X2)C(X2, X3)’’’C(Xn, X1)dla(Xx)...dla(X,),

where the integration is over the cube [0, r]" in R". We shall decompose this
integral into two parts and estimate each.

Let

H(n, r) C(X1, X2)C(X2, X3) C(Xn, X1) d/,/(x1) d#(xn).

Using an induction argument based on Proposition 2.1, one easily proves that
forn > 2,

[e(x)]"- a(xt) c(t, x2)c(x2, x3) c(x 1, Xn)J(XXn)d(xn)"" d/2(x2).
0

Thus if e L(0, oo), it follows from the same proposition that

H(n, r) [O(x)]" ,12(Xt) d#(t d#(x).

Asymptotic expansions of this integral (as r--+ oo) are developed in the next
section.

The difference H(n, r) tr (n, r) is the integral

I(n, r)= f f C(X1,X2)C(X2,X3)’’’C(Xn, X1)dla(xl)...d#(x,),

the integration being over the region f(r) in R" consisting of those points
(x l, ..., x,) for which 0 =< x =< r, xa => 0 for all j, and xa > r for at least one j,
2<=j<=n.

THEOREM 4.1. If C and its Hankel transform are in Ll(O, oo), then
tr (n, r) H(n, r) + o(r) as r --+ oo.
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Proof. We can write

fo f{f fI(n, r) C(Zl)C(Z2)... c(z,_ 1)O(Xl, x2, Zl)O(x2, x3, z2)
(r) 0

D(x,_ 1, x,, z,_ 1) dlz(zl) dla(Z,_ 1)c(x,, xl) dl(x,) dlt(xl),
)

or

(4.1) l(n, r)
0

where z (z l, z,_ 1) and

,(z,r)= fn f D(xl’x2’zl)D(x2’x3’z2)’’"

O(x 1,Xn, Zn-1)C(Xn, x1)dl(Xn)’’" dkt(x1).

Since c is essentially bounded, the transition to (4.1) is easily justified.
We shall show that r-l@(z, r) is bounded independent of z and r and that

(z, r) o(r) as r ---, for each z. It will then follow from (4.1) and the dominated
convergence theorem that I(n, r) o(r) as r o.

Set

fl(z, r;x)= fA f D(x,x,zl)D(x,x2,z2)...
(n,r)

O(xn

where A(n,r)= {(xl,’.., x,-1)R"-1
:xj => 0 for j 1, ..., n- and xj > r

for at least one of j 1, n }. Then

0(z, r) fi(z, r; x) d#(x).

We claim that

(4.2) [rx/J(z, r; x)[ (n 1)M,

where M depends only on v and c. To prove this inequality, we shall decompose
the region A(n, r) into n disjoint subregions and obtain a common bound for
the integral over each subregion.

Set Al(2, r) A(2, r) and let Ak(n,r) {(xl,’",x,-1)A(n,r)’0 <= xl
=< r and (Xz,...,x,_l)eAk(n- 1, r)} for k 1,...,n- 2 and A,_l(n,r)

{(xl, ..., x,-1) A(n, r)’xl > r}. To illustrate, we give explicit descriptions
of the four subregions of A(5, r)"

A(5, r)" 0_<_x=<r,

O<=xz<=r,

0<x3<r

A(5, r)" 0<xl<r
05x2r,

r<x3 < oo,

0_-<x4 <
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0 __< x __< r, A(5, r)"

0NX3 <

O_-<x4< oo,

r<xl <oo,

0<X3 < OO,

O__<x < oo.

For the argument which follows, the important fact is that Xn_ k > " in the sub-
region Ak(n, r).

Now,

fi(z, r x) D(x, x x, z )...
,(n,’)

(4.3) D(x,_ 2, Xn- 1, Zn- 1)C(Xn 1, X) K(X 1)’’" d]2(x1).

Since OL(0, oo), Ixc(x,y)yVl <= M for all nonnegative x,y, where M
depends only on v and j" ](t)l dt (combine (2.3) and the Proposition of 2). Thus

IA f o(x, xl,z,) D(xn_z,Xn_l,Zn_)C(Xn_,x)dl(Xn_l)... d/(Xl)
1(n,r)

5o’f D(x, X1, Z1) D(x,,_ 2, x,,_ , z,,_ )c(x,,_ , x)du(x,,_ ,)’" ala(X)

<= Mx-" D(x, x za) D(x,_ e, Xn_ Z,_ l)Xn-_Vx dl.l(x,_ x) dl.l(Xl)

<= Mx-r D(x, xa,z) D(x,_2,x,_,z,_)dla(X,_x) d/(Xl)
o

Mx-r-.
For k > 1,

fD(x, x,, Zl)’"D(xn_2, x 1, Zn-1)C(Xn-1, X)dl(X,_,)...dla(X,)
Oa(n,r) d

fi’ fo’; /o fo XXIZ

D(x,,_ 2, x,,_ , z,,_ )c(x,,_ , x) d#(x,,_ 1)’’"

where r < x,_ < oo. We shall exhibit the method of obtaining a bound for an
integral of this type by considering the particular case n 5, k 3. The integral is

(4.4) fi" f fo’ O(X, Xl,Z)O(x,x2,z2)D(x2,x3,a3)

D(x3, x4, z4)c(x4, x) d/l(x4) d//(x1).
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Note that since

(t)J(wt)J(yt)J(zt) dp(t).

Thus (4.4) can be written as

O(t)J(xt)J(z3t)J(z4t)d(t) D(x, xl,Zl)dp(xl)

(4.5)

J(x2t)D(xl z2) d(x2).x2,

Since [J(x)l -<_ and J(x) O(x-) as x ---, , (4.5) is bounded by

Mx I(t)l dt D(x,x,zl)d#(x)

where M depends only on v... [xyJ(x)J(y)[ <= M. This expression is no larger
than

foMx-r ]O(t)] dt D(X, Xl,Z)dp(Xl) O(x1,x2,z2)dl2(x2)

Mx-r (t)l dr.

Hence each term in the sum (4.3) is bounded by Mx-r-, where M depends
only on v and j" I(t)l dr, and (4.2) is proved.

We now have

Iq(z,r)l =< [fl(z, r;x)l dp(x)

=< (n 1)M (x/r) dx,

so that

(4.6)

for all z.

IW(z, r)l <= (n 1)Mr

Fix x, 0 __< x < o, and assume that (X1," X 1)ff A(n, r) is such that the
integrand of fi(z, r; x) is nonzero. Then, from the definition of D(a, b, c), we must
have

X < X -+- 21,

X2 < X - Z2,

Xn-1 < Xn- 2 -’F- Z
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Since at least one of xl, ..., x,_ is greater than r, it follows that
n-1

r<x+ z,
k=l

or
n-1

r-- Z ZkX"
k=l

Thus the support of fl(z, r; x) as a function of x is contained in the interval
r zk =< x < or. Therefore,

n-1

(4.7)
[tg(z, r)[ fl(z, r; x) d#(x) <= (n 1)M z,

-Ez k=

so that W(z, r) o(r) as r for each z.
For future reference, we state the following.
LZMMA 4.2. If C and its Hankel transform are in L(0, ), then

[tr (n, r)[ nrM c ",

where M is independent of n and r. If, in addition, f x[c(x)[ d(x) < , then

[tr (n, r) H(n, r)[ n2M c ".

Proof. In the following, M is a constant independent of n and r. It will vary
from step to step. From (2.3),

IH(n,r)l=f[(t)]"[fJz(xt)d(x)]d(t)rMfl(t)["dr,
while from (4.1) and (4.6), [I(n, r)[ nrM cll"-. These inequalities along with
[O(t)[ Ic yield the first part of the lemma. The second part follows from (4.1)
and (4.7).

The estimate of Theorem 3.1 can be improved. For each z,

lim (, r) max (0, s, s_ )E(h, Zl)
(4.a

E(h_,z_)f(h + + h_)dh dh_,

where s h + + h and f Sc. We shall verify (4.8) for n 4 as this case
contains all the essential features of a general proof.

When n 4,

(, r) D(x, x, z)D(xe, xa, ze)D(x3, x, za)c(x4, x)d(x).., du(x).

We begin by setting
xl=r+x,

x2--r+x+h,

X3 r + x + h + h2,

x4 r + x + h q- h2 q- h3
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This transformation is a combination of a linear transformation with Jacobian
equal to one and a translation. Thus if we let sk h + + hk, then

kI/(z, ?’)"--k-4fB f O X -Ji- " X Ai- r + S1, z1)D(x --/-- S1, X ---?"-Jf- $2, Z2)
(r)

(4.9)
D(x+r+sz,x+r+s3,z3)c(x+r+s3,x+r)(x+r)2

(x + r + s1)2v(x -+- l" + s2)2V(x .qt_ r + $3)2v dxdhl dh2 dh3,

where B(r) is the region in R4 consisting of those points (x, hi, h2, h3) for which
(i) r < x < 0, (ii) 0 < x + max (0, sl, s2, s3), and (iii) x + s _>_ r for k 1, 2, 3.

In order that D(u, v, w) be nonzero it is necessary that lu vl < w. Thus if the
integrand of (4.9)is nonzero, then [h[ =< z for k 1, 2, 3.

Let U(z) denote the set ofpoints(x, hl,h2,h3)inR4 for which -max (0, sl, s2, s3)
< x __< 0 and [h[ __< zk for k 1, 2, 3. If we let F(z, r) represent the support of
the integrand of (4.9), then when r > 2(zl + z2 + z3) we have U(z) f’l F(z, r)

B(r) f) F(z, r) so that B(r) in (4.9) may be replaced by U(z).
For the remainder of this discussion, M will denote a constant depending

only on v and c. It may vary from step to step.
If u, v, w are the lengths of sides of a triangle, then

D(u, v, w) M(uvw)1- 2A(u, v, w)2v- 2,

where A(u, v, w)2 I(u +/))2 w2] [w2 (u v)2]/16. Thus

[(2x + 2r + 2s_ + h)2 z2]
O(x + r + sk_ 1, x + r + Sk, Zk)= M

(x + - + Sk-- i(X + r + Sk)2--1E(hk’ zk)

if it is nonzero
When r > 3(zl + z2 + z3) and (x, hi, h2, h3) U(z), we have

20 < (x + r + Sk-1)(X + r + Sk) <--_ (2X + 2r + 2Sk-1 + hk)2 zk

__< 8(x+ r+sk_l)(x+ r+s,)

and therefore,

D(x + r + Sk_ ,X -[" r + s,z) <= M(x + r + Sk_l)-v(X q- r + s)-E(hk, z).

Hence, for r sufficiently large, the integrand in (4.9) is dominated by

ME(hl Zl)E(h2, z2)E(h3, z3)l(x -t- r + S3)VC(X -’1-" r -t- S3, X "+- r)(x -t- r)l

and since Ixc(x,y)y <= M for all x, y >= 0, this is no larger than ME(hi, z1)
E(h2, z2)E(h3, z3).

From Propositions 3.2 and 3.3, the pointwise limit of the integrand in (4.9)
as r is

E(hl Zl)E(h 2, z2)E(h3, z3)f(h -F h2 -F h3),
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where f Sc. Thus, by the dominated convergence theorem,

lim q(z, r)

rE(hi, Zl)E(h2, z2)E(h3, z3)f(hl -+- h 2 + h3)dxdhl dh2dh3
(z)

t-t-t-max(O, Sl,S2,s3)E(hx,zl)E(h2,z2)E(h3,z3)f(hx + h2 + h3)dhl dh2dh3,

and (4.8) is proved.
By combining (4.7) and this last result, one can easily prove the following

theorem.
Lv(O,o and ifTHEOREM 4.3 If C and its Hankel transform are in

f xlc(x)l d/(x) < , then for n >= 2,

tr (n, r) H(n, r)

max (0, s, s_ )f(x)... f(x_ )f(s_ ) dx.., dx_

+ o(1)

as r --+ oo, where s x + x2 + + x and f- Sc.. Trace estimates (conclusion). The next theorem provides an estimate for

H(n, r) [a(x)]" JZ(xt) d#(t) d#(x)

asr m.
Tuoz 5.1. If f e L(O, ), then

f(x) Je(xt) dp(t) dp(x) f(x) dx + o(r)

as r . if, in addition, If(x) f(O)l/x is in L(O, e) for some > O, then

r
f(x) ax + f(0)( 2v)/4 + o(1)

as.

Proof. Let (x, r) k x2J2(xt) d(t). Fro,m Watson [12, p. 135],

X2

(5.1) (x,r) {J_ /2(xr) L-3/2(xr)L+ 1/2(xr)).

Using the usual asymptotic expansion for J,

J(z) (z/2)-/2 cs (z /2 /4)
(42 -1)

8z
sin(z- /2 /4) + O(Z-2
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we find that

(5.2) qS(x, r) (r/rc) + sin (2xr vrt) + O((xr)-
xr

as (xr) oo, where 0(v) depends only on v.
Therefore,

(5.3) ooim
for each x > 0. Also

r) tr e(V)xrc sin (2xr vz)} 0

(5.4) r-oolim(r-14)(x’r)-))=0
for each x > 0. From (2.3) it follows that 49(x, r) <_ Mr for all r >= 0, where M
depends only on v. Hence,

(x, r)
r < Mr

for all x >= 0. The first part of the theorem follows from (5.4), (5.5), and the dora-
inated convergence theorem.

Let N be a fixed large number. If xr > N, then from (5.2) we have [b(x, r) r/rc[
<= M/x, where M depends only on v and N. If xr < N, then using (5.5) we obtain

(5.6) Ib(x, r)- r/rcl <= M/x.

Thus (5.6) is valid for all x > 0 and all r > 0.
If f e L(0, oo), then from (5.3) and (5.6) we find that

f(x) (x, r)
r e(v)

sin (2xr vrc dx --, 0
7"C X

asrc.But

f(x)x- sin (2xr vrc) dx --+ 0

as r --+ m, by the Riemann-Lebesgue lemma. Hence,

fl j’(x) [c/)(x r) r/rc] dx --, 0 as r --,

If If(x) f(O)]/x is in L[0, r,] for some e > 0, then by the same argument,

(5.8) j [f(x)-f(O)][d(x,r)-r/rc]dx--,O as r--,.
0

Now we investigate fo [b(x,r)- r/c]dx. By combining (5.1) and the basic
Bessel function recurrence relation we obtain

xr2 2dp(x, r) ---[Jv-1/2(xr) + Jr+ 1/2(xr)] r(v 1/2)Jr+ ,/2(xr)Jv- ,/2(xr)
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Hence,

ok(x, r) dx (re/4)[J_ +1/2(r) 1/2(’)]
0

(rZ/4)[Jv-3/e(r)Jv+ 1/2(r) + J-/(r)J+ 3/(r)]

(V ) J_ x/z(X)J+ /2(x) dx.

Applying the asymptotic formula for J and using the fact that

i J_ /e(x)J + /e(x) dx

(Watson [12, p. 404), we arrive at

[4(X, r) r/] (1 2v)/4 + o(1)dx

as r . This coupled with (5.7) and (5.8) yields the second part of the theorem.
Thus, if c and its Hankel transform are in L(0, ), then for n 1,

(5.9) tr(n r)=
r ( [(t)]" dt + o(r) as r .
o

If, in addition, xlc(x)l d(x) < , then is differentiable at 0. (This follows from
the corresponding Fourier transform result. The even extension of is the Fourier
transform of Sc and, by Lemma 3.1(c), ItSc. (t)] dt xlc(x)l d(x).) Therefore,

tr (n, r) [(t)]" dt + [(0)](1 2v)/4

max (0, Sl, s,_ )f(x) f(x,_ )f(s,_ ) dx dx,_ + o(1)

asr,wheres=xl+...+xandf=Sc.
The trace estimate (5.9) can be used to prove the following distribution

theorem of Szeg6 [5, p. 141.
Tzoz 5.2. Let c be a real-valued function in L(O, ) and let N(e, )

denote the number of eigenvalues of T which lie in the interval [, . If [, ] does
not contain 0 and if the set {x e R" O(x) e or (x) } has Lebesgue measure O,
then

1
1 g(e, ) a(, ),

where (, ) is the Lebesgue measure of the set {x e R" (x) }.
Proof. Let A be the set of real-valued functions in L(0, ) whose Hankel

transforms are in L(0, ). For c e A, the proof given for the analogous theorem
in [11] can be used. This requires (5.9). Otherwise, there is a sequence {c} in A
converging to c in L(0, ). Then llr- rl0 uniformly in r as n
(T" is the operator corresponding to c,) and an application of a theorem of the
Courant-Weyl type (e.g., [4, p. 1091]) will conclude the proof.
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6. Determinant estimates. Suppose that c L(0, oo) is real-valued. If its
Hankel transform is in L(0, oo), then c(x, y) is the difference of two positive
definite, continuous kernels

Cl(X, y) f ( +)(t)J(xt)J(yt) dp(t),

c2(x, y) f (_)(t)J(xt)J(yt) d#(t),

where + and

_
are the positive and negative parts of ’. Thus each operator T

is nuclear (or of trace class) since it is the difference of two such operators, and the
determinant definition of is valid. More generally, if c is complex-valued and
c, (: e LI(0, ), each Tr is nuclear since it can be written as a linear combination
of such operators.

If is not in the spectrum of T, then

D(r) exp (tr [log (I Tr)])

and, in particular, if T[[ < 1, then

-tr (n, r)D(r) exp -n
(see Dunford and Schwartz [-4, Chap. XI, 9]). The restriction [[c[[ < 1 will allow
us to use this representation since, as is easily verified, [IT, =< [[c[[ for all r.

THEOREM 6.1. If C and its Hankel transform are in L(O, ) and if c[[ < 1,
then

[D(r)]l/= G + o(1) as r

where

log(1 (t))dr}.
Proof. From Lemma 4.2, [r-1 tr (n, r)[ __< nMllc[[", where M is independent of

r and n, and hence, by the dominated convergence theorem and our first trace
estimate (5.9),

-tr(n,r)-- [O(t)]"dt

as r o. Since [(t)[ __< ][cl[ < 1, we can interchange the summation and inte-
gration in this last expression and write it as

f log(1 (t)) dt.
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then

where

THEOREM 6.2. /f
(i) c and its Hankel transform are in L(O, ),

(ii) Ilcll < 1,
(iii) j" xlc(x)l d#(x) <

D(r)G- [1 0(0)]E + o(1) as

1
x

2

E exp log(1 O.(t))e -itx dt dx

(extend 0 as an even function) and (1 2v)/4.
Proof. Let

a exp log (1 (t)) (xt) dl(x did(t)
r

Since I(x)l IIcll < 1, we have

[G]"=exp{-1H(n.=ln- ,r)}
and hence

D(r)[G]-" exp { (H(n,n r)-tr (n, r))}.
By combining Lemma 4.2, the dominated convergence theorem, and Theorem
4.3, we obtain

limD(r)[G] exp(, If fmax(0,Sl,..., s,_)
rm =2

f(x).., f(x,_ )f(s,_ ) aXl ax_

where f Sc and s x + + x. The second and third hypotheses and the
properties of the mapping S allow us to apply an identity of Kac [10] to reduce
the right side of this expression to E. Finally, we use Theorem 5.1 to obtain

lim [G/G]= exp{1-2v ))}4
log(1-(0

ekoMeSgmet. The author wishes to thank Professor Jeffrey Davis for
suggesting this problem.
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FINITE MELLIN CONVOLUTION EQUATIONS*

WILLIAM L. PERRY,"

Abstract. Sufficient conditions on f(x) and k(u) are given so that the integral equation of the
first kind

k(xy)d(y) dy f(x), x e (a, b),

with oe < a __< 0 =< b < + oe, can be solved by means of the (lesided) Laplace transform.

1. Introduction. An integral equation of the first kind of the form

(1.1) ;o k(xy)dp(y) dy f(x), x D,

where D
_

(- oe, oe), may be called an integral equation of the Mellin convolution
type, because the equation in (1.1) can be solved (under appropriate conditions) by
means of the Mellin transform when O (0, oc) [8] or O (-oe, o) [4]. When
D (0, oe), one may sometimes use the results of Fox [3].

When D is a finite interval, we may distinguish between two cases: 0 e [a, b]
or 0 [a, hi. In the latter case, dilatory and exponential changes of variable show
(1.1) to be equivalent to an integral equation of the form

(1.2) j kl(x y)dpl(y f(x), x 6 [- 1, 13,
-1

which can be solved in principle by the general method of Wiener and Hopf
developed by Shinbrot [6]. Regarding the former case, no integral transform tech-
niques for solving (1.1) have appeared. Thus, in this paper, we exhibit an integral
transform technique, valid under conditions to be specified, for solving (1.1) with
D a, hi, 0 s [a, b]. To show that there actually are equations to which this
technique is applicable, we shall supply an example.

2. The problem. The problem under consideration is to find, for a given kernel
k(xy) and given free termf(x), a measurable function (y) such that the integrals,

k(xy)dp(y) dy, exist for almost all x in [a, b] and such that for almost all x in [a, b],

(2.1) k(xy)dp(y) dy f(x),

where a and b are fixed constants, a __< 0 __< b.
To simplify the presentation, we start with the equation,

(2.2) k(xy)dp(y) dy f(x), x [0, b].

* Received by the editors December 28, 1971, and in revised form March 16, 1972.
]-Department of Mathematics, Texas A & M University, College Station, Texas 77843. This

work forms a portion of the author’s doctoral dissertation at the University of Illinois, Urbana.
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That is, the origin is an endpoint of the domain of integration. We now assume
that the given kernel and free term satisfy the following conditions:

(2.3) There exists a real number d > 0, such that the integrals

x- 2a+ ,(f(x))2 dx, x- 2a+ ,(k(x))2 dx,
0

are finite.
(2.4) The complex-valued function of the complex variable s,

bo xS- f(x) dx

Ibo x ’k(x) dx

which is well-defined by virtue of (2.3), is analytic in the half-plane Re s < ao,

-d < ao, is of order O(Is]- k), as ]sl oe where k > 0, and the only singularities of
this function are poles.

The condition in (2.3) is not too restrictive; it essentially means that f(x) and
k(x) are of the order O(x +-), x 0+, > 0. More restrictive is condition (2.4)
which is imposed to ensure the validity of the method of solution exhibited below.

3. An equivalent integral equation and the application of the left-sided Laplace
transform. Assume for the moment that there exists a measurable function
b(y) such that fo k(xy)dp(y) dy exists for almost all x in [0, b] and that equation (2.2)
holds for almost all x in [0, b]. To derive the desired equation, we make two changes
of variable. First, let xx (1/b)x and Yl (1/b)y to obtain for almost all x in
I0, 1], the equation

k(bExly)bc(by)dyl f(bxl).
0

Next set x e", Y eV, so that for almost u in (-oe, 0) R-,

o
k(b2 e"+V)b e%k(b e) f(b e").dv

Thus, defining

k(b2 e+) kl(U + v), b eck(b e) 49,(v), f(b e) f(u),
we may rewrite the preceding integral equation in the form

(3.1) k,(x + y)c/)l(y)dy f,(x), x R-

Since the changes of variable are reversible, (2.2) and (3.1) are equivalent in
the sense that a solution of (3.1) leads to a solution of (2.2) and conversely. Thus,
we may restrict our attention to (3.1).

The left-sided Laplace transform, F(s), of a real-valued function f(x) is defined
by

(3.2) (L(f))(s) =_ F(s) =_ f(x) e dx,
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whenever the improper integral on the right-hand side of (3.2) exists. If L(f)
exists for all s with Re s e, then it exists for all s with Re s < c, and it is analytic
in that half-plane. The number,

0(f) sup 0 e-’f(x) dx < c o e e

is called the abscissa of convergence of L(f) and the line Re s 0(f) is called the
axis of convergence of L(f).

The convolution theorem for the left-sided Laplace transform states that if
L(k) K, L(b)= ,, and

(3.3) a(k) > 0 and (qS) > O;

or

(3.4) a(k) < 0 and a(b) > O, with -a(b) < a(k);
or

(3.5) a(k) > 0 and a(b) < 0, with -a(b) < a(k);

then [7, pp. 30-31 with a simple change of variable],

(3.6)
1 f,

c+’

fmin (O,x)

K(s)O(- s) e ds k(y)c(y x) dy,
2rci c-i

where c is a real number in the interval

{a[- e(b) < a < min (e(k), e(qS))},(3.3’)
or

(3.4’)

or

(3.5’)

{al-(4) < a < a(k)},

{al-=(4) < a < a(k)},
according to which of the cases (3.3)-(3.5) holds. For fixed x < 0, we may put
y u + x in (3.6) so that

(3.7)
I f

c+i foK(s)O(- s) e ds k(x + u)c/)(u) du.
2rci ioo

Taking the left-sided Laplace transform of both sides of (3.7) we obtain

(3.8) L k(x + y)dp(y) dy K(s)O(-s)

for all s in the respective vertical strips with horizontal section given in (3.3’)-
(3.5’).

Now suppose that there exists a measurable function q51(y having a left-
sided Laplace transform such that (3.1) holds for almost all x < 0, and that e(kl)
and e(b 1) satisfy (3.3). It follows from the conditions on k and f in (2.3) that the
functions kl and fl have left-sided Laplace transforms, K l(s) and Fl(S), respectively,
and their abscissae of convergence, e(kl) and e(fl), are both positive. In fact,
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e(f) and (k,) are both greater than or equal to d. Since ,(s) exists and (3.3)
holds, we have from the equality in (3.8) that

(3.9) K,(s)(I)l( s) F, (s)

for all s in the vertical strip {sl-(D1) < Re s < min (d, a(b,))}. Similar results
are valid if (3.4) or (3.5) hold.

4. Construction of solution. The reasoning above is now reversed to construct
a left-sided Laplace transformable, measurable function b,(x) which solves (3.1).
More precisely, we define a function qS,(y) as the inverse Laplace transform of the
function F,(-s)/K,(-s) and show that the function so defined solves (3.1).

To this end, we first note that F,(- s)/K ,(- s) is analytic in the half-plane
Re s < ao, a0 > -d, and is of order O(Isl -) as Isl--, o, for some k > 0. Hence,
F,(-s)/K,(-s) has an inverse Laplace transform, L-’(F,/K,),

c+ioo Vl(_S)
e(4.1) 4) (x) =-

c-ioo i---) ds, x < O,

where -d < c < ao. Thus, for all s in the vertical strip, {sl-d < Re s < ao}, we
have (L(qS )) (s) (I) (s) F,(-s)/Kl(-s). This means that for all s with
-ao < Re s < d, K(S)l(-S Fl(s), and since -(4,)= -ao and (k)= d,
it follows from the convolution theorem that

0

k l(X .qt_ y)Dl(y) dy L(x), x<0.

That is, ()1 defined in (4.1) solves (3.1).
By virtue of condition (2.4), F,(- s)/K ,(- s) has only a finite number of poles

in the plane. Thus, using the residue calculus, it is not hard to verify that bl(x) is
continuous on R-. Also, the solution is unique as a consequence of the uniqueness
theorem for the Laplace transform. What has been shown above establishes the
following theorem.

TI-mOREM 1. If the given kernel k and free term f satisfy the conditions (2.3)
and (2.4), then the integral equation (2.2) has a unique solution which is continuous
on (0, b).

5. Example. Consider the equation

(5.1)
(xy)(1 2a log (xy))

o (-log(xy)) ’/2
(y)dy- x(-logx) ’/2,

where x e (0, 1) and a < 0. By making the exponential change of variable, we
obtain as equivalent to (5.1) the equation:

(5.2)
o exp(x + y)(1 2a(x + y))

(--(X + y))l/2 [er4)(er)] dy e"x//- x,
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< 0, where a < 0. Applying the left-sided Laplace transform, we obtain for
and F1 (see [2]),

KI(S
()1/2(-s --[- a -[-- 1)

(-s+ 1)3/2
Res< 1,

r(3/2)
F(s)

(-s + 1)3/2,
Res < 1.

Hence,

Fl(-s 1
(I)I(S) Re s < -1 a

Kl(-s 2(s + a + 1)’

is analytic in the half-plane Re s < -1 a ao, ao > -1 d, and is of order
O(]sl- ) as ]sl --, o. In the strip {sl 1 + a < Re s < 1}, K(s)l(- s) Fl(s). In
addition,

(5.3)
1 fc+i 1

dp,(x) -i.,c-ioo 2(s + a + 1)
e ds -1/2 exp ((- 1 a)x),

where -1 < c < -1- a and x < 0. Thus, the convolution theorem implies
that b l(X) defined in (5.3) is a solution to (5.2); this may also be verified by a table
of integrals. Reversing the exponential change of variable, we see that the solution
to (5.1) is

qb(x) 1/(2x2 + a), x(0, 1),

which is continuous on (0, 1).

6. Zero in (a, b). We now extend the preceding analysis to equation (4.1)
with a < 0 < b. To this end, we define

(6.1) b+(x) b-(x)
.0, x e (a, 0), x), x e (a, 0),

and f/(x) and f-(x) in a completely similar way. Using these definitions, (2.1)
may be written as the system of equations:

(6.2)

k(xy)d?- (y) dy + k(xy)d? + (y) dy f + (x),

k(xy)qb- (y) dy + k(xy)clb / (y) dy f- (x),

xe(O,b),

x e (a, 0).

Again making dilatory and exponential changes of variables it is easy to see that,
in obvious notation, (2.1) is equivalent to the system of integral equations:

(6.3) k,j(x + y)dpj(y)dy fi(x), i= 1,2, x < O.
.j=

Under assumptions on a(kij) and (pj) similar to those which have been used
above, namely, that a(k) min a(kij) > 0 and a(b) min {a(qSj)} (the minimum
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taken over i, j 1, 2) satisfy one of the inequalities in (3.3’)-(3.5’), we see that a
solution pair (q51, th2) to the system (6.3) must satisfy the equations

2

(6.4) Kij(s)tj(- s) Fi(s), 1,2,
j=l

for all s in a nonempty vertical strip F determined by (kij), (bj), and (f3.
Defining functions Jl(s) and J2(s) by

F1(-S)K22(-S) F2(-s)K12(-S)
Jl(S)

K11(-s)K22(-s K12(-s)K21(-s)’

F2(- s)K11(- s) F1(- s)K21(- s)
J2(s)

K11(-s)K22(-s K12(-s)K21(-s)’

we may state a result analogous to the preceding theorem as follows.
THEOREM 2. If there is a real number d > 0 such that all the integrals

X- 2d +lf2(X dx,

x- 2d + k2(x dx,

f lxl- 2a +lf2(x dx,

o

Ixl- 2d + k2(x) dx,
b

are finite and if the functions dl(S) and J2(s) are analytic in a half-plane Re s < ao,
-d < ao, are oforder O(Isl-), Is] -* or, k > 0, and have only poles as singularities,
then (2.1) with a < 0 < b has a unique solution, continuous on (a, b) with the possible
exception of a discontinuity at zero. The solution is formed from the solution pair
(q51, 4)2) of (6.3), obtained as dpl L-1(J1) 4)2 L-1(J2).

7. Remarks. If in the example of 5, we let a 0, then the method is no
longer applicable, due to the fact that the equality K(s)(-s) F(s) no longer
holds in a vertical strip in the complex plane.

The conditions given in (2.4) may be relaxed, and the method will still work,
provided the residue integrals involving the necessary inverse Laplace transforms
can still be computed. The properties of the solution may be changed by the
change in condition (2.4).
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GENERIC PROPERTIES OF DIFFERENTIAL EQUATIONS*

THOMAS COSTELLO]"

Abstract. Property P is said to be generic for a class of equations, E, if P is satisfied by each equation
in E A, where A is a set of the first category in E. It is shown that uniqueness of solutions is generic
for the functional differential equations (t)= f(t, xt), and existence, uniqueness and continuous
dependence of solutions are genericfor the characteristic initial value problem for uxy f(x, y, u, Ux, uy).

1. Introduction. The identification of properties generic for a particular
class of differential equations was begun by Orlicz 6]. He showed that uniqueness
of solutions is generic for y’ f(x, y). Using similar techniques, Alexiewicz and
Orlicz [1] extended this result to the characteristic initial value problem for

(1.1) Uxy f(x, y, u, Ux, uy).
Lasota and Yorke [5] employed a different approach to show that existence of
solutions is generic for y’ f(x, y) in Banach space.

In 3 we show uniqueness of solutions is generic for the functional differential
equation

(1.2) 2(0 f(t, x,).

In 4 existence and continuous dependence of solutions are proved to be
generic properties for the class of equations studied in 1].

2. Preliminaries. A property is said to be generic if the set of continuous
real-valued functionsffor which problem (1.1) (or problem (1.2)) does not possess
that property is a set of the first category in the space of continuous functions with
the topology of uniform convergence, that is, if it is a "small" set in the sense of the
Baire category theorem.

Let a, b and q be finite positive real numbers. We denote by Cn the set of all
real-valued, bounded, continuous functions defined on [0, a] 0, b] R3.
C denotes the set of continuous functions mapping [-q, 0] into R" and CF is the
set of bounded continuous functions defined on [0, ) x Cq with values in R".
For x Cq, I[x(. )11 suP0e[-q,ol Ix(O)[ Cn and CF are given the supremum norm.

We let (H) and (F) denote the following problems:

Ux=f(x,y,U,Ux,U) for O<__x__<a and O<__y__<b,

(H) u(x, O) r(x), 0 <= x <= a,

u(O, y) a(y), 0 <= y <__ b,

wherefe C/, z(. ), a(. are continuously differentiable functions;

c(t) f(t, x,), >- o(F)
Xto(O) d?(O), -q <= 0 <= O,
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wherefe Cv, 4) e Cq.
If x(. is continuous on [to q, to], then Xto is that function in Cq defined

by

X,o(O)= x(to + 0), -q <= 0<=0.
(H,f) and (F,f) denote problems (H) and (F) with the right-hand side f.

Let E1 and Ee be Banach spaces with Ua E. We shall say f’U E is
locally Lipschitz if for each p e U there is an open set Op with p e Ov c U and
an Lp > 0 such that If(x) f(y)ll2 <= LpllX Y[1 for all x, y e Op, where II" I1
and 112 are the norms on E1 and E2.

3. Functional differential equations. Consider the set X defined by
X {re Cvl(F,f) has nonunique solutions}. X consists of all functions in Cv
for which (F) has at least two solutions.

THEORV,M 3.1. The set X is of the first category in Cv.
Recall that a set is said to be of the first category if it is the union of a countable

collection of nowhere dense sets.
Before proving this result we state a lemma that will be used in the proof.
LEMMA 3.2. Let U be an open subset of[O, ) x Cq andf: U R" be continuous.

Let 6 > 0 be given. Then there exists a locally Lipschitz function g’U R" such
that

If(t, ok) g(t, 491 < 6

for all (t, ok) U.
For a proof of this lemma the reader is referred to Lasota and Yorke [5]

where a more general statement is proved.
Proofof the theorem. The hypotheses guarantee that solutions exist for (F,f).

Furthermore, there is a number o > to such that each solution is defined at least
on [to, 09]. This result is well known (see, for example, a proof in [3]). Define

y(f) lim sup {llx x2 xX( ), x2( solutions of (F,/)},
tetto,tO]

and

Note that we have

x= U ..
LEMMA 3.3. Each 7", is a nowhere dense set.

Proof Choosefe T, arbitrarily. Let e > 0 be arbitrary and consider a neighbor-
hood offofradius e. Lemma 3.2 guarantees that there is a locally Lipschitz function
g such that g, N(f). This implies each neighborhood off contains a locally
Lipschitz function. However, (F,g) has unique solutions since g is locally
Lipschitz. Hence no point of T. has a neighborhood contained in T,, that is, T, is
a nowhere dense set in

Therefore X is a set of the first category in CF, since each T, is a closed set.
This is a consequence of the convergence of solutions of (F,f,) to solutions of
(F, h) when f, - h. So X is an "F,-set", i.e., the countable union of closed sets.
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4. Hyperbolic partial differential equations. For the remainder of the paper
we shall deal with generic properties of (H). Hartman and Wintner 4] studied
(H) and obtained sufficient conditions for existence and uniqueness of solutions.
Furthermore, they demonstrated, by examples, that certain hypotheses could not
be dropped without possible loss of the related property. That is, there exist
continuous functions f such that (H,f) has no solution whatever; there exist
continuous functionsfwhich are Lipschitz in the last two variables but for which
(H,f) has nonunique solutions. A natural question arises" Are these examples in
some sense "a small fraction" of the cases, or do they indicate a general behavior
for (H,f). Orlicz and Alexiewicz [1] demonstrated that "uniqueness of solutions"
for problem (H) is a generic property in a more restrictive class offunctions than Cn.
We shall show that existence and continuous dependence are also generic properties
for (H). In addition, a shorter proof is given for the result of Orlicz and Alexiewicz.

DEFINITION. A function u(.,. is said to be a solution of(H,f) if u is defined
on R, [0, a] [0, b] and

(i) u(.,. is continuously differentiable on R,b,
(ii) u(x, y) satisfies (1.1) for each (x, y) Rab,

(iii) u(x, 0)-- z(x)for 0 __< x __< a,
u(O, y) a(y)for 0 =<_ y __< b.

Notice that a solution of (H,f) is not necessarily a C2-function on Rab.
4.1. Existence. The following result, which appears in [1], will be needed

later in this section. Let c, be the usual supremum norm on the space of
continuously differentiable functions.

THEOREM 4.1. Let f Cn and be locally Lipschitz in (Ux, uy). Assume (H,f) has
a unique solution. Let f,- f l- 0 as n--, and (H,f,) have a solution u,(.,.)
for each n. Then

IlUn UlIc, " 0 as n .
THEOREM 4.2. Let f Cn and set

N {f CI[(H,f) has no solution on Rab}.
Then N is a set of the first category in Cn.

Proof Define a function V(. on C/ by

V(f) lim sup {lluy, uf_llc, "u, solves (H,fi)},
f l,f2-f

wherefl andf2 are restricted to be functions in Cn which have at least one solution
of (H,f) defined on Ra. The density of the Lipschitz functions in Cn assures that
this can be done. V(f) is defined and finite for allf Cn. Iff Cn andfis locally-
Lipschitz in (u, ux, uy), then V(f) 0. As, for such functions, the problem (H, f)
has a unique solution, and Theorem 4.1 implies {u.,(.)} converges to that
solution.

Assume f is such that V(f) 0. Then lims,,s__s {lluf, ufllc,} exists and
implies lims..s Us.(X, y) exists uniformly on Ra for some sequence {Us.}. The Us.
are chosen so that for any two consecutive terms Us., Us.+, in the sequence we
have IlUs. Us.+, Ilc, < 2-2,. This generates a Cauchy sequence in CI(Ra). For
details the reader is referred to Buck [2, p. 46]. Denote the limit by u(x, y). Using
the integral form of (H) it can be seen that u satisfies (H,f).
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Therefore, if (H,f) has no solution on Ra we must have V(f) > 1/n for some n.
Hence, letting N, {f CnIV(f) > l/n)}, we have N I,-J,= N,.

Each N, is a nowhere dense set, since for anyf N, there is a locally Lipschitz
function g for which V(g) 0 and g may be chosen arbitrarily close to f. Clearly
g N,. The following result shows g N,.

LEMMA 4.3. lff, Cu andf, g as n , then lim,_, V(f,) O.
Proof. Assume this is not the case. Then there exists a sequence { f,} and an

e > 0 such that f, g as n - and V(f,) > e for each n. We may choose fl,,f2,
within 1In off. and such that

1
Ilus us.ll, >

This implies V(g) > 0 which contradicts V(g) 0 for a locally Lipschitz function g.
Therefore N is a set of the first category.

4.2. Continuous dependence. Before proceeding to the next result we define
what we mean by "continuous dependence on f". When we assume continuous
dependence on f we shall mean that the following property is satisfied forf Cn:

(CD) Let {f,} Cn, f Cn, f, --, f uniformly. Consider the fixed initial
condition (z(.), a(. )). When (H, f) and (H,f,) have at least one solution u, u,,
respectively, defined on R], then lim,_oo u,(x, y) u(x, y) uniformly on R,b.
Condition (CD) is basically the conclusion of the Alexiewicz-Orlicz Theorem 4.1.
Notice that if f(x, y, u, p, q) satisfies a local Lipschitz condition in (u, p, q) and
f Cn, then (CD) holds forland (H,f) has a solution.

THEOREM 4.4. Let G {fe CnI(CD) does not hold for (H,f)}. Then G is a
set of the first category in Cn.

Proof The proof is essentially the same as for the previous result. Let f be
chosen so that (H,f) has a solution. Let

V(f) lim sup {llu. ullc,},

where u(.,. is a solution of (H,f). f satisfies (CD) if and only if V(f) 0. This
follows in a manner similar to the method used in the proof of Theorem 4.2.

Define: N, {f CnlV(f) > l/n}. G ,% 1N, and each N, is a nowhere
dense set in Cn. To see this is true, let n be arbitrary and choose any h N.. There
exists a sequence {hm} c Cn, where h satisfies all the conditions of Theorem 4.1
and (H, hm) has a unique solution for each m. As a result of this choice, V(hm) 0
implies h,, N,. Thus, every neighborhood of h contains points which are not
in N,. From this it follows that N, is a nowhere dense set, and thus that G is a set
of the first category in Cn.

4.3. Uniqueness. The following theorem is proved in [1]. The proof we give
is shorter and simpler than the proof of Orlicz and Alexiewicz.

THEOREM 4.5. Let U {f Cnl(H,f) has nonunique solutions}. Then U is a
set of the first category in Cn.

Proof We repeat the arguments of the preceding proofs using
V(f) lim sup {llux u2llc},
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where the lim sup is taken over all solutions ui of (H,f), and

We leave the details to the reader.
Remark. If one were to define (CD) in a different way, keeping the convergence

notion, it seems as though our techniques would still work. T. Langan of the
University of Maryland has proved a continuous dependence result, for hyperbolic
operators, similar to the one we present in [3] for (F). It seems likely his result
could be substituted for (CD) with no effect on the conclusions. However, we
concentrate on the simpler case.

Acknowledgment. The author wishes to express his gratitude to Professor
James A. Yorke of the University of Maryland for his assistance during the
preparation of this paper.
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ON THE UNIQUENESS OF BOUNDED SOLUTIONS TO
u’(t) A(t)u(t) AND u"(t) A(t)u(t) IN HILBERT SPACE*

HOWARD A. LEVINE-

Abstract. Let A:Da H be a symmetric linear operator. If 0 is not an eigenvalue of A, then
every solution u to u’(t)- Au(t),-o < < o, is either identically zero or satisfies
sup_ [[u(t)ll + o. This result is proved via an elementary argument and then extended in two
directions: (i) A A(t), te(-o, o), and (ii) A A+ + A_, where A+ is symmetric, zero is not an
eigenvalue of A+, A_ is skew symmetric and Re (A x, A_x) > -IIA+xll for all XGDA,X :/: O.
This inequality is sharp. A similar analysis is carried out for u"(t) A(t)u(t). A number of examples
from partial differential equations are given.

1. Introduction. In this paper we prove, via elementary considerations, an
extension of the following theorem of S. Zaidman [6], who based his proof on
the spectral theorem for self-adjoint operators. We also prove an analogous
result for certain abstract equations of the form d2u/dt2 A(t)u in the case that
the symmetric part of A(t) is "positive".

THEOREM. Let H be a Hilbert space and suppose that A is a self-adjoint operator

defined on a dense domain D H. Suppose that zero is not an eigenvalue of A.
Let u :(-, + ) D be a (strongly) continuously differentiable solution to

Then either

du/dt Au,

sup ftt +
or else u =_ O.

Our proof of this result has the advantage that it applies to a wider class of
operators, that it is elementary and that it even allows us to have A "time-
dependent". In general, A can be somewhat worse than symmetric, provided the
skew symmetric part is not "too big" relative to the symmetric part and that
zero is not an eigenvalue of A. (As is well known, id/dx has no self-adjoint extension
when thought of as an operator on C(0, ).) Moreover, it is very difficult to
prove that partial differential operators which are symmetric have self-adjoint
extensions (unless they have real coefficients or are semibounded). Nevertheless,
we can apply our results to certain partial differential equations of mixed or even
no type.

Zaidman [7] has extended his result to the case of evolutionary equations
in a Banach space if A is the infinitesimal generator of a one-parameter semigroup.
Since we rely heavily on the Hilbert space structure, we cannot extend our results
in this direction.
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2. The equation u’(t) A(t)u(t). We prove the following theorem.
THEOREM 1. Let H be a Hilbert space, real or complex, and let D

_
H be a dense

linear subspace. Let, for each (-, ), A(t) be a symmetric operator defined
on D with 0 not a eigenvalue of A(t). Let A(t)x be strongly differentiable for each
x D and suppose that (A(t)x, x) >= 7(t)llZ(t)xll 2 for all x D and (- o, o),
where, for each t, 7(0 is continuous and 7(0 < 2. Let u:(-, o) D be a con-
tinuously differentiable (in the strong sense) solution ofdu/dt A(t)u(t). Then either

or

t+

M sup Ilu()ll 2 art / o

() u _-- 0.

()

Then

Moreover,

Thus

Proof Assume that M < , and suppose that u O. Let
t+

F(t) IlU(r/)ll 2 dr/.

F’(t) Ilu(t + 1)ll 2- Ilu(OII 2

t+l d
u(r)II 2 dr/

t+

2 Re (u., u) dr/

t+

2 (u(r/), A(r/)u(r/)) dr/.

(u. =- du/dr/)

F"(t) 2(u, Au)(t + 1) 2(u, Au)(t)
t+ d

2 -q(u, Au)(r/)dr/

4 Re (u., Au) dr/+ 2 (u, Au) dr/.

t+

(2) F"(t) __> 2 (2 7(r/)) Z(r/)u(r/)ll 2 dr/.

Now, since U(to) :/: 0 for some to, A(to)U(to) :/= O. Also IlA(t)u(t)[[ 2 is continuous, as
it is the same as Ilu’(t)ll 2. Therefore,

F"(t0 1/2) > O.

Agmon [1] has shown that the indicated differentiation of (u, Au) is justified for u, u’ strongly
continuous, A(t) is symmetric and A(t)x is strongly differentiable for each x.
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Thus F is a nonconstant, convex function of t, which is bounded (0 __< F(t)
__< M < ). However, as is well known, there are no such functions. (For if F were
such a function and F’(o) > 0, say, for some o, then for > io, F’(t) >= F’(o)
(F"(t)>_ 0) so that F(t) >= (t- io)F’(o) + F(o) and F(t)- + o as + o. If
F’(o) < 0, we find that F’(t) <= F’(o) for < io so that F(t) >__ (t o)F’(o) + F(o)
for < io and F(t) - + o as - o. Thus F’(t) _= 0 and F is a constant. Thus we
have a contradiction and u 0.)

As a first example, consider the equation

t3t Zxx in [0,) x (-c,).

Here

H=C2(0,), A id/dx and DA -- {flfe H,f’ e H}.

If

DA c_ {f e Hlf’ e H and f(O) 0},

then A will be symmetric. However it is well known that A has deficiency indices
(0, 1) so that it has no self-adjoint extension [3]. Nevertheless, 0 is not an eigenvalue
of A and therefore we have that solutions to this equation satisfy

sup [u(x, t)[ 2 dx +
<t<oo

or else u O.
Remark 1. Note that Theorem 1 remains true if the operator domain D depends

on under the following conditions. Denote by

f(t) d(u(t), A(t)u(t))/dt 2 Re (u,, A(t)u)

and require that f(t) > -y(t)[IA(t)u(t)] 2, where y(t) < 2 and is continuous.

Remark 2. Condition (a) may be replaced by

(’) sup [lu(t)ll + .
<t<oo

Remark 3. Suppose A(t)= A for all and that zero is an eigenvalue of A.
Let N {x DIAx 0}. Then we have the result that either

or
u(t) =- const.

t+

sup Ilu(,)ll 2 d, /

To prove this we write u(t)= v(t)+ w(t), where for each t, (v(t), w(t))= 0 and
v, w take values in D f’l N and D f)N-L respectively. Then u’(t)= v’(t)+ w’(t)

Aw(t). A limiting argument shows that v’(t) and w’(t) take values in N and N+/-
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respectively. Assuming v’(t) D also, we have (v’, v’)+ (v’, w’)= (v’, Aw)= 0 by
the symmetry of A so that (v’, v’)= 0 and thus v--Vo, a constant. Hence,
u Vo + w and u’(t) w’(t) Aw. Therefore, as before, we see that either w =- 0
or sup_<t<j’+1 IlwllZdr/= by reasoning with F(t)= (w(t),w(t)). (Then
F"(t) 411Aw(t)l123 Since

t+ ftt+Ilu(r/)ll 2 dr/ I10112 / IIw(rt)ll 2 dr/,

the result follows.
Remark 4. Suppose again that A is independent of t. Then it is sometimes

possible to have the result of Theorem 1 if A A + + A_, where A + is symmetric
and A_ is skew symmetric. Suppose that zero is not an eigenvalue of A +. Letting
F(t) be as in the theorem, we have

t+

F’(t) 2 Re (u,, u) dr/

t+

2 [Re (u, A + u) + Re (u, A_ u)] dr/

t+

2 (u, A + u) dr/

so that
t+

F"(t) 4 Re (u,, A + u) dr/

4 [[A+u[I 2 dr/+ 4 Re (A_u, A+u) dr/.

Suppose now that A_ i2A+ + B, where 2 is a real-valued, measurable, locally
integrable function (2(0 0 in the case of real Hilbert space) and B is a skew
symmetric operator satisfying

Re(Bu, A+u) >= -T(t)llA+ull 2

for some nonnegative, continuous function such that (t) < 1 for all t. Then

t+

F"(t) > 4 (1 ,(r/))llA+u(r/)ll 2 dr/

and we may finish the argument as before. This result fails if Re(Bx, A+x)
=-IIA+xll 2 for some xD (x 4: 0) as the following example shows" Let
H L2(- , ) and let

1/2(n x) -t for n 1 < x < n, n 1,2,3, ...,
qS(x) 0 for x 0, +_ 1, +__2,...,

1/2(n+x)-i for -n<x< -n+ 1, n= 1,2,3,....
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Let

D {fe HIf’ e H and b .fe H}.
(Note that this says that if fe D, then f is "small" to the right of every integer
point. Note also that D is dense in H.) Now consider the partial differential equation

cu cu
t

flp(x)u +

in the (x, t)-plane. One can easily verify the following:

(i) A+:D --. H defined by A+ f .f is a symmetric operator and zero is
not an eigenvalue of A+.

(ii) A_ :O H given by A_f= f’ is skew symmetric (Re (f,f’) 0).
(iii) b’(x) 2bZ(x) except when x is an integer.
Let

lw/n x for n < x < n, n 1,2,3, ...,
(x)= for x=0,

[x//n+x for -n<x=< -n+ 1, n--- 1,2,3,...,

and note that sup_ <x< I(x)l 1.
Let fo e D with lifo 0 and fo vanishing in a small neighborhood of each

integer point. Let

u(x, t) fo(x + t)d/(x).

One can easily verify that u is a solution to the differential equation in the plane
except on the lines x n, n 0, _+ 1, _+ 2, ..., and that the evolutionary equation

dt
Au(t) (A + + A_)u(t)

is likewise satisfied. (The solution is found by formally applying the method of
characteristics to the equation and obtaining the formal solution u(x, t) fo(x + t)
exp (-j’ qS(q) dr/).) We see that for all t,

lu(., t)ll 2 Ifo(x + t)121’(x)l 2 dx

Ifo(x + 012 dx fo 2,

while

Re (A + fo, A_ fo) Re ck(X)fo(x)f’o(X dx

2
qS(x) I/o(X)l 2 dx

2
’(x)lfo(x)l 2 dx

(cont.)
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dp2(x)lfo(x)l 2 dx

IA+fo 2.

Thus u(’, t) is a bounded nontrivial solution to ut Au while Re (A/ fo, A-fo)
A/ foil 2. Therefore the inequality ,(t) < must be strict.
As a simple example, let H &a2(_ r, ) and D {f HIf,f’ are absolutely

continuous,f" H andf(- r) f(rc) 0). Let a(x, t) be a real-valued, continuous
function such that for each real t, da/dx and da/d are bounded in x, da/ <= 0
almost everywhere in x and J’Z 1/a(x, t) dx exists and is not zero. Let

[A(t)f](x) =- -x a(x, t) (x)

One easily checks that (A(t)f)(x) 0 a.e. implies that f(x) 0 a.e. Moreover,

(f A(t)f) --(x’ t)lf’(x)l 2 dx >__ O.

Thus, there are no nontrivial bounded solutions to

c3t fx a(x, t)x(X, t)

in (-n, n) (-, ) with u(-n, t) u(n, t) 0 for all t. (Bounded here means
that

sup lu(x, 012 dx < .)
oo<t<oo

As another example, consider the Blackstock equation for 6, c given real
constants and 6 - 0;

U (Uxx + Cttx, --0(3 < X, <

f’ f" d2/dx2, A c d/dx.With D {f L2( oo, )]a L2( , )} let A+
Since, as is well known, C(R) is dense in D (D being nothing more than HZ(R)),
one easily checks that

(i) A + is symmetric on D and 0 is not an eigenvalue of A +,

(ii) A_ is skew symmetric on D,
(iii)

Re (A + f, A_ f) Re 6cf"(x)f’(x) dx - ’(x)l 2 dx O.

Therefore, for any solution u(x, t) of Blackstock’s equation,

sup lu(x, 012 dx + c
<t<c

or

u_=O.
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If c + ifl where fl - 0, we take

d2 d
A+ 6-xz + fldx

and

d
A_ dx"

One easily checks that forfe D, A+f= 0 implies thatf’(x) + (ifl/6)f(x) al and
consequently, f(x) a26/ifl + a2 exp (-iflx/6), where a and a2 are constants so
that fe D if and only if a a2 0 and thus zero is not an eigenvalue of A +.

Moreover, Re (A + f, A_ f) _oo 6ef"f’ dx 0 so that the above result remains
true in this somewhat more general case as well. This same result can also be
proved by means of Fourier transforms, using the well-known fact that the Fourier
transform is unitary.

3. The equation u"(t)= A(t)u(t). Now let us consider the equation u"(t)
A(t)u(t). In fact we shall consider the more general equation

Putt A(t)u + (t, u, ut),

where (t, .,. )"D4(t H -- H, and prove two theorems, one for the case _= 0
and the other when o 0.

THON 2. Suppose that either set of hypotheses given below is satisfied and
that =_ O. Then either

(a) sup (u(t), Pu(t)) +

or

(/3) u =- const.

for every twice continuously differentiable solution u "(- c, c) H ofthe equation

d2u
P-- A(t)u

such that Oa(t) Dp, u(t), u’(t), u"(t)e De and u(t)e DA(t) for all t. Moreover, the
constant in (fl) is zero if I-P, I-A and I-A 2 below hold"

I-P. P is symmetric and, for all x Dp, (x, Px) >= O.
I-A. A(t) Al(t + A2(t), where, for each t, Al(t is symmetric and A2 is

skew symmetric.
I-A2 For each t, (x, A x(t)x) > 0 for x Da(t), x :/: O.
II-P. P is symmetric and (x, Px) > 0 for all x De and x :A O.
II-A. Same as I-A above except that (x, A Ix) >__ 0 for x De.
Proof The proof is straightforward. Let

F(t) (u, Pu).
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Then, we have, successively,

F’(t) 2 Re (ut, Pu),

F"(t) 2 Re (Putt, u) + 2(ut, Put)

2(Al(t)u, u) + 2(ut, Put).

Suppose that (fl) fails. Using I-P, I-A1 and I-A2, there is a o with F"(to)
=> 2(U(to), A(to)U(to)) > 0 so that (a) holds, by the remarks in the proof of the
first theorem. If (fl) holds, then F" 0 and hence (u, A xu) 0 so that u _= 0. If the
second set of hypotheses holds and (/3) fails, then F"(t) >= (ut, Pu,) > 0 as u not
constant implies ut 0 and thus (a) holds.

Remark 5. Note that Az(t played almost no role in the proof and that A l(t)
was not required to be differentiable.

Remark 6. Condition (a) may be replaced by

(a’) sup ftt+ (u(q), Pu(q)) dl +

We also have the following theorem.
THEOREM 3. Let u be a twice continuously differentiable solution to

Put, A(t)u + (t, u, ut).

Suppose that P and A satisfy I-P and I-A above and
(i) there is a constant 2 > 0 such that for all x Da(t) and all t, (x, A l(t)x)

__> ;(x, x);
(ii) there is a constant la (which may depend upon the solution u) such thatfor

all t,

(iii) 0<<2.
Then either

(t, u, u3ll 2 [(ut, Pu,) + (u, Al(t)u)];

(/3) u 0.

Proof As in the preceding theorem, let F(t) (u(t), Pu(t)). We find that for
anya > 0,

V"(t) 2(u, A u) + 2(ut, Put) + 2(u, )

__> (2 -/a 1/a2)(u, A lU + (2 #a)(ut, Put),

where we have used the estimates

[(u,)] __< []u]] ]]ff[[ __< (1/2a)]]u]] 2 + (a/Z)] ff]]2

<= (1/22a)(u, A1u) + (a/2)]]f-][ 2

and condition (ii) of the theorem. We want to choose a > 0 such that (2 a) >__ 0
and (2 -/a l/a2) > 0. This will be possible provided the intersection of the

(a) sup (u(t), Pu(t)) +
or
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intervals

and

{10 < u < 2}

{1 (1 -//),/2 </o < 1 + (1 #/)1/2}
is not empty. Since 0 < #/2 < 1, this is the case. Therefore F"(t) >= C(l, 2)(u, A lU)
for some positive constant C(/, 2). The remainder of the argument is now routine.

From Theorem 2 we can deduce a sort of Liouville theorem. Let n be a fixed
direction in R", which, since A, 2/cx is invariant under rotations, we may
take to be (0, ..., 0, 1). Let D c_ 2(R,- 1) be the usual space H2(R 1) consisting
of (the completion of) the set of functions f such that f, fx, and fx,xj are square
integrable for all i,j 1, .--, n 1. Let u be a solution of

Ux.x. A,_ lu, A,u O,

in R" and suppose, for each x,, u(., x,) e D. Then if

sup f [u(x
Xn <

we have u 0. (The same result, we note in passing, can be proved via Fourier
transform arguments.)

Since the skew symmetric part of A played no role in the determination of a
positive lower bound for F" in Theorems 2 and 3 we could equally well make an
analogous statement for the equation

2u n_l 2u nl U
c3x.2 ,=1

+
Xi

where the bi’s are constants. If the bi’s are not constants but functions of xi, ..., x,,
the second sum should be replaced by

nl bi--+cqu "l Obil
i=1 Xi - i=1 Xil u"

In addition, one can even apply the conclusion of Theorem 2 to elliptic
equations of the form (with

b, +
x,i

u.
i=1 i=1

as long as one has, for each x,, a constant M M(x,) > 0,
n-1 n-1

M Z >= a,j(x,x,,),j>=O
i=1 i,j=l

for all real 1,..., ,-1 and x e R"-1. (In this case the appropriate operator
domain is

D D(x.) {fe HI(R 1)
i,j= Xi aij dX dx,_ < oo }.)
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Finally, we remark that our results can be applied to

a e
i,j=

bi(x) - ’ i,j=

3uZ CijkxiXjXi,j,k=

under the appropriate "ellipticity" conditions on the matrices (aij) and (bij).
Here b(x) 0 for all x R"- and we take the Cijk to be constants. In the interest
of brevity, we omit the details.

In conclusion, we note that similar results can be obtained for initial boundary
value problems for the preceding equations which have solutions in the entire
space-time cylinder f (-, ), where f

_
R"-1 is a bounded domain with a

"nice" boundary. It simplifies matters to consider the case u 0 on c3f (- , )
although certainly similar results follow with "Neuman" data prescribed on part
of c3f. Again, we omit details.
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ASYMPTOTICALLY NEUTRAL FAMILIES IN Ea*

D. T. PIELE

Abstract. Consider a bounded, open, connected region D in E with connected complement. For
a sufficiently smooth Lyapunov boundary surface S, we construct an asymptotically neutral family
{Ynl, Yn2, Ynn}, rt nj o, of points on S which, by definition, have the property that the sum
of the potentials due to unit charges placed at {Y.1, Yn2, Ynn} converge (modulo constants C.) to
zero as n nj . Specifically, ]= l(1/llx Yn,kl[) nu Cn 0 uniformly on every compact subset
K D. The fields corresponding to asymptotically neutral families tend to zero uniformly on every
compact subset K D, ’= 1V[(1/llx Yn,kl[)] 0. In the course of the construction we examine"

(i) the equilibrium distribution p on S, (l(y)/llx YI[)dtr(y) C, and how the H61der continuous
differentiability ofp is related to that ofS (ii) a proofof the strict positivity ofp using a result ofE. Hopf;
(iii) an approximation to the integral (#(y)/llx YI[) dtr(y) by a sum of plane integrals each of which is
further approximated by a Gauss-type numerical integration rule. The construction of asymptotically
neutral families for bounded simply connected regions in E has been done by Korevaar. New techniques
are developed in this paper to extend the results to E", n >= 3.

Introduction. Let D be a bounded, open, connected region in E3 with con-
nected complement. For a sufficiently smooth boundary S (specifically, if it has a
local parametric representation with H61der continuous third partial derivatives)
we construct an asymptotically neutral family {Y,1, Y,2, Y,,}, n nj , of
points on S which by definition (see [6]) have the property that the sum of the
potentials due to unit charges placed at {Y,1, Y,2, "", Y,,} converge (modulo
constants C,) to zero as n nj . Specifically,

k=xlIx Ykll
+ C 0

uniformly on every compact subset K c D. We note that the fields generated by
the asymptotically neutral family tend to zero as n nj in D.

The construction begins by taking the well-established equilibrium distribu-
tion/z on S (see [4]) and normalizing it on S. Hence,

fs fs (y)
la(y) dtr(y) and

x yI------ da(y) C

for all x e D.
We next approximate the integral

n2 s Ilxl(Y------) dtr(Y)
yll

by a sum of potentials of unit charges

IIx yll’ y e S,
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by: (i) a careful decomposition of the surface S into patches Sj of equal charge;
(ii) transforming the integral over each patch into an appropriate plane integral;
(iii) approximating each plane integral by appropriate values of the integrand
using a Gauss-type numerical integral rule. As necessary steps in this procedure,
we apply a result of E. Hopf (see [3]) to prove that z(y) > 0 everywhere on S.
Also, we use results of N. M. Giinter (see I2]) to demonstrate how the H61der
continuous differentiability of # is related to the same type of smoothness of S.

Asymptotically neutral families are useful in proving theorems which provide
approximations to harmonic functions in D by sums of potentials of unit charges.
For example, let D be a bounded, open, connected region with connected comple-
ment and boundary S which has a well-defined tangent plane at each point. If S
contains an asymptotically neutral family, then for every harmonic function f
in D we can find a family of finite sequences {Y,1, Yn2,’", Ynn), n nj o, of
points on S such that

as

uniformly on every compact subset of D. This result is proved in [8]. We note as
a consequence, every field (gradient of a harmonic function) can be uniformly
approximated by fields due to unit charges on the boundary.

Results of this type in E2 are by-products of much deeper theorems by
J. Korevaar (see [5]) where D is a bounded simply connected region with no restric-
tions on the boundary. New techniques are developed in this paper to construct
asymptotically neutral families on appropriately smooth boundaries S of D in E 3.
The methods used here are adaptable to E", n > 3.

1. Notations. We restrict our consideration to E3, the points of which are
denoted by x, y. The Euclidean distance between x and y is denoted by Ix y
Integrals over 2-dimensional surfaces are denoted by j" (.) da, da being the surface
element. Integrals over 3-dimensional regions are denoted by j" (.)dx.

A Lyapunov surface in E3 is a closed bounded 2-dimensional surface S
satisfying the following conditions"

(i) At each point of the surface there exists a well-defined tangent plane,
and hence a well-defined normal.

(ii) There exist constants A and 2, 0 < 2 =< 1, such that if 0 is the angle
between the normals at any two points x and y of S, then 0 satisfies a H61der
condition 0 =< Zllx yll .

(iii) There is a constant d such that for all points y of S, the portion of the
surface inside a sphere of radius d about y intersects lines parallel to the normal
at y in at most one point.

From condition (i) we can construct, at each point y of a Lyapunov surface,
a rectangular coordinate system (, r/, ’) with the ’-axis along the normal to the
surface at y. From condition (iii), the subregion of S contained in a Lyapunov
sphere about y can be represented by a function (, r/) over a region A in the
(, r/)-plane.
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Lyapunov regions are regions bounded by Lyapunov surfaces. For interesting
properties of Lyapunov regions, see Gtinter [2].

Let f(,r/), defined in a region A c E2, be bounded and possess bounded,
continuous derivatives up to order k,

.Ot,c%f < A,

tl + t2 t, 0, 1, 2, ..., k, such that the derivatives of order k are 2-Htlder
continuous with the same constant A (see [2]). The class of such functions is
denoted by H,(A, 2).

The surface S belongs to the class L,(A, 2), if (I)(, r/) e H,(A, 2), where A and 2
are independent of the choice of y on S. Note Lyapunov surfaces belong to the
class LI(A, 2).

Let/t be a function defined on S. If (, r/, 4") are the coordinates of a point y
of S, we may define/ on a region A in the (, r/)-plane by putting/x(, r/) #((I)(,
=/4Y). A function/t defined on S belongs to the class H,(A, 2) if l(, rl) H,(A, 2)
on A, where A and 2 are independent of the choice of y.

2. Equilibrium distribution. Let S be a Lyapunov surface, which separates
the bounded region Di and the unbounded region De. For a continuous function/
on S the single layer potential

and its normal derivatives at the boundary satisfy well-known properties (see [2]).
Specifically,

OUe OUi

where Ui/N, and U/N, denote the limits of the directional derivative
U(x)/N,, as x approaches y’ e S kom the interior (xe Di) and the exterior
(x e D) respeaively, and

(2.2) U t (Y’ y’’’) da(y)u( )cos

where N, is the free unit vector in the direction of the outward normal to S at y’
and (y’ y, N,) is the angle between N, and the vector y’ y.

The equilibrium distribution , defined by the condition

for x e Di, is established by setting c3Ui/cNy, 0 in (2.2) and solving the resulting
homogeneous integral equation

(2.3) l(y’) fs I(y)K(y, y’) da(y) O,
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where

/(y, y’)
cos (y’ y, Nr,
211y’- yl[ 2

(The condition cUi/c3Nr, 0 for all y’ S is sufficient to imply that U is a constant
in Di; see 2]). A continuous solution to (2.3) is given in Kellogg I4], where S has a
continuous curvature, and in Gtinter [2], where S satisfies the Lyapunov conditions.

It is natural to expect that the continuous equilibrium distribution # will
reflect in some manner the boundary S. For example, if S is the unit sphere, we
would expect, and indeed it is the case, that the normalized distribution is the
uniform distribution p(y) rt/4. Generally, if S is a sufficiently smooth surface,
it is reasonable to expect that #(y) will inherit corresponding smoothness properties.
One of the first results of this type is due to Korn [7].

LEMMA 1. If S is a Lyapunov surface and el) a continuousfunction on S, then

(x) fs dp(y)K(y, x) da(y)

satisfies a uniform H61der condition on S.
Korn further proved the following lemma.
LEMMA 2. IfS is a Lyapunov surface and ck is a H61der continuousfunction on S,

then the derivative of is H61der continuous.
Applying these two results to the continuous solution p of (2.3) shows that p

is in fact H61der continuously differentiable. Gtinter [2] shows, more generally,
that the following lemma holds.

LEMMA 3. If S e Lk(B, 2) and 49 e Hk_z(A, 2) on S, then e Hk-1(cA, 2’) on S,
where 2’ is an arbitrary positive number satisfying 2’ < 2 and c depends only on B
and 2’.

Applying a "boot-strap" operation further, we obtain the following relation-
ship between the H61der continuous differentiability of S and p.

THEOREM 1. If S e L(B, 2) and It(y) is the (continuous) equilibrium distribution
on S, then p e Hk_ l(A’,2’)for any 2’ < 2.

To establish the strict positivity of the equilibrium distribution p, we shall
apply the following theorem of E. Hopf [3J--specialized to our situation.

Let R denote a connected open set in E", n __> 3, and y denote a point on the
boundary c3R. Assume that R has the property that R contains a hypersphere H
centered in R and touching cR only at y.

THEOREM 2. Suppose u is harmonic and u <= 0 in De with lim u(x) u(y) 0 as
x y along the normal (x De). Then either the normal lower derivative (directed
inward)

au u(y)- u(x)
lim > 0

c3N y- x

(where x y as before) or u =- 0 in
We shall need the following.
LEMMA 4. The equilibrium distribution p is strictly positive.
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Proof By definition, the equilibrium potential U satisfies OUi/3Nr 0, from
which we derive (see [2]) 3Ue/c3Nr -4g/.t(y). Hence, it is sufficient to show
cUe/3Nr < 0 for y 6 S. We assume, without loss of generality, U(x) c > 0 for
x Di. Apply the maximum principle to the exterior region D to observe U(x) <= c
for x De. Define u U c. We have u 0 on S and u _< 0 in De. Let y be a
point in the boundary surface S. The Lyapunov conditions on S are sufficient
conditions for S to apply Theorem 2. Differentiating u U c in the opposite
(outward normal) direction,

3U

c3Nr c3Nr
Since Ue/Nr exist for all y S, a simple application of the mean value theorem
establishes the equality

U 8U UcgU
lim

U(x)- U(y)= lim (x)= lim (x)

where x y along the normal Nr and x’ lies on Nr between x and y. We conclude
Ue/3Nr < 0 and hence p > 0.

3. Partitioning the boundary. We now discuss the partitioning of the surface
S into patches of equal charge. The standing assumptions are: (i) S is a Lyapunov
surface with associated sphere of radius d, where Ad < 1/2 (ii) the equilibrium
distribution p is continuous and normalized such that s la drr 1.

Denote the intersection of the compact surface S and a finite covering of S
with open spheres of radius d/2 by $1, $2,"’, Sin. The surface patch S can be
represented by " Os(, r/) on a domain As. In fact, Os may be defined in a disk
about the origin of radius (7/9)d, while A is contained in the disk of radius d/2
(see [2, p. 3]). Redefine the surface patches Ss, j 1, 2,..., m, to make them
nonoverlapping and share at most a common boundary. Let c be the charge on
each patch Ss, c ss P drr. We have

cs= #drr 1.
j=

Since/z is continuous on S and we have the freedom to expand or contract our
domain of definition of Ss, we may assume without loss of generality that c is
rational for j 1, 2, ..., m. Write c psi1, where is the least common multiple
of the denominators of cs, j 1, 2, ..., m. The charge on each patch S is given
by

(3.1) ps/1 f_lda= f. //(,q)x//1 / O1+ Oj2,2 d dq,
,2Aj

where s,1 and (1)s, denote the partial derivatives of (1) with respect to and r/,
respectively. Wc introduce a transformation Y from the (, r/)-planc to the (u, v)-
plane given by

T:
u(, r/) x//1 q- s2,1(X /7) -+- O,2(X, FI)/./(X, F])dX.
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The Jacobian of this transformation has the value"

uCv,- u,v x//1 + (I)f, "a
t., (I)j2,2(,

We can express (3.1) as J’rA du dr, where YAj is the image of Aj under the trans-
formation Y. Let A(YAj) denote the area YAj. We then have A(YAj) p/l.

Notice that the transformation 1" is nonsingular since p > 0 (Lemma 3).
If we divide YAj into regions of equal area in the (u, v)-plane and map these
regions onto the surface S via the map j Y- 1, we shall obtain a decomposition
of the surface patch Sj into regions of equal charge, exactly as desired.

For each integer n we divide YA into pin
2 regions, each of area lJn2, by

constructing a mesh, with sides parallel to the (u, v)-axes a distance a 1/x/ln apart,
over the area YAj. Let j,i, 1, 2, ..., Nj, denote the squares of the mesh which
lie inside YA and have a distance >0 to the boundary of YA. Let I-l,i,

1, 2, ..., Mj, denote the remaining squares and partial squares contained in

YA. Form the unions
Nj Mj

j= U j,, FIj= U I-Ij,.
i=1 i=1

Clearly,

j U 1-Ij YAj, A(j) + A(l-Ij) A(YAj), A(j,i) a2,

A(ILi <: Z 2

where A is used to denote area.
Since the boundary of YA is rectifiable, the number M of squares of the

mesh in Hj, which have a distance < a to the boundary, is O(n), Mj O(n) [5, p. 460].
The number Nj of squares in Oj is of order n2, Nj O(n2). Clearly A() Nja2

and A(Hj) A(Aj) A(j) pj/l- Nj2 (pin2 Nj)2 Lj2, where Lj is
the integer pj. n2 Nj. Note that Lj Mj.

Decompose Hj into 4Lj regions of equal area 2/4 and denote them by H),.
Since the distance between the boundary of YAj and j is , a decomposition
can be easily made such that the diameters of H), are O()= O(1/n), 1, 2,
.., 4Lj.

Summarizing, we have decomposed the plane region YAj into N squares of
area 1 and 4Lj regions of area 1/41n 2 with diameters O(1/n). Also, Nj O(n2),
Lj O(n), Lj + N pjn

2 and rAdu dv p/l.
4. Numerical integration. In this section we develop, for use in 5, sufficient

numerical integration rules to approximate integrals over the square regions j,i
and the irregular regions H},.

In one dimension, a two-point Gauss numerical integration rule is exact for
polynomials of degree 3 [1, p. 35]. For the class of twice differentiable functions
with 2-H61der continuous second derivatives, the error term

b a
E(f) f(x) dx -----[f(xl) + f(x2)]
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for the two-point Gauss integration rule is of order O(b a)3+ 4. This can be seen
by expandingf(x) in the Taylor expansion,

f(x) f(xo) + (x xo)f’(xo) + -(x xo)Zf"(Xo) + O(x Xo)2+ 4.

The product of two 1-dimensional Gauss integration rules gives a four-point
numerical integration rule which is exact for polynomials p(x, y) of degree __< 3
in x and y separately. Again, an estimation of the error term, E(f), for a class of
functions in two variables can be carried out through a Taylor expansion off.
As a result, for the class of twice differentiable functions with 2-H61der continuous
second derivatives, 0 < 2 < 1,

f,’ ;t’f(x, y) dx dy

where E(f) O(b a)4 + .
(b a)2
[f(xl, Yl) + f(xl, Y2)

+f(x2, Yl) + f(x2, y2)] + E(f),

Let B be a bounded region with diameter 0() and area 62. Consider the
class offunctionsf(x, y) defined in the convex hull ofB which are twice continuously
differentiable with uniformly bounded second partial derivatives. Expanding
f(x, y) in a Taylor series about (Xo, Yo) we obtain

y) dx dy 62f(x Yo) + 0(6),o

where

B x dx dy y dx dy
Xo= Bdxdy Yo= dxdy.

This particular choice of x0 and Y0 eliminates the 6 3 term.

5. Construction ofan asymptotically neutral family. In this section we construct
an asymptotically neutral family of points on S when S Lk(B, 2), k _>_ 3, i.e., we
shall construct a family of finite sequences {Y,1, Yn2,’’’, Ynn}, n nj oe, of
points on S such that

_-xllx- y.ll
+ C.--, 0

uniformly on every compact subset K c D.
For each compact subset K, let r denote the family of functions

FKu, v)
lix y((u, v), rl(u, v))ll’

x e g

The differentiability ofF as a function ofu and v is determined by the differentiability
of the surface S and the equilibrium distribution/. For example, if S e Lk(B, 2),
F(u, v) is in the class H_ I(A’, 2") (see Theorem 1). Furthermore, since K is bounded
away from the surface S, there exist constants A" and 2" such that

F(u, v)e H,_ I(A", 2") for all F in
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We begin our construction with the normalized equilibrium distribution
which satisfies

(5.1) fs la(y) dtr(y) 1,

and

(5.2) fs x-y]#(Y) dtr(y) C

for all x D. Use the surface decomposition of 3 to rewrite (5.2) as

(5.3) 2 Ia(Y) d(y) C.
x

Transform each surface integral in (5.3) to a plane integral with the transformation
I)j l’- discussed in 3. Accordingly,

(5.4) fs I(y)
dr(y)= frIIx yll

Decompose I’Aj into Nj squares of area 0
2 1/ln2 and 4Lj bounded regions of

area 02/4 (see 3), where Nj O(n), Lj O(n). Partition the integral (5.4) and
write it as

(5.5) F(u, v) du dv F(u, v) du dv + F(u, v) du dr.
Aj j,i i=

To each integral a,,F(u,v)dudv we apply the four-point Gauss numerical
integration rule ( 4) with F(u, v) H2(A" 2") to obtain

f F(u, v) du dv

(5.6)
[F(u Vl) + F(u /)2)

41n2

To each integral j’ri,, F(u, v) du dv we apply the center of mass rule

(5.7)

Note. Although it is not indicated, the four points used in (5.6) and the point
in (5.7) depend on fj,i and I],i respectively. Denote the corresponding points on
the surface Sj by Yj,,I, Yj,,2, Yj,,3, Y),i,4 and Yj, i,o.

CLAIM. Thefamily

[-J [’-J {Yj,i,,’" Yj, i,4} [’-J {Yj, i,o
j=l i=1

is an asymptotically neutralfamilyfor D.
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Proof Multiply both sides of (5.6) and (5.7) by 41n2. The error terms are now
of order O(1/n2 +;t) and O(1/n2), respectively.

Sum over 1, 2, ..., N and 1, 2, ..., 4Lj"

Njf NI41n2 . F(u, v) du dv
i’-- j,i i- x Yj,i, 111

(5.8)

(5.9)

1
+ -+- -F -+- O(Nj/n2 + "),

x yj,,211 Ilx Yj, i,3 IIx-

41n2 F(u, v) du dv
i--1 ),i i- IIx yj,,ol

/ O(Lj/n2)"

Substitute (5.8) and (5.9) into (5.5), combine the error terms using Nj O(n2)
and L; O(n), and sum over j 1, 2, ..., m, to conclude

(5.10)
m{Nl 1 1

x yj, i,1
+ at-

.- Ilx Yj, i,2[[ Ilx Yj, i,3[I

+ + 41n2 F(u, v) du dv
x yj,i,4ll i= x Yj, i,O Aj

+ O(1/n) 4ln2C + O(1/nX).
Note that the error term is uniform for x in K.

For integer n we abbreviate the sum in (5.10) to

__L Ix- yll"

Define C, -41n2C and let n - in (5.10) to conclude

(5.11) +C.0 as n--.oe.

Since the error term, O(1/nX), is uniform for x e K, the convergence in (5.11) is
likewise uniform.
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PROPERTIES OF SOLUTIONS OF u"+ c(t)f(u)h(u’)= 0
WITH EXPLICIT INITIAL CONDITIONS*

C. M. PETTY" AND W. E. JOHNSON

Abstract. Conditions are stated, determining the behavior of a solution of the nonlinear equation
mentioned in the title, which are expressed wholly and explicitly in terms of the initial conditions and
the given functions h(s), f(s) and c(t). Avoiding a priori assumptions that a solution is proper or possesses
some other property, the results illuminate the variety of behavior which can exist for a single equation
under various initial conditions. The basic restrictions imposed here on the defining functions are that
h(s) and c(t) have constant sign and sf(s) > 0 for # O. The method of proof for some of the results
involves the introduction of two Lyapunov functions which do not require that c(t) be monotone.

1. Introduction. The differential equation in the multiplicative form

(1.1) u" + c(t)f(u)h(u’) 0

has been previously studied in the papers [2], [3], [4], [7], [9], [12], [14], [15],
[17]-[20], [22]. An extensive bibliography of papers dealing with equations of a
related type can be found in [21].

In part, we generalize here some of the known results. However, the major
emphasis is placed on the determination of the behavior of a solution from its
initial conditions. This aspect of the theory, which is important in applications,
has been relatively neglected for this equation.

We assume that the functions defining the differential equation (1.1) satisfy
the following conditions"

(i) h(s) is positive and continuous for all real s;
(ii) f(s) is continuous for all real s and sf(s) > 0 if s 4: 0;

(iii) c(t) is continuous for all _>_ to.
We shall adhere to the following terminology and notation throughout this

paper. If u(t) is a solution of (1.1) with initial conditions at tl, tl >__ o, then Its, T)
will denote the maximum interval to the right on which u(t) is defined. The con-
ditions (i), (ii), (iii) ensure that this interval exists. The solution is said to be proper
or nonproper as T-- or T < oe, respectively. The solution is said to be
oscillatory if it has an infinite number of zeros exceeding t, whether or not it is
proper. The solution is said to be positive if it is ultimately positive, whether or
not it is proper. Finally, we define the functions

I(t) h- 1(’/7) dz, H(t) h- l(’l) dz, F(t) f()d.

We observe that results for negative solutions may be obtained from those for
positive solutions by considering

(1.2) u" + c(t)f*(u)h*(u’) O,

where f*(s) -f(- s), h*(s) h(- s).

* Received by the editors October 21, 1971, and in revised form February 8, 1972.
Department of Mathematics, University of Missouri, Columbia, Missouri 65201.
Lockheed Palo Alto Research Laboratory, Palo Alto, California 94304.
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As a point of reference, the reader may wish to apply some of the results
proved here to the much-studied u" + c(t)lul" sgn u 0 and, as a special case, to
the Emden-Fowler equation for which (t) + (see [1, Chap. 7]).

2. Positive solutions. In this section we restrict our study to solutions u(t)
with initial conditions

(2.1) u(t)= , u’(t)= , >= 0, >= 0, + > 0,

for the differential equation

(2.2) u" c(t)f(u)h(u’) O,

where
(iv) c(t) is positive and continuous for >= to.

Positive solutions to (2.1) which satisfy > 0 and fl < 0 have been studied in
great detail elsewhere, for example, [16] where other references are given.

LEMMA 1. Suppose conditions (i), (ii), (iv) are satisfied and u(t) is a solution of
(2.2) with initial conditions (2.1). Then u(t) is of one of the following four types"

Nonproper positive solutions, T < "Type 1. u(t) - k, u’(t) --. as T, < k < .
Type 2. u(t) , u’(t) as T.

Proper positive solutions, T "Type 3. u(t) , u!(t) as .
Type 4. u(t) , u’(t) k as , fl < k < .

Proof A proof is obtained in a straightforward way by consideration of the
various possibilities under the conditions (i), (ii) and (iv). Consequently, the
details are omitted.

We shall give various conditions under which each ofthe four types is obtained.
Throughout the remainder of this section, if H() we denote the inverse of
H(t), >= O, by G(s), s >= O.

LEMMA 2. Suppose conditions (i), (ii), (iv) are satisfied and let u(t) be a solution

of (2.2) with initial conditions (2.1).
(a) IfH() < , F() , then u(t) is of Type 1, 3, or 4.
(b) If H() , then u(t) is of Type 2, 3, or 4.
(c) IfH() and

dr

for all k > 0, then u(t) is of Type 3 or 4.
Proof Assume u(.t) is of Type or 2 and let 0 < kl <= c(t)< k2 < on

It1, T]. Set V(t) H(u’(t)) kiF(u(t)), t <= < T. Then V’(t) >= O, V’z(t) <= 0 on
Its, T) and the proofs of (a), (b) are obtained from this.

To prove (c) we may assume > 0. Suppose u(t) is of Type 2 on Its, T) and
c(t) <= k2 on Its, T]. Let k >__ max {k2, H()F-1()}. Then, if V(t) H(u’(t))

kF(u(t)), we have V(t) <__ 0 on It1, T) and consequently

dr,
< T-

G(kF(z))
giving a contradiction. This completes the proof of Lemma 2.
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Throughout the remainder of this paper, certain integrals need to be inter-
preted as Lebesgue integrals.

Let a(t), b(t) be any functions which are absolutely continuous on every
compact interval in It1, oe) and let u(t) be a solution to (2.2) with initial conditions
(2.1). From (2.2) we obtain for tl _-< < T,

(2.3)
H(u’(t)) H(fl) a(t)F(u(t)) a(tl)F(g) a’()F(u()) dv

+ u’(r‘)f(u(r‘))[c(r‘) a(r‘)]dr‘,

I(u’(t))- I(fl)-- b(t)F(u(t))- b(t,)F(a)- b’(r‘)F(u(r‘)) dr,

(2.4)

+ f(u(r‘))[c(r‘) u’(r‘)b(r‘)] dr‘.

We shall frequently use functions a(t) such that 0 < a(t) <= c(t), a’(t) <= 0 for
_>_ t. All such functions may be constructed as follows. Let g(t) be absolutely

continuous on every compact interval in Its, c) and 0 < g(t)<= c(t). Define
g(t) min [0, -g’(t)/g(t)] and set

(2.5) a(t) g(t)exp g(r‘) dr‘ __> t.

LEMMA 3. Suppose conditions (i), (ii), (iv) are satisfied and let a(t) be given by
(2.5). If u(t) is a solution of (2.2) with initial conditions (2.1) and q(t) is absolutely
continuous on every compact interval in Its, T) with 0 <= q(t) <= u(t), then, for
tl<__t<T,

(a) u’(t)[I(u’(t))- I(fl)] _>_ a(t)[F(u(t))- V(a)],
(b) H(u’(t)) H(fl) >_ a(t,)[F(q(t,))- F(a)] + fit, q’(r‘)a(r‘)f(q(r‘))dr‘.
Proof. Since u’(t) > 0 on (t T) it is sufficient to prove the first inequality for

fl > 0. Set b(t) a(t)/u’(t). Then since b’(t) <= 0 and F(s) is increasing for s => 0 the
first inequality follows from (2.4), where the last integral is discarded and the
inequality F(u(r‘)) >= F(a) is used in the remaining integral.

The proof of the second inequality is obtained from (2.3) by omitting the last
term, using the monotonicity of F(s) and applying integration by parts.

THEOREM 1. Suppose conditions (i), (ii), (iv) are satisfied and u(t) is a solution of
(2.2) with initial conditions (2.1).

(a) Iffor some a(t) given by (2.5),

I-I o I-I D < fl f a(r‘)f(fl(r‘ ,) + a)dr‘ <=
then u(t) is of Type or 2. If, in addition, F( , then u(t) is of Type 1.

(b) If there exists k > 0 such that c(t) >= k for >__ t and

H(oo H(fl) < k[F( oo F(a)] __<

then u(t) is of Type 1.
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(c) If for some a(t) given by (2.5), flI(fl) >_ a(t 1)F() and

I( -) < a(z) dz <= c

then u(t) is of Type 1 if H(oo) < c and of Type 2 if H(c) c.
(d) If f(s) is nondecreasing for s >_ 0 and

I()- I(fl) < c()f(fl(z tt) + o)d$ ct),

then u(t) is of Type 1 if H(o) < oo and of Type 2 if H(oo) o.
(e) If there exists k > 0 such that c(t) >= k for >_ tl,H(c) oo, H()

>= kF() and

dr,

G(kF())

then u(t) is of Type 2.
Proof Since u(t) is a convex function on It1, T), u(t) >__ fl(t- l)+ , for

_-< < T. To prove (a), we apply Lemma 3 with q(t) fl(t tl) + and use the
fact that H(s) is increasing for s __> 0. The second sentence in (a) follows from
Lemma 2(a).

The proof of (b) is obtained directly from (2.3) with a(t) k.
The constraints in (c) imply, by use of Lemma 3(a), thatu(t) is not of Type 3

or 4. The proof of (c) is then obtained from Lemma 2 since F() in this case.
The proof of (d) is obtained directly from (2.4) with b(t) 0 and the use of

Lemma 2.
To prove part (e), we may assume a > 0. Then the result followS from Lemma

2(b) and the use of (2.3) with a(t) k. This completes the proof.
The following theorem yields the solution type independent of particular

initial conditions (2.1). We first list some conditions"
A. There exists a(t) given by (2.5) and defined on [to, ) such that

a(’c)f(kr,) dr, c

for all k > 0.
B. For some a(t) given by (2.5) over [t

C. The function f(s) is nondecreasing for s >_ 0 and

c(r,)f(kr,) dr, oo

for all k > 0.
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D. There exists ko > 0 such that c(t) >__ ko for __> to, H(o) o and for all
k>0,

d

G(kF(r,))

THEOREM 2. Suppose conditions (i), (ii), (iv) are satisfied and u(t) is a solution of
(2.2) with initial conditions (2.1).

(a) If H() < oo and at least one of the conditions A, B, or C holds, then u(t)
is of Type 1.

(b) If D holds, then u(t) is of Type 2. If B or C holds and H(oo) , I(oo) < oe,
then u(t) is of Type 2.

(c) IfH(o) oe and either A or C holds, then u(t) is of Type 2 or 3.
Proof Since a(t) is nonincreasing, condition A implies that F(oo)= oe. If

u(t) is of Type 3 or 4, then there exists k > 0 such that u(t) > kt for all sufficiently
large t. The proof of (a) and (c) for condition A now follows from Lemmas 2 and
3(b) since we may construct q(t) with q(t) kt for all sufficiently large t.

To prove (a) and (b) for condition B we may assume that > 0, fl > 0. Then
the proof is obtained from Theorem 1(c) since a(t) may be replaced by 2a(t),
0<2<1.

The proof of (a) and (b) from condition C is obtained from Theorem l(d)
since we may assume that fl > 0. The proof of (c) from condition C is obtained
from Lemma 2(b) and (2.4) with b(t) O.

To prove (b) from condition D we may again assume that > 0, fl > 0.
Choose k, ko => k > 0, such that H(fl) >_ kF(a). Then the proof is obtained from
Theorem l(e). This completes the proof.

THEOREM 3. Suppose conditions (i), (ii), (iv) are satisfied, H() , and there
exist positive constants p, r such that G(t) >_ ptr, >__ O, and

Let u(t) be a solution of (2.2) with initial conditions (2.1).
(a) Iffor some a(t) given by (2.5), H(fl) >= a(tl)F( and

(2.6)
IF(z)]’

< p [a(v)]" dv __< oo,

then u(t) is of Type 2.
(b) Either u(t) is of Type 2 or u(t) is proper (Type 3 or 4) and for any given a(t)

expressed by (2.5),

L dz > p [a(z)]’dz
tt) IF(z)]

for all sufficiently large t.

Proof By Lemma 2(b), u(t) is of Type 2, 3, or 4. To prove (a) we shall show that
T < . A slight modification of the proof is needed if the hypothesis in (a) is valid
for a 0. By (2.3), H(u’(t))>= a(t)F(u(t)) for _<_ < T. Consequently u’(t)
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>= G(a(t)V(u(t))) >__ p[a(t)]r[F(u)] and

(2.7)
dz

>
IF(z)]

p [a(t)] dt

and T < oo. The inequality (2.7) gives an upper bound for T.
To prove (b) one may assume that > 0, fl > 0 and that u(t) is of Type 3 or 4.

It follows from (a) that a(t) - 0 as c since otherwise a(t) may be replaced by
2a(t), 0 < 2 < 1, to obtain H() >__ a(tl)F() while (2.6) remains valid. Conse-
quently, from (2.3), neglecting the second integral and replacing F(u(z)) by F(00 in
the first integral, it follows that H(u’(t)) a(t)F(u(t)) >= 0 for all sufficiently large t.
The result (b) is now obtained by the procedure used in the proof of (a).

Remark. Under the hypothesis of Theorem 3, one can choose positive , fl
such that not only is u(t) ofType 2 but also such that the interval It 1, T) is arbitrarily
small. One first chooses sufficiently large so that both (2.6) and (2.7) are satisfied
with T as small as desired. Then, since H(oo) oo, one can choose fl such that
H() >_ a(tl)F(). Consequently, Theorem 3(a) generalizes Theorem 1 in [5].
Theorem 3(b) does not wholly conform to our announced intentions since the
integral inequality involves the solution itself. Since this inequality places a
constraint on the growth of a solution of Type 3 or 4, to conclude that a solution is
actually of Type 2 we need a constraint from below. There is always available
u(t) >= kt for sufficiently large t. This is valid for some k > 0 for Type 4 and for all
k > 0 for Type 3.

TrlV.OREM 4. Suppose (i), (ii), (iv) are satisfied and there exist positive constants
k l, k2 such that k <= h(s) <= k2 for s >__ O. Then

(2.8) fl dz

is a necessary and sufficient condition that all positive solutions of (2.2) be proper.
Proof The hypothesis implies that there exist positive constants P l, P2 such

that pl tl/2 <. G(t) <__ p2 tl/2. Since the only nonproper positive solutions must be
of Type or 2, the sufficiency follows from Lemma 2(c) and the necessity follows
from Theorem 3(a) and the first part of the remark following this theorem.
Positive decreasing solutions are not covered by our initial conditions (2.1), but
such solutions are always proper.

Theorem 4 may be compared to Theorem 3 in [5], which considers a more
general equation, and may be obtained from the latter if f(s), s >= O, is increasing.

COROLtAR 1. If the hypotheses of Theorem 2(c) and Theorem 4 are valid and
(2.8) is satisfied, then the solution u(t) is of Type 3.

We conclude the study in this section by giving conditions under which the
solution is of Type 4.

THEOREM 5. Suppose (i), (ii), (iv) are satisfied and u(t) is a solution to (2.2) with
initial conditions (2.1). If either of the following conditions (a) or (b) is satisfied, then
u(t) is of Type 4.

(a) The function c(t) <= k, > and kF() F()] < H()- H(fl) <__ .
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that
(b) The function f(s) is nondecreasing for s >= 0 and there exists K > 0 such

c(,)f(K(r t,) + ) dr, < I(K).

Proof To prove the result from (a), set a(t) k in (2.3). Then for __< < Twe
have H(u’(t))- H() <__ k[F(u(t))- F(a)] __< k[F()- F(a)] < H()- H(fl) and
it follows that u(t) is of Type 4.

To prove the result from (b), define T1 sup {t:t > tl, u’(t) < K}, T =< T.
For _-< < T, u(t) <= K(t l) + and by (2.4) with b(t) =_ 0 we have

t(u’(t))- () <__ f,’ c(r)f(K(z t) + a)dz.

Consequently, lim u’(t) < K as T and therefore T T and u(t) is of
Type 4.

Remark. From condition (b) and (2.4), it follows that

I(u’(t)) I(e)- f+ c(r)f(u(r))dz,

where e lim u’(t) as ,fl < e < K. By L’Hospital’s rule we may write
u(t) t(e + (t)) for t> max(0, tl), where b(t)- 0 as t- . For h(s)---1,
s > 0, we obtain the estimate

[,14(t)l - etll + c(r)f(K(z t) + a) dz d

where, by L’Hospital’s rule, the estimate tends to zero as --, .
3. Oscillation and nonoseillation. In this section we shall study the behavior

of the solutions to (1.1) subject to (i), (ii) and
(v) c(t) is positive and absolutely continuous on every compact interval in

Ito, ).
Under these conditions we first develop some preliminary tools. Let

g,(t) min [0, -c’(t)/c(t)],

g2(t) max [0, -c’(t)/c(t)].

Given => o, we define (j 1, 2)

a(t) c(t) exp g(:) d:

Then a’(t) <= 0 <= a’(t) for t. Set (j 1, 2)

k lim a(t), K exp g(:) d:

Then0Nk < ,0<k N ,0NK N 1 NKN .Weobservethatk Nk
with equality if and only if c(t) is a positive constant on Its, ).
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Let u(t) be a solution to (1.1) defined on It1, T). We define (j 1,2)

V(t) aj(t)F(u(t)) + H(u’(t)) exp gj(z) dz

Then V’(t) <= 0 <= V’z(t) on It1, T) and Vj(t) > 0,j 1, 2, unless u(t) u’(t) O.
It follows that if some t2, 2 < T, u(t2)= u’(t2)= 0, then u(t)= 0 for all

tl. Consequently, the zeros of a nontrivial solution are discrete.
Similar Lyapunov functions have been applied to (1.1), e.g., [14] and [18], but,

in general, their applicability is restricted to monotone c(t).
LEMMA 4. Suppose conditions (i), (ii), (v) are satisfied and u(t) is a solution to

(1.1) on It1, T). Then u(t) is of one of the following types"
Proper solutions, T

A. Nonoscillatory.
Type 5. (a) u(t)- , u’(t)- b > O, .

(b) u(t) -v, u’(t) b < O, - .Type 6. (a) u(t) - , u’(t) 0 +, - .(b) u(t) , u’(t) - 0-, .
Type 7. (a) u(t)a >0, u’(t)0+,t-.

(b) u(t) a < O, u’(t) 0-, .
B. Oscillatory.

Type 8. (a) u(t) and u’(t) are bounded.
(b) u(t) or u’(t) is unbounded.

Nonproper solutions, T <
Type 9. (a) u(t) a > O, u’(t) , - T.

(b) u(t) - a < O, u’(t) , T.
Type 10. (a) u(t) 0 +, u’(t) - , - T.

(b) u(t) - 0-, u’(t) - , - T.
Proof The proof is straightforward except, possibly, for the nonexistence of

oscillatory nonproper solutions. Suppose u(t) is an oscillatory nonproper solution
on It1, T), T < . By the above remarks, u(t) has a denumerable number of zeros
which converge to Tand on which u’(t) is unbounded. For otherwise, u’(t) would be
bounded on It1, T) and the interval would not be maximal. Since Vl(t) is non-
increasing on It1, T) it follows from comments just stated that lim Vl(t > 0 as- T and consequently

0 < k lim Vl(t)/exp g l(’r) dr
t- T

lim [c(t)F(u(t)) + H(u’(t))].
t- T

By considering the two subsequences of the zeros of u(t) at which u’(t) is positive
and negative respectively, we have k =< min [H(),H(-)]. Now since c(t) is
bounded away from zero on It1, T], by considering a sequence of relative maxima
of u(t) we have lim sup u(t) >= a > 0 as T. Let {ti} be an increasing sequence
such that ti - Tand u(ti) a/2. Then lim H(u’(ti)) k c(T)F(a/2) < min [H(),
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H(- )]. Therefore, the sequence {lu’(ti)l} is bounded. But this is inconsistent with
lim sup u(t) >= a. This completes the proof.

With initial conditions u(t 1) a, u’(t 1) fl we set

v c(t)v() + H(I), V= V(t,)= V2(t,).

LEMMA 5. Suppose conditions (i), (ii), (v) are satisfied and u(t) is a solution to
(1.1) with initial conditions at tl,tl >= to. If either H(-) or K1 > 0 and
V < K1H(-), then u(t) is not of Type 9(a)or 10(a). /f either H()= or
K > 0 and V < KIH(), then u(t) is not of Type 9(b) or 10(b).

Proof Suppose u(t) is a nonproper solution on It1, T). By considering Vl(t),
=< < T, we obtain

V >_ H(u’(t))exp
T

gx(’) dr > H(u’(t))K

and the proof follows from this inequality.
The importance of the condition H() H(-v) in connection with

the continuation of all solutions has been emphasized in [4]. This is also seen in
Theorem 6 below.

The initial conditions u(tl) a, u’(tl) fl for a nontrivial solution u(t) may
be partitioned into 4 cases, viz." Case 1. > O, fl > O. Case 2. > O, B < O. Case 3.

<= O, fl < O. Case 4. < O, fl >= O. For t, -<_ < T, it will be convenient also to
speak of the pair u(t), u’(t) as belonging to one of these four cases.

We note, for =< < T, the relation

(3.1) I(fl) I(u’(t)) c(v)f(u(v)) d.

THEOREM 6. Suppose conditions (i), (ii), (v) are satisfied. Let u(t) be a nontrivial
solution of (1.1) with initial conditions at 1, >= to, and suppose 0 <
where k l, k2, K, K2 are as previously defined.

(a) If the initial conditions correspond to case j (as mentioned preceding the
theorem), then a test for the type of u(t) is obtained by starting with statement (j)
(as numbered below), and continuing cyclically, when permitted, until the first valid
hypothesis is encountered.

(1) If V > k2F(), then u(t) is of Type 5(a). If V k2F(), then u(t) is of
Type 5(a) or 6(a) as kl < kz or kl k2 respectively. If V < klF(av) continue to (2).

(2) If V > K2H(-or), then u(t) is of Type 9(a). If V K2H(-v), then
u(t) is of Type 9(a) or 10(a). In particular, if V K2H(-), u(t) is of Type 9(a)
unless K 1 and c(t) is constant on an interval which includes It T), in which case
u(t) is of Type 10(a). If V < K1H(-) continue to (3).

(3) If V > k2F(-or), then u(t) is of Type 5(b)./f V k2F(-), then
u(t) is of Type 5(b) or 6(b) as kl < k or kl kz respectively. If V
continue to (4).

(4) IfV > KH(ov), then u(t) is ofType 9(b). IfV K2H(), then u(t) is of
Type 9(b) or 10(b). In particular, if V K2H(), u(t) is of Type 9(b) unless K2 1
and c(t) is constant on an interval which includes It1, T), in which case u(t) is of
Type 10(b). If V < K1H() continue to (1).
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(b) If V < min[klF(),K1H(-o),klF(-o),KiH()] <__ c, then u(t) is

of Type 8(a).
Proof. The condition 0 < k < k2 < implies that c(t) tends to a positive

constant as and 0 < K1 _<- 1 =< K2 < . Consequently, by (3.1), there is
no solution of Type 7(a) or 7(b).

Suppose that for some t, >_
l, the pair u(t), u’(t) corresponds to Case 1. If

V >= k2F(o), then by studying V2(t) one concludes that the solution remains in
Case 1 for all larger values of t. Consequently, the solution is of Type 5(a) or 6(a).
Again, if V >= kzF(3 and if u(t) is of Type 6(a), then it follows from V’z(t) > 0 and

V V2(tl)=< V2(t =< V2( k2F(ov < V

that Vz(t) V kzF( for all >__ This implies, by the expressions for the
derivatives of az(t and Vz(t), that c(t) is constant on It1, ) and therefore kl k2.
Also, if kl k2 and V kzF(), then K1 K2 1 and V Vl(t) Vz(t) for
all >= tl. Consequently u(t) is of Type 6(a). On the other hand, if V < klF(),
then by studying Vl(t) one concludes that the solution must pass to Case 2, i.e.,
there exists a larger value of such that u(t) > O, u’(t) < O.

Now, suppose that for some t, >= 1, the pair u(t), u’(t) corresponds to Case 2.
If V >= KzH(- 3), then by studying Vz(t) one concludes that the solution remains
in Case 2 for all larger values of on It 1, T). Consequently, the solution is of Type
9(a) or 10(a). Again if V >= KzH(- ) and u(t) is of Type 10(a), then it follows as
before that c(t) is constant on It T) and since gz(r)dr 0, it follows that c(t)
is nondecreasing on IT, ). Consequently, K2 1, V H(-). Also, if K2 1,
V= H(-) and c(t) is constant on It1, T), then u(t) is of Type 10(a). On the other
hand, if V < K1H(- ), then, by Lemma 5, one concludes that the solution must
pass to Case 3. The proof of part (a) is now completed by similar arguments.

If the hypothesis in part (b) is valid, then, by the above argument, the solution
passes cyclically from case to case and is therefore oscillatory. Since Vi(t) < V for

__> 1, it follows that both u(t) and u’(t) are bounded and consequently the solution
is of Type 8(a).

Remark. If c(t) is a positive constant on Its, oe), the above result gives a
definitive statement. However, in part, the theorem falls short of our announced
intentions due to the question of the decidability of the statement "c(t) is constant
on an interval which includes It1, T)." In principle, however, this question may be
reduced to that of quadratures. For example, suppose K2 1, klF(oe)> V
H(-c) and the initial conditions correspond to Case 1. We would then

conclude that u(t)is of Type 9(a) or 10(a). If u(t) is of Type 10(a), then c(tl)F(u)
+ H(u’) H(-oe) for _-< < T and one may calculate It1, T) by two quadra-
tures over known intervals in the variable u. One may then compare It1, T) to
intervals over which c(t) is constant.

A number ofpapers [4], [7], [9], [14], [17]-[20], [22] have dealt with bounded-
ness of solutions to (1.1). Using Lemmas 4 and 5 and Vl(t) as in the proof of
Theorem 6(b), we obtain the following corollary which generalizes, in part, some
of the boundedness results in the above papers. In particular, it generalizes
Theorems and 2 in [18].

CortoLaR 2. Suppose conditions (i), (ii), (v) are satisfied and let u(t) be a

solutionof (1.1) with initial conditions at t t >__ to. If kl > Oand V < min (klF(oe),
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klF(-oo)), then u(t) is bounded. If K > 0 and V < min(KxH(oo),KH(-oo)),
then u’(t) is bounded, lf k > O, Ka > O and V < min [kiF(oo), kF(- oo), KH(oo),
KH(-oo)], then u(t) is Type 8(a).

COROLLARY 3. Suppose conditions (i), (ii), (v) are satisfied and k > O, K > O.
Then the zero solution of the system

y’ -c(t)f(x)h(y)

is Lyapunov stable.
Proof The result follows in the usual way by considering

V(X, y) k 1F(x) + K1H(y),

V(x, y, t) a(t)F(x) + H(y) exp g(z) dz

Similar stability theorems are given in [4], 14, 181. In particular, Corollary 3
generalizes Theorem 3 in [18], whereas [4] has essentially the same restrictions as
those imposed here.

LFMMa 6. Suppose conditions (i), (ii) are satisfied and c(t) is nonnegative and
continuous on [_to, ). Let u(t) be a solution to (1.1) with initial conditions correspond-
ing to Case 1 (as defined preceding Theorem 6). If either of the following conditions
(a) or (b) is satisfied, then u(t) is of Type 5(a).

(a) There exists g(s), continuous and nondecreasing for s >= O, such that
f(s) <= g(s), s >= O, and

I(fl) > c(z)g(a + fi(z t,)) dz.

(b) There exists g(s), continuous and nonincreasing for s >_ O, such that
f(s) <= g(s), s >= O, and for some k > O,

I(fi) > I(k) + c()g(a + k( t)) d.

Proof To prove the lemma from (a), let (t, t2) be the maximum open interval
to the right on which u(t) is positive. We shall show that 2 oo. For e (t, t2) we
have 0 < u(t) < + fl(t t). From (3.1) and the hypothesis we obtain

I(u’(t)) >= I(fl)- c(z)g(a + fl(z l) dz > 0

for all e (t, t2). Consequently 2 0(3 and since u’(t) is nonincreasing, u(t) is of
Type 5(a).

To prove the lemma from (b), let (t, t2) be the maximum open interval to the
right on which fl >_ u’(t) > k. We shall show that 2 oo. For e (t l, t2) we have
u(t) >= a + k(t tl) and by (3.1) and the hypothesis we obtain

I(u’(t)) >= I(fl)- c()g(a + k( t,)) dz > I(k)
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for all (t, t2). It follows that 2 = z and u(t) is of Type 5(a). This completes
the proof.

Under certain conditions, the finiteness of the integrals in Lemma 6 are also
necessary as is shown by Theorems 1 and 2 in [6].

For the following nonoscillation theorem we introduce an additional con-
dition"

(vi) There exists g(s), continuous and nondecreasing for s >__ 0, such that
f(s) <__ g(s), s >= 0, and

f c(z)g(kz) dr <
ax[O,to]

for all k >_ 0.
Suppose conditions (i), (ii), (v), (vi) are satisfied and set

F(k, t) c(z)g(k(z t)) dz.

Then F(k, t) is defined for k _>_ 0, >_ to, and is nondecreasing in k. For a fixed
k > O, F(k, t) is decreasing in and F(k, t) 0 as . We define

b(k) inf {t’t >= to,I(k >= F(k,t)}.
Then 4(k) is defined and bounded on every compact subset of the positive real
numbers. For suppose 0 < k’ <= k <__ k" and for some t*, t* >_ to, I(k’) >= F(k", t*).
Then I(k) >= I(k’) >= F(k", t*) >= F(k, t*) and therefore 4(k) -<_ t*.

THEOREM 7. Suppose conditions (i), (ii), (v), (vi) are satisfied. Let u(t) be a
nontrivial solution of (1.1) with initial conditions at >= o.

(a) If ok(k), k > O, is bounded, then u(t) is nonoscillatory.
(b) If KI > O, V < g min (H(oo), H(- oe)) and lim sup b(k) < oo as k 0,

then u(t) is proper and nonoscillatory.
Proof. To prove (a), let 2 > 4(k) for all k > 0. Assume that u(t) is oscillatory.

Then, since u(t) is nontrivial and proper, there exists t* > 2 such that u(t*) 0,
u’(t*) fl*> 0. Consequently, I(fl*)> F(fl*,t*) and by Lemma 6, u(t) is of
Type 5(a) contrary to assumption.

By the hypothesis of(b), one concludes by studying V(t) that u(t) is proper and
u’(t) is bounded. Let t > lu’(t)l, >= t, and 2 > 4(k) for 0 < k =< t. Suppose u(t)
is oscillatory. Then, there exists t*> 2 such that u(t*)= O,u’(t*)= *> 0.
Consequently, I(fl*) > F(fl*, t*) and by Lemma 6 we obtain a contradiction. This
completes the proof.

Theorem 7(b), above, generalizes Theorem 3 in [19]. A nonoscillation theorem
involving solutions of Type 7 can be found in [8].

We conclude with an oscillation theorem. Some recent papers on oscillation
which are applicable to (1.1) are [10], [11], [13].

We may establish an oscillation theorem from a result which implies the
solution is not positive; for the corresponding theorem for (1.2) would then yield
conditions under which the solution is not negative.

If I() , we denote the inverse of I(t), >= O, by J(s), s >= O.
THEOREM 8. Suppose conditions (i), (ii), (v) are satisfied. Let u(t) be a solution to

(1.1) with initial conditions at x, >= to, and suppose either H(-v)= or
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K > 0 and V < K H( o). If, in addition, at least one of the following conditions
is satisfied, then u(t) is not a positive solution"

(1) k > O, V < kxF(oo).
(2) fro c(v) dv
(3) I(oo) oo and there exist positive constants p, r (r >= 1) such that J(t) >= ptr,

>= O. There exists g(s), continuous and nondecreasing on [0, ), such that 0 < g(s)
<= f(s), s > O, and

c() d dt , g-r(s) ds < o.

(4) I() o and J(t) pt, >= O, for some positive constant p. There exists
g(s), continuous and nondecreasing on [0, oe), such that 0 < g(s) <__ f(s), s > O. If

Q(t) g- l(s) ds, >= > O,

then Q(o o and

for >= to, > 0 and where R(s), s >= O, is the inverse of Q(t), > .
Proof It follows from the hypothesis and Lemma5 that the only possible

positive solutions are of Types 5(a), 6(a), or 7(a). The conclusion of the theorem
follows readily from conditions (1) or (2) by studying V(t) and (3.1).

Now suppose that u(t) is of Type 5(a), 6(a), or 7(a) and condition (3) or (4) is
satisfied. For sufficiently large t, say >_ , u(t) is positive and from (3.1) we obtain,
after some manipulations,

(3.2) I(u’(t)) >= c(:)g(u(:)) d:, >__ t.

If the remaining conditions in (3) hold, then

u’(t) >= p c(z) dz g(u(t)),

and consequently, for a u() > O,

(t)

g-(s) ds >= p ds, t>__,

which yields a contradiction.
If the remaining conditions in (4) hold, we obtain the estimate

u(t) >= R, p c(x) dx ds

and by use of (3.2) we obtain the desired contradiction.



282 C. M. PETTY AND W. E. JOHNSON

Remark. For the linear equation u" + c(t)u 0, the condition (4) reduces to

c(z) exp c(x) dx ds dz @.

For c(t) kt-2 we obtain, according to the above theorem, oscillation for k >=
which is not far removed from the best condition k > 1/4.
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SINGULAR PERTURBATIONS FOR A NONLINEAR DIFFERENTIAL
EQUATION WITH A SMALL PARAMETER*

GEORGE C. HSIAO"

Abstract. This paper concerns singular perturbation problems such as those of slow viscous
flow past a cylinder. A nonlinear second order differential equation with a small parameter is used as
a model to discuss the validity of the method of inner and outer expansions (MIO) for treating such
problems. Based on a regular perturbation procedure by Finn and Smith, it is shown that the formal
asymptotic expansions constructed by MIO are indeed in some sense the asymptotic expansions for
the exact solution of the problem.

1. Introduction. It is the purpose of this paper to point out certain intimate
connections between the regular perturbation procedure developed by Finn and
Smith [63 for existence proofs in the theory of two-dimensional viscous flow
problems and the method of inner and outer expansions for treating such problems
[93. As a model, we consider here the boundary value problem (Pc) defined by

(1.1) LIy] y" + eyy’, < x < ,
x

(1.2) y=0 at x= 1

and

(1.3) y-a as x,

where e is a small positive parameter and a is a positive constant. For this simple
model we can give a complete discussion which illustrates the ideas. These ideas
are extended to the viscous flow problem in [8] but the results there are less
complete.

The problem (Pc) is singular in the sense that the linearized problem (Po),

(1.4) L[y] 0

together with (1.2) and (1.3) has no solution. This is the analogue of the Stokes
paradox in fluid flow [1]. On the other hand, if we let y -a + v, then (1.1)-(1.3)
read

(1.1’) q:’[v] v" + -+ ae v’ eavv’, 1 <= x <

(1.2’) v=-a at x= 1,

(1.3’) v--, 0 as x--, oe,

and it is easy to see that the corresponding linearized problem,

(1.4’) Ev] 0
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together with (1.2’) and (1.3’), does possess a solution. In fluid flow (1.4’) will
represent the Oseen equation [5]. That there exists a solution of the Oseen prob-
lem, (1.4’) together with (1.2’) and (1.3’), is the basis for the procedure of Finn and
Smith. The solution y(x; e) of (P), which we show exists (see Theorem 1), is then
sought as a regular perturbation of the solution v of the Oseen problem.

The singular nature of the linearized problem, such as (P0), has the effect of
giving the solution y(x;e) a nonuniform asymptotic structure for small e. This
leads to the construction of the inner and outer expansions for the problem (P).
Although the method of inner and outer expansions has been used successfully in
a wide variety of problems (cf. [3] and [4]), the rigorous justification of this formal
procedure seems still in its infancy and further clarification and development
are needed. In the present work, we first define what we mean by the inner and
outer expansions for the problem (P) (Definitions and 2, 4), then we state, in
a precise way, the matching principle ( 5). Finally, we justify the procedure by
showing that the formal inner and outer expansions obtained from the matching
principle are indeed the inner and outer expansions for the solution y(x, ). This
last task is really the major goal of this paper. It should be mentioned that in [4]
some partial justification of the method has been given for a problem similar to
(P) (see (5.5)), but our results are much more complete than those given there.
From our results, the model (P) may serve as another example in the class of
singular perturbation problems (such as those of slow viscous flow past a cylinder)
for demonstrating the validity of the asymptotic matching principle in [7]; there a
nonlinear fourth order ordinary differential equation was used.

The main results can now be summarized in the following three theorems.
THEOREM 1. There exists a solution y(x;) of the problem (P) defined by

(1.1)-(1.3) jbr , sufficiently small.
Comment. A kind of uniqueness theorem is indicated in 3.
In order to state the next theorem we need some notation. Notice that, if the

condition at infinity, (1.3), is relaxed the problem LIy] 0, together with (1.2),
has a one-parameter family of solutions,

(1.5) y A log x,

which is uniquely determined by the parameter A. We denote it by UA(X). Then,
we have the following theorem.

THEOREM 2 (Inner expansion). There exists a sequence of jinctions {y,(x)},
independent of : and defined .[’or x >= 1, such that for any positive integer N, the
relation

y,(x)
(1.6)2 y(x;a)- (loga)"= o as :0+

(log

holds un(lormly in x on any compact set in [1, oo). Moreover, y,(x) u,,(x) for all
n >= 1, where the constants a, can be obtained by the matching principle.

With the understanding that boundary layer problems are excluded. In this case, a great deal
of work has been done in recent years" one is particularly referred to the book by Wasow [12] and the
article by O’Malley [11], where other references can be found.

Without loss of generality, here we may assume 0 < < 1, and hence (log;)" (-]log el)",
although the sign of log is immaterial, since is a positive parameter.
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(1.7)

Some further notation is needed. We define the function Eo(x;00 by

e-t

Eo(x ) dt ea

and let

--dtV(x ;f)

denote the particular solution of the problem,

s ef(s)ds

(1.8)
2’Iv] f(x), __< x < c,

V--O as X-- 0.

Here c is the operator defined in (1.1’) and f(.) is some given function.
Remark. The function Eo in (1.7) is a solution of (1.8) for f(x) O.
THEOREM 3 (Outer expansion). There exists a sequence of functions Y,(2-)},

independent of e, and defined .for all 2- > O, such that ,for any positive integer N, the
relation

(1.9) ;e)- {-a +,_1 (,oge)",J [(loe)u] as 8-+0 +

holds uniformly in 2 on any interval I’2, >= 6 > . Moreover,

(1.10) Y,(2,) =dlEo (; ),
-; + --; ; .for n > 2Y"(2,) d"E

e

n-1 Y(2)dY, k(2-)/d2, and the constants d, can be obtained bywhere f,(2/;) xe k
the matching principle.

The proof of Theorem is given in 3 and uses estimates for solutions of
the linearized problem. These latter are obtained in 2. Section 4 contains a
constructive scheme for obtaining the asymptotic expansion of the solution
y(x; e) in Theorem 1. Based on this scheme, Theorems 2 (1.6) and 3 (1.9) are estab-
lished. In 5, we establish the remaining statements of Theorems 2 and 3.

2. A priori estimates for the linear equation. We consider the problem"

C[w] czqbO, __< x < ,
(Q) w=0 at x= 1,

w-,0 as x--+o,

where is defined in (1.1’) and 0 e,a. Here it is assumed that

(2.1) 4C2(1, or), IqSI =< AEo(x;oO,
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and

(2.2) C(1, ), 101 n

where A, B are constants and E0 is defined in (1.7). Then the theorem is as follows.
THEOREM 4. Let w w(x; z; dp) be a solution of the problem (Q). Then

there exists a constant H, independent of ea, such that

(2.3)
wl <= ABHEo(x; Iw’l ABH

{(1 + cz)H + E0(x; z)}.

The following result will be needed to prove Theorem 4 and is easily verified
by direct computation.

LEMMA 2.1. There exists a constant s independent of o such that

(2.4) Eo(t;z)dt <= s
for all 0 < x

The solution w(x; cz; qSO) of (Q) can be written as

(2.5) w(x;

where

e-t ftdt 49 ee dM(x 4)0)

and

N(x;;q) -M(1;;b)
Eo(x; a)
Eo(1;c)

The proof of Theorem 4 follows easily from (2.4) and (2.5).

3. Existence theorem. In this section we shall establish the existence of a
solution of the problem (P) defined by (1.1)-(1.3) for e sufficiently small. Our
method follows that in [6].

We consider the family of problems,

[v] vv’, <= x < ,
v=l at x=l,

vO as x,

a a,

for 0 _< =< 1. Let us denote the solution of (Re) by v(x; e; ) (if it exists). Let

(3.1) y(x ) a + arv(x o r).

Then y(x; e; 1) is a solution of (P).
We can now state the main results of this section.
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THEOREM 5. For sufficiently small there exists a solution v(x r) of (R) for
0 <= <= 1. The solution can be represented by a convergent expansion

(3.2) v(x ) v,(x )",
n=0

where v,(x z) is the solution of the following problem"

0, n =0,
[v.]

vv’._, n=> l, =< x < ,
k=O

(3.3)

v,(1 e) {10, n=0,

n>l

v,(x;z)0 as x o for all n >= O.

COROLLARY 1. For e sufficiently small, there exists a solution y(x;e) of (Pc),
and the solution can be represented as

(3.4) y(x" e) -a + a v,(x;e).
n=O

THEOREM 6. There exists a constant F such that for sufficiently small e, the
solution y(x; e) of Corollary satisfies

Eo(x’e)
(3.5) ly(x; e) + al <= F Eo(1;,
where Eo(x; e is defined in (1.7).

Our first task in proving Theorem 5 is to obtain some estimates for the
v,’s in (3.2). We see that,

(3.6) Vo(X; e)
Eo(X; e)
Eo(1 e)

Hence if Co 1/Eo(1 e), we have

(3.7)

IVo(X; z)l CoEo(x; z),

e

uniformly for x > 1.
An immediate consequence of Theorem 4 and equations (3.6) and (3.7) is the

following.
LEMMA 3.1. Let the sequence {C,} of constants be defined by

(3.8) Cn+ H CkC,,-k, Co Eo(l’e)k=O
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Then

and

Ivy(x; o01 _-< Go(X;

uniformly for x >= 1.
It follows from Lemma 3.1 that the series

will dominate (3.2). Our next result concerns the convergence of the series in (3.9).
LEMMA 3.2. The series in (3.9) can be written as

(3.10)

where

(2HCo)"_.
n=O

1,

’n+l n+l

Iv[ (2k- 3),
k=2

Consequently (3.9) will converge for

n<l,_

n_>l.

(3.11) z < (4HCo)- .
Proof. It is easy to see that the convergence of the series (3.9) implies that

C C(z; ) satisfies the equation

(3.12) EoC CoE + H’cC2.

The solution of (3.12) has a branch which is analytic in : in a circle about the
origin. Then (3.10) follows from Taylor’s theorem, and (3.11) follows from (3.10)
by the ratio test.

Remarks. 1. From (3.10) we obtain

),,+ 1(2HCo)"(3.13) IC,,I _-< Co,
(n + 1)!

where y,+ is defined in (3.10).
2. Since Co 1/Eo(1 ;a) and Eo(1 ;) oe as e 0 +, the inequality (3.11)

holds for all [0, 1] for e sufficiently small. Consequently the series (3.2) con-
verges uniformly and absolutely.

We now return to the proofs of Theorems 5 and 6. Observe that the series
(3.2) is formally a solution of (Re) and thus it remains only to check the con-
vergence.

Completion of the proof of Theorem 5. If we collect all the results (3.9)-(3.11),
we find that for sufficiently small and for all z [0, 1] the series (3.2) converges
uniformly and absolutely. Similarly it can be shown the series may be twice
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termwise differentiated with respect to x. Hence the sum v(x; e; z) defined in
(3.2) is a solution of (Re) for z e [0, 1]. This completes the proof of Theorem 5.

Proof of Theorem 6. From Corollary of Theorem 5 and Lemma 3.1, we
obtain

]y(x;e) + a] a

Then it follows from (3.13) that
n=O C,) Eo(x ).

n=0

ly(x e) + a[ < a o 7,,+ 1(2HCo)" Eo(x;e)
(n + 1)! Eo(1;e

It follows from Lemma 3.2 that the series a,o (7,+ (2HCo)"/(n + 1)!) con-
verges and we set F equal to this series. This completes the proof of Theorem 6.

The techniques of [6] can also be used to establish the following uniqueness
result. We omit the proof.

THEOREM 7. Let S denote the class of functions y(x; e) such that

ly(x;e) + al < avEo(x oO, ca,

uniformly in 1 <= x < co. Let v be any given number 0 < v < (2H)-1, H as in
Theorem 4. Then there exists at most one solution y of (Pc) such that y S

Remark. The solution y(x;e) of Theorem 6 satisfies

Eo(x; z)
ly(x; e) + al =< 1-’Eo(1.

Since F/Eo(1 ;z can be made arbitrarily small by choosing e small, we see that
the solution of Theorem 6 is in Sv for e small.

4. Asymptotic structure. In this section we shall investigate the asymptotic
behavior of solutions of (Pc) for small e. Our aim is to develop asymptotic ex-
pansions of the exact solution y(x; e) in (3.4), which we shall define to be the inner
and outer expansions of the solution.

We introduce the outer variable Yc x, and set

(4.1) Y(2;e)=y ;e V(2;e)= v -;z;1 and V.(Yc e) v. z

where v and v, are the functions appearing in (3.2) and z ca. We use dots to
indicate differentiations with respect to 2 and set

1
(4.2) L=L and qo=L.W.

Then the development can be stated in the form of the following theorems.
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THEOREM 8. There exist two sequences Y(2)}, independent of e, defined for
all 2 > O, and {,,(2; e)} defined for 2 > , and having the following properties"

(4.3)

(a) Y(2) A log 2 + Bk + 0(2 log 2) as 2 --. 0 +,
(b) Y(2) 0 as 2

(c) V,,(2; e) O(1) as e 0 + uniformly on 2 >= c5 > O,

(d) Vm(2; e) O(1og e) as e 0 + uniformly on 2 >= e,

and such that if y(x e) is the solution of (P) defined by (3.4) and m is any positive
integer, then

(x) Vm(X; )
(4.4) y(x e) a + 1"(log (log efn/k=l

Remark. This theorem needs some explanation. It yields a kind of asymp-
totic expansion for the solution but reflects the nonuniformity of this expansion.
Observe that by (4.3)(c)of the theorem we have

(4.5) (x).a+ 2 (1-g3k=l

F
as e 0 +

(log e)’’+

if x >= c5/ for any 6 > 0, where Fm< oo is a constant. Thus the expansion can be
used in a straightforward way for large x. However, suppose one wishes to cal-
culate y for small values of x. Then (4.3) (d) yields a result of the following type"

(4.6) y(x ) { < as x 0+.
(log e)

Thus in order to have accuracy up to a given power of 1/log e, one must keep
one extra term.

As a consequence of Theorem 8 and the fact that y(1;0 0 we have the
following corollary.

COROLLARY 2. There exists a constant M < oo such that

(4.7) a Y(0(log e)-k=l

[(log e)m[ <= M as 0 +

The next theorem concerns the differentiability of the expansion in (4.4).
THEOREM 9. The expansion in (4.4) can be differentiated termwise. Moreover,

we have

(4.8)

(a) le"z2 (2)1 <= k < c, i a constant independent of 2;

(b) (2)= Ak/2 + O(log 2) as 2 --, O, where the Ak’s are the constants in
(4.3)(a);

(c) e"2 if,,,(2 e) O(1) as e O, uniformly on 2 > e.
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Remark. Observe that these estimates would enable us to calculate an
approximation to y’(x;e) for x near 1, in fact, even at x 1. We have

(4.9) Aky’(1; e) = (log e)
D

(log e)m+ 1’

as e --. 0, where D < is a constant.
The proofs of the above results require that we obtain more detailed in-

formation about the function V,(2; e) which we derive from the v,(x; e) of 3 by
substituting 2/e for x (see also (4.1)). The essential fact is that the V’s are of
increasing order in 1/log e. More precisely we have the following results.

LEMMA 4.1. Let V(2; e) and V,(2 e) be functions defined in (4.1). Then, for any
integer m > O, the relation

(4.1 O) V(. e) V,,(. e) 0
n=O (log e)m+ 1 as e 0 +

holds uniformly for >= e.

Proof. By Lemma 3.1 and (3.13), we obtain

(4.1 1) IUn(X; O)l An(E0(1 (x)) -(n+ 1)Eo(x ), x 1,

where

(n+

Ik_2(2k-- 3)(2H)k/(k + 1)’, n >= 1,
A

[(2H)"/(n+ 1)!, 0<n< 1.

H is the constant in Theorem 4, and Eo(x;00 is defined in (1.7). Since Eo(x;00
Eo(ex;a), we obtain, by (4.1) and (4.11),

(4.I Iv(; ell v ;a _-< A(o(; all-/go(;al, _-> .
Hence we have

n=0

(4.13)

n=m+l

<= A~,(Eo(e a))-("+ l)Eo(YC; a)
n=m+l

<= n+m+ I(Eo(e; a))-"(Eo(e; a))-(m+ 2)Eo(2; a)
n=0

=< (Eo(, a))-(m+ 1) E n+rn+ l(Eo(e; a)) -n.
n=0

Since Eo(e;a is dominated by Ilog el for small e, the series on the right-hand side
of (4.13) will converge for e sufficiently small and thus Lemma 4.1 follows.
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Remark. From (4.13) it follows that for e small there exists a constant r
such that

7lEo(YC.a)
(4.14) V(;e)- V,(;e) <

,=o ](log e)m+ 2

Also this inequality may be differentiated with respect to . This follows from the
uniform convergence of the derivatives of the infinite series (3.4).

LEMMA 4.2. For each fixed j >__ O, there exist two sequences { Vk()}, indepen-
dent of e and defined for all Yc > O, and {m(X; e)}, defined for Yc >= , having the
following properties"

(a) Vjk() ajk log + bjk + O(YC log ) as Yc 0 + where aik and bik are
constants,

(b) Vk(: -- 0 as Yc ,
(4.15) (c) [Vk(t)l dt <= Ajk Ajk < 0 a constant,

(d) m(; e) 0(1) as e 0+ uniformly on >__ 6 > O, for any 6 > O,

(e) m(; e) O(log e) as e 0 + uniformly on Y >= e,

(f) Im(t; )1 dt <__ jm as e 0 + uniformly on Y >__ e,

and such that if V(:; ) is the function defined in (4.1) and m is any integer, then

1 Vjk() j.m((.F,
(4.16) V(; )

j+ (log )k (log e)m+ 2

Moreover, the expansion (4.16) can be differentiated termwise and we have"

(4.17)

(a) Ik()eaX[ =< Cjk < , a constant independent of Yc,

(b) k() ajk/YC + O(1og ) as Yc - O, where the ajk’S are the same con-
stants as in (4.15) (a), and

(c) ]m(; e)ea] __< ’jm < as e O, where jm is a constant independent
of and Y.

Remark. This lemma is the key to Theorems 8 and 9 and again it requires
some explanation. Observe that the lemma does not say that the difference between
the V’s and the finite sums on the right of (4.16) are uniformly O((log e)-tm+2)).
The reason is that the error terms m, like the Vk()’S, contain expressions which
become arbitrarily large as 2 becomes small. Thus, (4.15) (e) is the best that can be
said about the ’m’S. On the other hand, the singularities which appear for small :
are integrable, both for the Vk S and the Vm s, and hence one obtains the uniform
estimates (4.15) (c) and (f) for the integrals.

The proof of the lemma, an induction argument, is tedious. Instead of pre-
senting all details we indicate the idea in the Appendix by examining the first two
terms in the series (3.4).
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Theorems 8 and 9 follow readily from Lemmas 4.1 and 4.2, and a rearrange-
ment of terms. The Y’s are defined by

(4.18) Y() a Vu(),
=0

and from (3.6) it is not difficult to verify that

(4.19) v() aVo,() aEo(; a).

(4.23)

where

(4.21) y ;e o
=o (log e)" (log

holds uniformly in on any set 2 __> 6 > 0. Then the expansion in (4.21) is called
the outer expansion of y(x; e).

If we compare (4.21) with (4.4) and use (4.3) (c) we see immediately that the
Y’s of (4.4) yield the outer expansion for the solution y. We can also produce the
inner expansion. Observe that (4.18) and (4.15) (a) yield

k-1

(4.22) Y(ex) = a {as(log x + log e)+ bs} + O(e log e)
j=O

uniformly on any compact subset of [1, oe). Thus we have

Y(ex) 4(x)log e + O(x) + O(e log e),

(4.24)

where

k-1 k-1

4)k(X) a ajk, 0k(x) a (ajk log x + bjk).
j=O j=O

We substitute (4.23) into (4.4) with m N + 1 and obtain, from (4.3) (d),
N+I

y(x, e,) -a + cDk(x) log + qtk(x
k= (log e)k (1)+ O

(log e)N+ 1

u y,(x)
,@o (log e)"

-F- O 1)(log e)

Yo(X) -a + 4)x(x), y.(x) 0,(x) + 4),+1(x), n 1,2,3,..-, N.

Comparison with (4.20) shows that the y,’s yield the inner expansion.

We can now give the definitions of the inner and outer expansions of y(x; e).
DEFINITION 1. Let {y,(x)} be a sequence of functions such that for any N,

the relations
y.(x)

=0
1

(4.20) y(x;e)
(log e)" (log e)u

as e --* 0 +
n=0

hold uniformly in x on any compact subset of [1, ce). Then the expansion in
(4.20) is called the inner expansion of y(x;e).

DEFINITION 2. Let { Y,(2)} be a sequence of functions such that for any N,
the relation
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Remark. One may question the desirability for replacing the convergent
series (3.4) with the two asymptotic series (4.20) and (4.21) since the terms in the
latter surely decrease very slowly unless is very small. The reasons for this
replacement are related to the fact that our procedure here is supposed to serve
as a model for an analogous one in fluid flow. In the hydrodynamic situation of [6]
the calculation of the v,’s in (3.4) requires the solution of inhomogenous Oseen
problems in the exterior of an obstacle and this is very difficult. On the other
hand the quantities corresponding to the y,’s and Y,’s can be calculated from
Stokes flows and special solutions of Oseen’s equations without boundary con-
ditions as indicated in [9]. These calculations are much simpler but they are
based on an analogue of the matching principle of the next section. The point of
our model is that it lends credence to these calculations by showing that in the
present simplified context they yield the correct asymptotic terms for the exact
solution.

5. Matching principle. According to the method ofinner and outer expansions
[9], [10], a formal matching procedure can be established to obtain two asymp-
totic expansions of (P) similar to those defined in (4.20) and (4.21). The basis for
this procedure is the so-called matching principle which will be stated later. We
refer to these expansions as the formal inner and outer expansions respectively.
However, we shall show later these are indeed the inner and outer expansions of
the actual solution y(x;e). In this section we shall describe this formal procedure
(matching principle) by computing the first few terms of the formal inner and
outer expansions. The results here will be needed in the proof of Theorems 2
and 3.

We begin with the formal inner expansion. This has the form

(5.1) uak(x)
(log

where the functions uak, k > 1, are solutions of the problems

L[u,] =0 for x> 1,
(5.2)

u=0 at x= 1, u.(x) a log x 0(1) as x -- ()

where the ak, k > 1, are constants to be determined by the matching principle.
Recall that the problem defined by (5.2) has a unique solution, namely,

(5.3) u,,,,(x) a, log x

for every fixed constant a.
Now we formally substitute (5.3) into the expansion (5.1) and rewrite the

functions a log x in terms of outer variable x. This yields the series

(5.4) ak log 2 a +
al +

k=1 (log e)
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Next we construct the outer expansion. Observe first that in the notation of
(4.1) equation (1.1) becomes

(5.5)3 [Y] +-Y= YI:", e < 2 < ,
x

and conditions (1.2) and (1.3) become, respectively,

(5.6) Y=0 at 2=e

and

(5.7) Y-a as

The outer expansion is of the form

u()
(5.8) a +

(logk=l

This expansion is required to satisfy the equation (5.5) and the condition (5.7),
but not (5.6). Formally substituting (5.8) into (5.5), (5.7) and equating coefficients
of like powers of (log e)- 1, one obtains the conditions for the functions Uk(); that
is,

0, k-l,

a 2 uvO_, k2,
(5.9) =

U0+ as for all k 1.

The general solutions of (.9) haw the following forms"

(5.10)
U(2) dEo(2;a + a dt eazu_ dr k > 2

v=l

where the d, k 1, are constants to be determined by the matching principle.
In order to formulate the matching principle we need the following lemma

which yields information about the U’s as 2 tends to zero.
LMMA 5.1. Let (2) and 0(2) be functions d@ned for 2 > 0 and such that

(5.1)

for some constants A and B. Define Z(2) by

dt e"*r4(r)O(r)dr.(5.12)

This is a variant of the Lagerstrom model for the incompressible low Reynolds number flow
[2], [3], [10]; the original form can be obtained with Y replaced by Y. A calculation of the first three
terms in the formal inner and outer expansions for this Lagerstrom model is given in [2], [3]. The
calculation in [3] is carried out by introducing an intermediate limiting procedure; while in [2], the
method of limit process expansions is used with different inner and outer variables than those used
here.
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Then we have, for some constant H and for all > O,

(5.13) I()1-< HABEo(YC a),

(5.14) I()l < HABYc-1 e-a

Moreover there exist constants M and N such that

(5.15) Z()=Mlog+N+o(1) as Y O+.
The proof is a straightforward computation.
Now (1.7) yields

(5.16) E0(;a)= -log++O(log) as 0+

where 4:0 is a constant. Then, (5.15) and (5.16) show that the functions U of
(5.10) satisfy estimates of the form

(5.17) Uk(Y) dk log + /3k + 0( log ) as 0+

where

tk --dk + Mk(dl,’", dk-1), [k dk + Nk(dl dk- 1);

Mk and N are certain functions with M1 N1 0.
MATCHING PRINCIPLE.4 Determine the constants ak of (5.1) and d of (5.10)

so that the coefficients of log and the constant terms for corresponding powers
of (log e)- are equal. That is, a a and

(5.18)
ak --dk + Mk(dl,..., dk-1)= dk,

ak+ dk + Nk(dl, dk- 1) [k, k>2.

Equations (5.18) and al a clearly determine the ak and dk recursively in the
order al, dl, az, d2, a3, d3, ".-. It follows that the functions Uak of (5.1) and Uk of
(5.8) are well-determined. The final assertion of Theorem 2 is that the Uak’S are
identical with the functions Yk in the inner expansion (4.20) of the exact solution.
Similarly the final assertion of Theorem 3 is that the Uk’s are identical with the
Yk’s of the outer expansion (4.21). We saw in the sequence of formulas (4.22)-
(4.24) that the inner expansion can be obtained from the outer expansion so that
if we prove Uk Yk it will follow easily that Yk Ua. Thus we need only prove
Uk Yk and this we do now.

The proof is by induction. For k 1 we have, by (5.18), dl a and hence,

(5.19) U I(Yc) aEo(YC a),

and by (4.19) this is the same as YI(). Next we need the following lemma.
LEMMA 5.2. The functions U constructed by the matching principle satisfy

the recursive relations"

(5.20) Um( (a- 1 Uk(Yc)_
k= (log e)kJ

(log 2) + O(1) as x 0 +

for any m >= 1.

4 See comment at the end of this section.
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Proof. By (5.17) and the matching principle (5.18), we have

Uk() k log ff + k -" O( log )
(5.21)

=alog-a+ +O(log) as ff0+.
Equation (5.21) yields

ak+ ak log 2 Uk( -- 0( log 2) as 2 0+

and

(5.22) Urn(2) am- 1(log 2)2 _Um 1(2)(1og 2) a,,+ + O(2 log 22).
Repeated applications of these formulas yield

Um(:) a,,_ k(1Og :)k +1 U,,_ t(2)(log 2)
(5.23) /=1

am+ + O((log )+ 1) as 0+.

Then the result (5.20) follows from (5.23) with k m 1, since by the matching
principle we have al a. This completes the proof of Lemma 5.2.

Assume now that

(5.24) U() Y(), =< k =< tn 1.

If we let W() Um(YC Ym(YC), then W() is a solution of the problem,

[W]=0, e<<; W0 as .
Then, it follows that

(5.25) W(&) dEo(&; a),

where d is some constant.
Assume d # 0. Then we obtain, by (5.25), W(0 Urn(0 Ym(0 dEo(e;a)

O(log e) as - 0+. But Corollary 2 of Theorem 8 and Lemma 5.2 with e
imply that

Um(’) Ym(0 O(1) as e --, 0+,

which is a contradiction. This concludes the proof of Theorem 3 and thus of
Theorem 2.

Remark. The considerations above show that for the problem studied in this
paper there occurs important simplification. This is as follows. Not only can the
y,’s in the expansion (1.6) of the exact solution be obtained from the matching
procedure, but they are in fact precisely equal to the leading terms in U of the
outer expansion for small . This simplification will not be present in general [8].

Comment. The matching principle (cf. (5.18)) presented in this section may
be considered, at least for the model (P), as a simplified version of what is called
the asymptotic matching principle in [7]. With the notation there, as will be seen,
(5.18) can be rewritten in the form:

(5.26) HqEpy Et,Hqy
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for any integer p >= and q p 1. Here Ev and Hq denote, respectively, the
outer and inner expansion operators. In view of the definitions of Ev and Hq,
we obtain from (5.8) and (5.17),

HqEpy-- Hp_ l{-a + [k(lOg : 4- log x)4- k + O(X log ex)]/(log

(5.27)
k=

p-1

-(-a 4- i1)-Jr- Z (lk+ 4- ik 1ogx 4- /k)/(1og e)k.
k=l

Similarly, we obtain from (5.1) and (5.3),6

gpHqy g [ak(-log + log 2)]/(log e)
k

(5.8)
p-1

(a log x)/(log e).
k=l

Thus, a comparison of (5.27) and (5.-28) shows that the result (5.26) follows indeed
from the matching principle (5.18).

Appendix. Proof of Lemma 4.2. We consider first the leading term in the
series (3.4), that is,

Eo(x; ea)
Vo(X; ca)

Eo(1 ea)’
by (3.6). By definition (1.7),

Eo(x ea)
e

-dt dr.

For simplicity, we set

(A.1) Eo(aex) fo e-t
dt Eo(x" ea).

Then

(A.2) Vo(2;e) Vo ;ea
Eo(aYc)
Eo(ae)

For convenience, the definitions ofthe operators E and Hq in [7] are cited here. Given asymptotic
sequences {am(e)}, m 0, ..., p, and {/m(e)}, rn 0, ..., q, the outer expansion operator, E,, on a
given function f(x’e) is defined by the relations

Eof eo lim f Emf Em if + Om lim f Era- f
fixed (X fixed (Z
-0 e-O

m= 1,..., p,

and the inner expansion operator H is defined similarly with the outer variable replaced by the
inner variable x and ,() by/(e).

Strictly speaking, it is used here in the asymptotic form lim u,(x) which turns out to be the
same as ua(x), x
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A simple calculation yields

(A.3) Eo(ae -log e +
where Fo is a constant. Hence,

ml 1---(A.4)
Eo(aO

__
(lg ’) - OTherefore, we see that

(log 0m+ 2

" Vo()(A.5) Vo(; )
k= (log

as c - 0 +,

where

as c --*0 +.

Vo(; )
(log F.) + 2’

(A.6)
Vo Fo- Eo(a2), k 1,2, m + 1,

It remains to check that the V0’s and Vom defined in (A.6) satisfy the properties
in (4.15). This is a straightforward calculation except perhaps (4.15) (c) and (d).
But these follow from Lemma 2.1 with x 2/c in (2.4). Hence we have established
the lemma for j 0 (in sharper form).

Now we investigate the term Vl(X; ca) in the series (3.4). The analysis proceeds
in the same manner, in general. By the definition of vl(x; c) in (3.3) and formulas
(2.5), it is not difficult to see that

(A.7)

where

(.,) fe-’fV1(2;c) v ;ca c lEo(a2 + a ----dt e"SsVo(s" c)f/o(S" C) ds

dt e"s Vo (/o ds.
Eo(ac

Hence if we substitute the function Vo in the form defined in (A.5) and the cor-
responding 12o into (A.7), we shall obtain terms of the form"

(A.8)
11 (log C)l+

a dt eaSs Vo (/’Ok ds

(log )l+
a dt eaSs Vol /rOk ds E(a2)

Eo(ac

and similar terms involving P0m and om" Observe that 11 is a function of 2 only
times a power of (log c). Thus, terms of this form can be collected and rearranged to
yield contributions to VI,, if + k __< m + or Vim if k + > m + 1. One need
only check that these contributions satisfy the various estimates in Lemma 412
and this is an easy computation which we omit.
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The term 12 is more complicated since e appears in a nontrivial way. Consider
the terms,

(A.9)
e at

ftclt12 --t e s Vok Vol ds

We have

1’ i(aO e"soVo ds dt.

An integration by parts yields

’= e sVoVo,
(A.10)

12 Eo(ae ds Eo(at e"ttokVo dt

MEo(ae + M2 + ,
where

and

M, eaSS P’ok Vol dS,

M Eo(at)eatokVoldt

Eo(a0 eaSs (Zok Vol ds + Eo(at) ea’t (/ok Vol d

By the properties in (4.15) and (4.17), we can show that both Ma and M2 exist
and we note that they do not depend on e. On the other hand, we have

’=O(e(loge)2) as e-0+.

Consequently we write, by (A.8) and (A.10),

aM2 Eo(a)aMa Eo(aYc)+(A.11) 12 (lo-i+k (log a)t+k Eo(aa)
a Eo(aY

(log g.) + k Eo(ae)

The first terms can be summed and rearranged again to contribute to Vlm or Vm.
Moreover, since all these terms are dominated by a constant times Eo(aYO, it is
clear that the estimates in Lemma 4.2 are satisfied. Finally we observe that all the
terms involving VOm and Om will only contribute to am since all of these involve
powers of (log e) -p for p > m + 1. Calculations similar to those just given show
that these contributions all satisfy the estimates of Lemma 4.2. This concludes
the proof of Lemma 4.2.
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LIPSCHITZ BEHAVIOR AND CHARACTERISTIC FUNCTIONS*

K. SONI AND R. P. SONI’

Abstract. Let F be a distribution function. Its characteristic function belongs to Lip e, 0 < e < 1,
if and only if F(-x) and F(x) are O(x -) as x (see Boas [1]). The n-dimensional Fourier
transform of a radial function reduces to the Hankel transform of a function in one variable. Results
similar to those given by Boas are obtained for this transform. The problem, however, is discussed in
a rather general form. The class of functions , (x) j’ k(xt) dF(t), is considered. It is assumed that
k is essentially bounded and has a nonzero Peano derivative of some definite order at zero, whereas
F(t) is nonincreasing but not necessarily bounded.

1. Introduction. It is well known that iff(x) and xf(x) are absolutely integrable
in (-, ), then qS(x), the Fourier transform of f(x), has uniformly continuous
derivative. The converse is not true. If, however, O(x) is a characteristic function
corresponding to some distribution function F(x),

(1.1) p(X) eixt dF(t),

there exists a definite relationship between the Lipschitz behavior of qS(x) and the
asymptotic behavior of F(x) near + . This relation was given explicitly by Boas
[1 as follows.

THEOREM A. If 0 < 7 < 1, then q5 Lip 7 if and only if
(1.2) F(x) F( + c O([x ), xl c

The condition (1.2) is to be read as F(x)= O(Ix- ) as x - -av and F(x)
O(x-) as x --+ o0. If 7 1, the theorem fails. This problem is related to the

existence of 0’(x) at x 0. Zygmund [12] proved that if

(1.3) lim dF(t)
T--,

exists, then 0’(0) exists if and only if qS(h) + b(-h) 20(0) o(h) as h 0. Later,
Pitman [8] showed that if the limit in (1.3)exists, then 0’(0) exists if and only if
F(x)- F(+ ) o(1/x) as x -+ . In this connection, a result of Boas can be
stated as follows.

THEOREM B. F(x) F(_ c) O(1/]x[) or o(1/]x]), Ix] -+ oo, if and only if
O(x + h) + dp(x h)- 24)(x)= O(h) or o(h)

unijbrmly in x as h - O.
Thus the conditions given by Pitman and Zygmund regarding the existence

of 4)’(0) are equivalent.
We consider the general class of transforms defined by

(1.5) Oo(x) k(xt) dF(t),
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where k(t) is uniformly bounded and F(t) $ 0 as -+ m. Many integral transforms
used in applications have this form. A characteristic function (1.1) can also be
studied with the help of such integrals [9], [10]. A particularly interesting special
case of (1.5) is the Hankel transform because the Fourier transform of radial
functions in several variables becomes the Hankel transform of a function in one
variable [3, p. 69]. Some Abelian-type results pertaining to this transform are
given in 7].

Our object in this paper is to determine a set of necessary and sufficient
conditions so that the transform do(x) may have properties similar to those given
in Theorems A and B. We note that the kernel eix is bounded and satisfies Lipschitz
condition of order one uniformly in -m < x < c, yet the significance of these
properties is not obvious from the results. We prove that in general the Lipschitz
behavior of do(x) depends not only on the asymptotic behavior of F(x) as x -+ m
but also on the Lipschitz behavior of the kernel k(x). A theorem of the type A
fails when 7 equals the order of the Lipschitz condition satisfied by the kernel.
Whenever the kernel has suitable behavior at x 0, this can be avoided by con-
sidering the symmetric difference of 0(x) as in (1.4) since the effect is the same as
that of replacing the kernel k(x) by the kernel k*(x) k(x) + k(-x).

2. Main results. Let do(x) be the transform of the function F(t) defined by

do(x) k(xt) dF(t), x > 0,

where F(t) and k(t) satisfy the following assumptions"

(2.2) k(t)l =< M, 0 =< < oo,

(2.3) k(t) k(O) + Bt + o(ta), 0, B g= 0, fi > 0,

(2.4) F(t) is nonincreasingin 0 < < c and F(t)

The function F(t) is not necessarily bounded. In what follows, it is under-
stood that these assumptions are satisfied.

THEOREM 2.1. /f
/

(2.5) | k(t) dF(t) <
d 0

then do(x) exists for all x >= O. Furthermore,
(a) o > 0, o /3, F(t) O(t-), -+ , implies that do(x) do(O) o(xmin(’[:l)),

x-+0;
(b) 0 < o < fl, F(t) o(t-), -+ c, implies that do(x) do(O) o(x), x -+ 0;
(c) 0 > 0, k(t)e Lip (7) uniformly in 0 <= < , o :/: 7 and in case k(O) O,

ol

dF(t)
0

Under these conditions F(t) O(t-), -+ v, implies that do(x) Lip (min (, 7))
uniformly in 0 <= x < oo.

THEOREM 2.2. Let 0 < o < ft. If
(2.6) do(x) do(O) O(x), o(x’), x -+ O,
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then

(2.7) F(t) O(t-), o(t-’),

provided that the kernel k(t) satisfies either one of the following conditions:
(a) k(t) assumes its absolute maximum or minimum at 0;
(b) there exists a nontrivial function co(x) such that

(i) co(x) _>_ O, co(x) e L(O, 1),
(2.8)

(ii) k*(x)= .1
X--Oo

co(t)k(xt) dt assumes its absolute maximum or minimum at

We shall need the following results which we state as lemmas. The first one

x- ISA(x) fi t- Is- A(t) dt,

the conclusion is obvious.
Proof of Theorem 2.1. By (2.3) we can choose 6 > 0 such that

<_ 2[Blta for 0 __< < . If k(0) 4: 0, F(0) is finite by (2.5) so that O(x) exists for all
x >= 0. If k(0) 0, O(0) 0 and by (2.5) again,

(2.10)

For x > 0,

(2.11)
f k(xt) dF(t)

Hence O(x) exists for all x >__ 0.

dF(t)
0

f6/x f6<_ + k(xt) dF(t)
0 /x

__< 21Nix t dF(t) + MF(/x).

By Lemma 1, A(y) exists for all y > 0. Also IA(y)I is a nondecreasing function of y.
Since

F(x) t-ttt dF(t)

In (2.9), O can be replaced by o provided that 0 < 0 </3.
Proof of Lemma 2. Let

A(y) dF(t), y>0.

(2.9) dF(t) O(ya-), y oo, implies F(t) O(t-),

is due to Sz.-Nagy [11].
LEMMA 1. Let qS(x) and (x) be two monotone functions (T, P+) defined in

0 < x <= a such that c(O +) O. If either one of the two integrals o c(x)d(x) or

yo(X) dqS(x) exists, then both integrals exist and 1.im,_o+ c(x)(x) O.
LEMMA 2. Let F(t) be nonincreasing in 0 < < oo, F(t) 0 as oo; and

let - 1F(t) be integrable into O. If 0 < o <= fl, then



LIPSCHITZ BEHAVIOR AND CHARACTERISTIC FUNCTIONS 305

To prove (a), let x > 0. By similar reasoning as above,

Iq)(x) *(0)1 [k(xt) k(0)] dF(t)
(2.12)

<= 2lSlxa Jo tt dF(t) + 2MF(6/x).

F(b/x) O(x) as x 0. By (2.10) and Lemma 1, taF(t) 0 as 0. Integrating
by parts,

fo
a/x

dF(t)

(2.13)

Hence by (2.12) and (2.13),

X -- O.

IO(X)- O(0)l--" o(xmin(,fl)),

This completes the proof of (a). The proof of (b) is similar. In (c), we consider
IO(x h) q(x)l, h > 0, x h > 0 and again complete the proof as in (a).

Proof of Theorem 2.2. First we note that q)(x) is defined in some interval
0 _<_ x _<_ 6. This implies that (x) is defined in 0 =< x < . (If (0) - 0, then
k(0) 4:0 and so F(0) is finite. If q(0) 0, then k(0) 0 unless F(t) 0 and the
argument can be completed in the same manner as in the proof of Theorem 2.1.)
Without loss of generality we may assume that B > 0 in (2.3). Determine 6 > 0
such that

(2.14) k(t)- k(O) > (B/2)t, 0 <= <= 6.

Let k(t) satisfy condition (a). By (2.14), k(t) k(O) > 0 for all > 0. Since

(x)- (0)= [k(xt)- k(0)] dF(t)

(2.15) O(x), x O,

it follows that

By (2.14),

fO
/x

[k(xt)- k(0)] dF(t)= O(x), X -- O.

/’

(xt) dF(t)= O(x), x O,
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or

dF(t) O(x-),

The proof is now complete by Lemma 2. If k(t) satisfies condition (b), then by
(2.14),

(2.16)

k*(t)- k*(O)= ff co(x) [k(xt) k(O)] dx

>_ ct

o(x)(xt)’ dx (0 <= <= 6)

(0 <__ <= ,5)

for some constant c > 0. Hence k*(t) k*(0) >= 0 for all > 0. From (2.15) we
obtain

[k(xyt) k(O)] dF(t) O((xy)), xy - O,

and in particular for 0 =< x =< 1, y 0. Hence,

co(x) dx [k(xyt) k(O)] dF(t) O(y) co(x)x dx.

The interchange of the order of integration is easily justified and we obtain

[k*(yt) k*(O)] dF(t) O(y), y - O.

With the help of (2.16), the proof can now be completed as before.
The proof is essentially the same when O is replaced by o.

3. Remarks. Theorem 2.2 gives the Tauberian counterpart of Theorem 2.1.
The function co(x) in (2.8) is such that for some constant c, cT- 1co(x/T) is a regular
summability kernel [6, p. 50. Obviously the kernels e and x-VJr(x), v >= 1/2,
satisfy the condition (a) of Theorem 2.2. The special case v-- 1/2 when
x-vJv(x)--(2/g) 1/2 cos x is essentially contained in Boas’s results [1]. A kernel
which satisfies condition (b) but not (a)is k(x) x/J(x), v > -1/2. Let

By [5, p. 24, (22)],

1/2,
co(t)--

/2(1 t2) 0 < < 1,

O, t>l.

k*(x) k*(0) co(t)(xt)l/Zj(xt) dt

(n/2)x1/Z[J/z(X/2)]2 > O.
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If v 1/2, k(x) (2/7z) 1/2 sin x. In this case, we can consider the following simpler
expression for co(t),

0<t<l
co(t)

0, t>l,

so that k*(x) k*(0) (2/lt)l/2x 1(1 cos x) 0, x > 0.
For v > -1/2, the kernel xl/2j,,(x) illustrates nicely how the behavior of a

kernel at zero influences the behavior of the transform . We note that
xX/2J,,(x)Lip(v + 1/2) at x--0. The two theorems together imply that if
0 < < v + 1/2, q)(x)-- O(x), o(x), x - 0 if and only if F(t)= O(t-), o(t-),

v. It is immaterial whether v + 1/2 is greater than, equal to or less than 1.
On the other hand x1/2Jv(x Lip 7, 7 min (v + 1/2, 1) uniformly in 0 < x <
Hence if 0 < a < 7, O(x)s Lips uniformly in 0 =< x < v if and only if F(t)

O(t-), v. It is not difficult to find examples to show that the behavior of
q(x) may be significantly better locally or uniformly than that indicated in
Theorem 2.1. For example, let

k(t)=
O< t< 1,

t>l,

and

Then

1, O:<t 1,
F(t)-

l/t, > 1.

x O,

q)(x)= x, 0<x< 1,

1, x>=l.

q)(x) Lip uniformly but k(t) is discontinuous. The following examples, however,
show that Theorem 2.1 (a) and (c) are the best possible.

1. Let

q(x) sin xt d(t- 1/2)

--(rCX/2) 1/2

Here o 1/2, ?, fl 1, (x)e Lip (1/2) at x 0.
2. Let k(t) t-1/2j(t), and

)(2/3)(1 t3/2), 0 =< =< 1,
F(t)

0, t>l.

By [5, p. 18, (1)],

(1)(X) --X- 3/211 Jo(x)].
Here fl 1/2, can be taken arbitrarily large but O(x)e Lip (1/2) at x 0.
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Finally, since q)(x) is defined only for x _> 0, it would be meaningless to con-
sider the symmetric differences [12] of (x) at x 0. However, we can still con-
sider the behavior of q) in an analogous manner. For example, if k(t) sin t,

O(2x) 2q)(x) (sin 2xt 2 sin xt) dF(t).

The kernel sin 2x 2 sin x is uniformly bounded and belongs to Lip (3) at x 0.
It can easily be verified that

k’[(x) k]’(O) (sin 2xt 2 sin xt) dt <= 0 for all x>0.

Hence, if 0 < e < 3, q)(2x) 2q(x) e Lip (e) at x 0 if and only if F(t) O(t-),
oe. Results like this can take the place of the one in (1.4).
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A COMPLETE SET OF ORTHONORMAL HARMONIC FUNCTIONS*

A. S. FAROOQUI"f

Abstract. A complete sequence of orthogonal harmonic functions on a domain is constructed.
The boundary values of these harmonic functions are found to be the eigenfunctions of a certain integral
operator.

Introduction. It is a familiar fact that the set of functions 1;cos 0, sin 0;
cos 20, sin 20;... is orthogonal as well as complete in the space of all square
integrable functions defined over the interval (0, 2n). On the other hand, the set
of harmonic polynomials 1; r cos 0, r sin 0; r2 cos 20, r2 sin 20,.-. (defined over
the unit circle with center at the origin) is orthogonal in the usual sense of the
inner product for a domain as well as complete in the space of all harmonic
functions defined on the unit circle with continuous boundary values. Moreover,
the former set is clearly the boundary values of the latter. An analogous situation
is found to hold for an arbitrary simply connected domain bounded by a simple
smooth closed contour.

For expedience, an inner product for functions defined and continuous on
the boundary is introduced. Two functions orthogonal in this inner product
space are then termed orthogonal on the boundary. Incidentally, for the unit
circle, this inner product coincides with the usual inner product for the interval
(0, 2n). It is established that there is a sequence of functions, harmonic in the
interior and continuous on the closure of the domain, which is orthogonal as
well as complete in the space of all harmonic functions with continuous boundary
values. Moreover, the boundary values of this sequence form a complete ortho-
normal set on the boundary.

1. Notation and terminology. Let D be the interior of some simply connected
domain bounded by a simple closed contour D. The positive direction of the
contour is taken as counterclockwise. The symbol v(Q), Q D, is designated for
the unit normal at Q directed into the interior of D. We assume, of course, that
D is smooth enough to have a meaningful normal.

The line integral Df(Q)dlQ is defined in the usual way. By the area integral

ffDf(P)dP, we mean ffof(x, y)dx dy. In terms of these integrals the following
inner products are introduced:

(1.1) (f, g) + f(Q)g(Q) dlQ

and

(1.2) If, g] f fof(P)g(P)dP.
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The inner product defined by (1.1) is referred to as the inner product on the
boundary. Two functions are said to be orthogonal on the boundary if their
inner product vanishes. Similar remarks apply for the inner product defined on
the domain by means of (1.2).

We say that the system of functions defined and continuous on the
boundary is orthonormal on the boundary if

(1.3) (i, j) i,j, i,j 1,2, 3,...,

where 6i, is the Kronecker delta. The system is said to be complete if, for any
function f defined and continuous on the boundary, the relation (f, qi) 0 for
all qi implies thatf 0. Similar remarks apply for the system of functions defined
on a domain, of course, using the appropriate inner product defined on the same
domain for such functions.

The symbol G(P, R), P, R D, is reserved for the Dirichlet-type harmonic
Green’s function.

2. Generalized Poisson’s kernel. Associated with the domain, there is a
function which plays an important role in this investigation. It is termed as the
generalized Poisson’s kernel. More precisely, we have the following definition.

DEFINITION 2.1. The function G(P, Q),Pe D, Q ecD is defined as the
generalized Poisson’s kernel for D.

Incidentally, when D is the unit circle, G(P, Q) reduces to the well-known
Poisson’s kernel. Several properties of the Poisson’s kernel are also valid for the
generalized Poisson’s kernel. For example,

(2.1) G(P, Q) > O, P e D,

G(P, Q) dl. 1, p(2.2) D,
D

or, in the language of inner product"

(2.3) (1, G(P, (2)) 1, P e D.

Functions defined and continuous on the boundary may be extended to the
closure of the domain in several meaningful ways. One extension, however, has
proved quite useful. |t is termed the Dirichlet extension and is prescribed by the
following.

DEFINITION 2.2. Letfbe a continuous function defined on the boundary. The
Dirichlet extension off on D is given by

f(P) f(Q)Gv(n, Q) dle
D(2.4)

(f(Q), G(P, Q)).

The extended function is harmonic in D and of class C on D.

3. Poisson’s kernel of the second kind. Another function, this time defined on
c3D c3D, is also found quite useful in the sequel. For expedience, we introduce
it now.
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DEFINITION 3.1. The Poisson’s kernel of the second kind is defined by means
of the formula

(3.1)
K(Q S)= J Jo Gv(P Q)Gv(P S)dP

[Gv(P, Q), G(P, S)], Q,S t3D.

Many properties of this kernel are quite interesting and can be easily
established. For the purpose of this investigation, the following are listed"

(i) The kernel is symmetric and square integrable. The symmetry is, of
course, obvious from the definition. Upon a closer examination, one notices that
K(Q, S) is continuous on t3D x cD except when Q coincides with S where it has
a weak (logarithmic) singularity. Consequently, K(Q, S) L2(c3D x cD).

(ii) The kernel is positive definite.
In order to prove the assertion, we let f(Q), Q e c3D, be any function of class C.

Then, iff(P) is its Dirichlet extension, it follows that

ooo K(Q S)f(Q)f(S) dl" dls fro {f(p)}2 dP.

The left-hand side vanishes only iff 0, which proves the proposition.
Let {Oi} be the normalized system of eigenfunctions and {2i} be the corre-

sponding eigenvalues for the kernel K(Q, S) so that

(3.2) Pi(Q) 2i e K(Q, S)Oi(S) dls
D

and

(3.3)

Since the kernel is positive definite, it follows that the set {Oi} forms a
complete orthonormal system in the space of all continuous functions defined on
the boundary. This completeness may be extended to all Lz-functions on the
boundary by means of the triangular inequality in the Hilbert space generated
by this inner product. Furthermore, all 2 are positive.

With each eigenfunction Oi(Q) defined on cD, we consider its Dirichlet
extension Oi(P) defined on D. Clearly, Oi(P) is harmonic in D and coincides with
Oi(Q) on D.

We are now ready to state and prove the principal result of this investigation
in the following form.

THEOREM 3.1. The sequence {i(P)}forms a complete orthogonal set ofharmonic
functions in the space of all harmonic functions defined on D with continuous
boundary values.

For details, see Appendix.
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Fortunately, the theorem is quite easy to establish. Let us consider

(ij (Oi, Oj)

2j fo fo Oi(S)K(Q’ S)OJ(Q) dlO dls’
D D

by (3.2). Using (3.1), we have

(iJ "J OD OD f ;D Gv(P’ Q)Gv(P, S)Oi(S)Oj(Q) dl2 dls dP

which proves the orthogonality. Moreover, the system {0(P)} forms an
orthogonal set with respect to the inner product defined for D. To prove complete-
ness in the space of all harmonic functions on D, with continuous boundary values,
we consider any function f(P) which is harmonic in D and of class C on D. Then
by (2.4), (3.1)and (3.2),

(3.4) i f ff(P)O(P)dP= fe,J’(S)O(S)d,s.
Hence, [ Oi 0 implies that ( Oi) 0 for all Oi. The completeness of Oi on
D implies that f 0 on D. Hence its Dirichlet extension f(P) vanishes on D
identically, which proves the theorem.

In order to illustrate the theory, we take the simplest possible example,
namely, when D is the unit circle r 1. The generalized Poisson’s kernel is then
the ordinary Poisson’s kernel"

G(r, O;1, a)
2{1-2rcos(0-a)+r2}(3.5)

2
e,r" cos n(O ),

where co 1, c, 2, n 1, 2, 3,.... The kernel of the second kind is therefore
given by

K(a, fl) 6(r, O; 1, a)G(r, O; 1, fl)r dr dO

4 o n +
cos n(fl ),

giving the expansion of K(a, fl) in terms of its eigenfunctions. The series may be
summed into a closed form if desired. Comparing (3.6) with the usual bilinear
expansion for K(, fl), namely,

(3.7) K(a
i= ’i
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one finds that the complete set of orthonormal eigenfunctions for K is

cos n, sin n

with eigenvalue 2, 2(n + 1). The corresponding complete set of orthogonal
harmonic functions obtained by means of Dirichlet extension (using (2.4) and
(3.5)) is

2nr"cosncz, fr sinn

Theorem 3.1 can now be verified immediately, lncidently, one notices the multi-
plicity two of each eigenvalue after the first one because there are two eigen-
functions cos he, sin n corresponding to each eigenvalue 2, n > 1.

Appendix. Proof of the Nct that K e L(D x D). We first show that the
integral (3.1) representing the Poisson’s kernel of the second kind is convergent
whenever Q does not coincide with S. For any point R D, let the symbol
D(R, ) denote the common intersection of the domain D and the neighborhood
of R with radius 6. For a small 6 > 0, this domain is approximately a semicircular
region with its diameter along #D. For Q not coinciding with S, we can choose 6
so small that D(Q, 6) and D(S, 6) are disjoint. For expedience, the position of a
point P D(Q, 6) is represented by the polar coordinates (r, 0) with pole at Q and
the initial line being the tangent line at Q. It is now easily seen that

G(P, Q) sin 0 + 0(1), P D(Q, 6).
rclPQI

The dominant singular part of K(Q, S) over D(Q, 6) in absolute value can therefore
be majorized by

(A.1) fro sin

(e,6) 7r21ps--] dO dr,

where a factor similar to sin 0 has been dropped in the numerator. The expression
(A.1) in turn is dominated by 6/(rc(h 6)), where h IQSI. The same result is also
valid for the integral over D(S, 6). Consequently, the integral in (3.1) converges
absolutely. Moreover, the convergence is uniform for h >= k > 0.

Next we consider the behavior of K(Q, S) as h -, 0. The point S may now be
considered on the diameter of D(Q, 6) at a distance h from Q where h < c3. The
dominant singular term of the integral over D(Q, 6) corresponding to (A.1) is

(A.2)
7r
2

sin 0 dO dr 1__
x//-{ h2 + r2 2hr cos 0} zr2

1+ log }.
Thus the kernel becomes logarithmically singular as h--, 0 which proves the
assertion (i) in 3. Moreover, the eigenfunctions are continuous on the boundary.

Acknowledgment. The aufhor is grateful to Professor R. W. Lardner for
many valuable discussions.



SIAM J. MATH. ANAL.
Vol. 4, No. 2, May 1973

SYMMETRIES OF DIFFERENTIAL EQUATIONS.
THE HYPERGEOMETRIC AND EULER-DARBOUX EQUATIONS*

WILLARD MILLER, JR.
Abstract. A general technique is introduced which uses the symmetry group of a linear homo-

geneous partial differential equation to obtain solutions of the equation and transformation properties
of these solutions. As an application it is shown that the Euler-Poisson-Darboux equation
Uxx urr (k/y)ur 0 admits the symmetry group SL(2, ff) and, if k-changing operators are admitted,
the group SO(5, ff). Certain quadratic transformation formulas for hypergeometric functions are
related to the S0(5, () symmetry. Similarly it is shown that the Euler-Darboux equationu + (4 /)-
(u flu) 0 admits the symmetry group SL(2, () and, if (, fl)-changing operators are admitted,

the group SL(4, ). The transformation formulas for the hypergeometric functions and the 24 solutions
of Kummer are related to the SL(4 E) symmetry.

Introduction. The notion of the symmetry group of a partial differential
equation has proved useful for the construction of symmetry adapted solutions of
the differential equation. This is particularly true for the nonlinear equations of
hydrodynamics (see ]).

A number of papers have appeared recently which show how one can com-
pute the symmetry group G of a given equation and then use various one-param-
eter subgroups K of G to find solutions of the equation which are invariant under
K (see [2]-[5]). We make particular mention of [4] in which the authors show that
the heat equation in two variables admits a six-parameter Lie symmetry group.
These papers follow the geometric approach of Lie himself [6] and contribute to
a static theory of symmetry in the sense that they are concerned primarily with
solutions invariant under one-parameter transformation groups.

In this paper we exploit the elementary fact that the solutions of a linear
homogeneous partial differential equation form a vector space. Thus, the action
of the symmetry group G on the solution space defines a representation of G and
we can use representation theory to study the transformation properties of
solutions under the action of the full group rather than limit ourselves to one-
parameter subgroups. In this sense the theory presented here is dynamic.

As an application of the method we show that ifparameter-changing operators
are allowed, the Euler-Poisson-Darboux (EPD) equation Uxx uyy (k/y)uy 0
and the Euler-Darboux equation u + (1/( r/))(u flu) 0 admit the Lie
symmetry groups S0(5, ff) and SL(4, E), respectively. Certain of these symmetries
have already been exploited to solve boundary value and initial value problems
for the above equations [10], [13, Chap. 1], but it appears that the full symmetry
groups have not been computed until now.

We show also in this paper that S0(5, ) and SL(4, () are intimately related
to the hypergeometric functions 2Fl(a, b, c, z). (Indeed, one can consider SL(4, E)
as the dynamical symmetry group of the 2F1.) A detailed study of this relationship
will be undertaken in another publication.

A dynamic treatment of the heat equation can be derived from [12] in which
Weisner treats an equivalent equation.

* Received by the editors June 28, 1971, and in revised form April 3, 1972.- School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. This work was
supported in part by the National Science Foundation under Contract GP 29321.
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1. The general method. Let Qu 0 be a linear homogeneous partial dif-
ferential equation where u u(x, t) and

2 62 C2 C 6
(1.1) Q A-x2 + B-- + C- + Dxx + E + F.

Here A, B, C, D, E, F are analytic functions of (x, t) in some common domain 9.
We are interested in obtaining families of solutions u of Qu 0 defined in some
common subdomain of 9. (To be explicit we have chosen Q to be a second order
differential operator in two independent variables. Actually the order of the
operator and the number of variables are immaterial.)

Consider the set c5 of all linear differential operators

(1.2) L X(x, t)x + T(x, t)- + U(x, t)

with analytic coefficients such that QLu 0 whenever Qu 0. Thus, (q consists
of all operators L which map the solution space of Q into itself. Clearly, L e (q

if and only if

(1.3) [L, O]u LOu QLu 0

for all u e , where [L, Q] LQ QL is the commutator of L and Q. It follows
from (1.3) that L e c5 if and only if

(1.4) [L, Q] R(x, t)Q,

where the analytic function R depends on L.
It is easy to check that N is a (possibly infinite-dimensional) Lie algebra.

That is, if L, L2 G eft, then

(1.5) alL1 + azL2 c, ILl, L2 (,

for all constants al, a2 (see [7]). We can associate with ( the local Lie group G
consisting of all finite products exp (aLl)... exp (a,L,) of operators

n
(1.6) exp 0L ,0 ..L", L,
defined for the constants aj sufficiently close to 0. The operators exp 0L can be
explicitly computed and take the form

(1.7) [exp (aL)f](x, t) v(x, t, e)f(x(a), t(a)),

where f is any analytic function and x(a), t(a), v(x, t, ) are uniquely determined
by the equations

(1.8)
dx(a)

X(x(oO, t(a)),
dt(O

T(x(a), t(a)),
da da

d
--v(x, t, ) v(x, t, a)U(x(a), t(a)),

x(O) x, t(O) t, ,(x, t, O)

(see [8]). Here L is given by (1.2).
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Since L1 and L2 in c each leave invariant, so does their product LIL2.

Similarly L" leaves invariant for L a3 and n 0, 1, 2, Finally exp L leaves
invariant for L e f# and sufficiently small so any element of G maps into itself.

Indeed is the basis space for a representation of the Lie group G and the Lie
algebra a. Thus, we can use the techniques of representation theory to study .
With this in mind we designate G as the symmetry group of (2.

We first describe a method for computing special solutions with a minimum
of effort. Let L1,’", Lk be a linearly independent set of pairwise commuting
operators in a which is maximal with respect to these properties. Since these
operators are commuting and leave invariant, it is possible that they have a
simultaneous eigenvector in , that is, a nonzero u such that

(1.9) Lju 2ju, <= j < k, Qu O,

If such a u exists it can often be computed rather easily from (1.9). Indeed the
extra information Lju 2ju frequently reduces the problem to one of solving a
series of ordinary differential equations rather than a partial differential equation
[1]-[5]. (See 2 for some examples.) These remarks relate our approach to the
static theory mentioned above. Note that the eigenfunction u satisfies (Lj 2j)u 0,
where L) L 2 . Thus exp (oL))u u for all and u is invariant under the
one-parameter subgroup of G generated by L).

We remark that G may be a trivial one-dimensional Lie group in which case
our method yields no information about the solutions of Qu O.

Ovsjannikov [16] has constructed a general theory of symmetries of (non-
linear) partial differential equations which essentially includes the above as a
special case. However, for computational purposes the author’s formulation is
superior.

2. The Euler-Poisson-Darb.oux equation. We apply the method of to the
EPD equation

Uxx Uyy
k

-fu 0

by computing all linear differential operators

(2.1) L X(x, y)c,, + Y(x, y)y + U(x, y)

such that [L, Q] R(x, y)Q, where

(2.2) Q

and R(x, y) is a function depending on L. The results are

k
(2.3) X a(x2 + y2) + bx + c, Y 2axy + by, U axk + b- + d,

a,b,c,deg.
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Thus the EPD equation admits a four-dimensional symmetry algebra with basis

(2.4) L -(x2 + yZ)a: 2xyc3, kx, L2 x#, + yc3, + -Here

L3 63x, E 1.

(2.5) [L2, L1] L1, [L2, L3] -L3, [L 1, L33 2L2
so the symmetry algebra a5 is isomorphic to s/(2, ()q {E}. (In the exceptional
cases, k 0, 2, the symmetry algebra is infinite-dimensional and contains (2.4) as
a subalgebra. For these values of k the EPD equation is equivalent to the wave
equation.) Neglecting the trivial symmetry group generated by {E}, we can con-
sider SL(2, ) as the symmetry group of the EPD equation. The group action of
SL(2, ,) is given in terms of the Lie algebra action by

(2.6) T(g) exp -LI exp(-cdL3)exp(’cL2), er’/2 d-
where

(2.7)
a b) eSL(2,g;),
c d

ad- bc 1

(see [8, p. 21]). A straightforward computation yields

[T(g)f](x, y)= [(d- bx)2 bZyZ] -’/2

(2.8) f[ab(yZ x2) + x(l + 2bc) cd Y 1(d &U -- (d bx)2 bey
ad-bc= 1.

Thus, for any solution f of Qf 0 and any g e SL(2, ) we have Q(T(g)f) 0
whenever expression (2.8) makes sense. In the special case

(2.9) e0

we find

(2.10) [T(eo)f](x y)__ IX 2 y2]-k/2f
X2 y2’ X2 y2

is a solution of the EPD equation whenever f(x, y) is a solution.
We can obtain special solutions of the EPD equation by requiring that these

solutions be invariant under one-parameter subgroups of SL(2, if,). For example,
it is easy to show that the space of solutions of the simultaneous equations

(2.11) Qf O, Lzf (la + k/2)f
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is spanned by

f,(x, y) (x y)U2F(-#, k/2;1 # k/2; (x + y)/(x y)),

(2.12) f(x, y)= (x- y)-/(x + y)U+/2F(k + la,k/2;

1 + I + k/2;(x + y)/(x- y)),

where F(a, b;c;z) is a hypergeometric function [9]. Furthermore, the space of
solutions of

(2.13) Qf O, L3f 2f
is spanned by

(2.14) f(x, y) yl-k)/2 eXj+k_ 1)/2(/],y),
where Jr(z) is a Bessel function. We could use the SL(2, fg) symmetry to derive
identities for hypergeometric and Bessel functions, and transformation formulas
for solutions of the EPD equation. However, very similar derivations are given
in [8] and [14] so we shall not reproduce them here.

Next we look for transformations which map solutions of the EPD equation
for one value of the parameter k into solutions for another value of k. In particular
we study the operator

The solutions f(x, y) of Qf 0 correspond to solutions f(x, y, t) of Q()f 0
such that f(x, y, t) f(x, y)t.

In analogy with our previous problem we compute all linear differential
operators

(2.16) L X(x, y, t)cx + Y(x, y, t)c, + r(x, y, t)c3, + U(x, y, t)

such that [L, Q()] R(x, y, t)Q(). A tedious computation yields an eleven-
dimensional symmetry algebra N with basis

(2.17)
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Here c5’( {E}, where f’ is a ten-dimensional Lie algebra with basis
L1, "’, Llo. Explicitly computing the commutation relations of the Lj one can
verify that f’ is a simple Lie algebra. Thus ’ - so(5, 6_.) since so(5, g;) is the only
simple algebra of dimension ten 15]. The generators {L2, L8} form a basis for a
Cartan subalgebra of ’.

The generators Lj of so(5, ) map solutions of the EPD equation into solutions,
either fixing the parameter k or changing it by _+ 2. Indeed, denoting a general
solution of the EPD equation by f,(x, y) or hk(X, y) we see from (2.17) and the
remarks following (2.15) that

(2.18)

-0,A L+2, ya,f + (k 1)L
y

(X2 _+_ y2)
f + f + L L+,

2xyZcxfk + Y(x2 + Y2)c, fk + kx2 + y2 xZ)f f_ 2,

--(X2 + y2)cf 2XyOf kxf h, c f h,

x
axL +-c,f L+ 2, ycxf + xyc,f + (xk x)f f-2.

Y

(Each of these eight relations is independent of the remaining ones.) In his study
of boundary value problems for the EPD equation, Weinstein [10] made use of the
first recurrence relation.

To determine the group action of S0(5, g) we note that each of the triplets

(2.19)
{j +, j-, j3) {L,, L3, L2}, {Ls, L6,1/2L8},

{1/2L9, -1/2LT, 1/2L2 + 1/4L8) {1/2L,o, -1/2L,, 1/2L2 1/4Ls}

satisfies the commutation relations

[j3, j+] _d+, [J+,J-] 2J3

and forms a basis for a subalgebra of so(5, g;) isomorphic to s/(2, I$). It is easy to
show that each triplet generates a Lie subgroup of S0(5, if,) isomorphic to SL(2,
and that the four subgroups so obtained suffice to generate the full group S0(5,

A straightforward computation [8] shows that {Lx, La, L2} generates the
group action

[T(g)f](x, y, t)

f[ab(y2 x2) -1
t- x(1 + 2bc)- cd

(2.20)
(d- bx)2 bZy2 (d bx)2 b2y2 [(d bx)2 b2y2]/

g SL(2, if,).

(For f(x, y, t) fk(X, y)t, (2.8) and (2.20) agree.) The triplet {Ls, L6, 1/2L8}
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generates the group action

[Tz(g)f](x, y, t) Ia 2xac

(2.21) y(d2 2t2 t4b211/2-Txbd + y:

t4 ] (1 + 2bc) 2ab cd72,

If g eo (see (2.9)) and f(x, y, t) fk(X, Y)tk, then (2.21) simplifies to

(2.22) [Te(eo)f]{x, y, t) yk- f(--X, y)t2-k

g SL(2, ).

or yk- ’f(--X, y) f2-k(X, Y). The triplet {1/2L9, -1/2LT, 1/2L2 + 1/4L8} generates the
group action

[T3(g)f](x, y, t)= [a + c/t2] 1/2

x y(a -+- C/t2) 1/2(2.23)
f d + t2b d + bt2

(d + bt2(1 x2/y2)) 1/2 t(a + c/t2) 1/2-]
’(d + ],

and the triplet {1/2Llo, -1/2L4, 1/2L2 1/4Ls} generates the action

[T4(g)f](x, y, t)= [d + b(y2

(2.24)

X2)/t2] 1/2

x y(d + b(y2 X2)/t2) 1/2
f d + byZ/t2’ d + byZ/t2

(d + b(y2 x2)/t2)1/2_

(a + t2/72) 1/2,

The operators (2.20), (2.21), (2.23), (2.24) determine the action of SO(5, ).
In addition the operator Q(1) admits certain non-Lie symmetries. The most
important are

(2.25) $1 f(x, y, t) f(-x, y, t), S2f(x, y, t) f(x, -y, t).

(In fact, SO(5, t$) and the reflection S2 generate a symmetry group isomorphic to
0(5, (g) and $1 0(5, g;).) The transformation S1Tz(eo) or yk- fk(X y) fz-k(X, Y)
was used by Weinstein in [10].

As with the ordinary EPD equation, we can obtain special solutions of
Q(l)f 0 by requiring that these solutions be invariant under one-parameter
subgroups of S0(5, g). In particular, the space of solutions of the simultaneous
equations

(2.26) Q(l)f 0, Lsf (k 1)f, Lzf (1 + k/2)f

is spanned by

fl(x, y, t) (x y)utk 2F1(-- t, k/2 1 la k/2 (x + y)/(x y)),

fz(X, y, t) (x y)-k/Z(x + y)U+k/Ztk
(2.27)

2V,(k + , k/2;1 +/, + k/2; (x + y)/(x y))
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(for/t + k/2 not an integer). Another basis is

f3(x, y, t) (x y)"tk 2F1(-/, k/2; k; 2y/(x y)),

(2.28) f4(x, y, t) (X y)/ + k- 1(_ 2y)1 ktk

2F1(1 -/- k, k/2;2 k;-2y/(x y))

(for k not an integer). By applying Weisner’s method [11], [14], [8], we can use the
S0(5, ) symmetry to derive a variety of generating functions for the 2F. This will
be carried out in another publication. Here, we merely show the intimate relation-
ship between S0(5, if,) symmetry and the quadratic transformation formulas for
hypergeometric functions. From (2.23) and (2.28),

T3(eo)f3(x, y, t) h(w, z, t)

k -4x/(2.29) ik-a2-UwU(1 %/-)2"tl-k-2"2F1 --fl’ ; k;(1 Z z)2

w x- y, z (x + y)/(x- y).

Now h is a solution of

Q )h O, L8h (- k 2/)h, L2h (-//2 k/2 + 1/2)h
which is bounded for general /, k at z 0. Hence h is a constant multiple of
f(x, y, t)(for k k- 2/,/ =/z)"

(2.30) (1 x/) k

(1 x/)2] co
k k

-/’2 2 /;+;z

Letting z 0 we find Co and (2.30) yields a quadratic transformation formula
for the 2F. Similarly, Ta(eo)f(x, y, t) leads to the identity

(2.31)

2F -/2,- /2-;1 2/ k;v v -2y/(x y),

and T4(eo)f3(x, y, t) leads to

(1 x//)2"(1 z) -k-zu

2F1
k k

(2.32)

Additional formulas of this type can be derived from (2.23) and (2.24) by making
use of the transformation formulas for the 2F1.

Note added later. Just as in the remark preceding (3.23) in the next section one
can easily show that the equation Q)f 0 is equivalent to the partial differential
equation obtained from (3.23) by setting c a b + and replacing a and b by
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differential operators. In this sense O(5,g;) is the natural symmetry group of the
ultraspherical functions. Past studies of these functions have used only SL(2,
symmetry [8], [17].

3. The Euler-Darboux equation. The Euler-Darboux equation

(3.1) u, + r/(u, flu)--0

is a generalization of the EPD equation. In fact, if the constants , are chosen
so that fl k/2 and new variables x, y are introduced so that y x,
r/= -y x, then (3.1) becomes the EPD equation. To find the symmetry algebra
of (3.1) we look for all linear differential operators

L X(, r/)? + Y(, r/)c, + V(, r/)

such that [L, P] R(, r/)P, where

(3.2) P c’, +
q q

The results are

(3.3)

X a{ + b2 c, Y at/ + br/2 C,

a
V -(z + fi) + b(z + ?fi) + d, a,b,c, defg.

Clearly the Euler-Darboux equation admits a four-dimensional symmetry
algebra with basis

L {2c + F]2, + 0{ -" /F], L2 c9 + r/c3, + (o + fl)/2,
(3.4)

L3 -c9 c9,, E 1.

The commutation relations of the Lj are

(3.5) [L2, L1] L1, [L2, L3] -L3, ILl, L3] 2L2

so the symmetry algebra is again isomorphic to sl(2, ) @ {E}. The group action
is given in terms of the Lie algebra action by (2.6) and (2.7). A standard com-
putation yields

(3.6) [T(g)f](, ) (d + b)-(d + btl)-f
Ld + b’d + brlJ’

ad bc 1.

Thus, if Pf 0, then P(T(g)f)= 0 for any g SL(2, if,) such that (3.6) makes
sense. An interesting special case is obtained for g eo: If f(, r/) is a solution of
the Euler-Darboux equation, then so is -%/-f(--1,-r/-1).

It is easy to show that the space of solutions of the simultaneous equations

(3.7) Pf O, L2f
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is spanned by

(3.8)
fl(, r/) u 2F1(-, fl; 1 # 0; r//),

f2(, r/)= -%/u+ 2F(o, p + o +/3;1 +/.t + 0; r//)

for / + a not an integer. Indeed, the second equation implies f Uh(rl/).
Substituting this result in Pf 0 we find h must be a solution of the hyper-
geometric differential equation. It is clear from this result that the hypergeometric
functions are intimately related to the Euler-Darboux equation. Indeed the partial
differential equation introduced by Weisner [14] in his group-theoretic treatment
of hypergeometric functions is just the Euler-Darboux equation (to within a
change of independent variables). Thus, detailed applications of SL(2, ff) symmetry
to obtain solutions of the Euler-Darboux equations and transformation properties
of these solutions are already contained in [8], [14] and need not be repeated here.

Here we concern ourselves with transformations which map solutions of the
Euler-Darboux equation corresponding to (a, fl) into solutions of the equation
corresponding to (a’, fl’). To find such transformations we study the operator

1
(3.9) p(1)

The solutions f,a(, r/) of Pf,a 0 correspond to solutions f(, r/, t, u) of p(1)f 0
such that f(, rl, t, u) f,a(, rl)tu.

To find the symmetry algebra of p(1)f 0 we determine all linear differential
operators

(3.10) L Xc9 + Ycg, + TO + Ucg, + V

such that [L, p(1)] R(, r/, t, u)P(1) Here, X, Y, T, U and V are functions of, r/, t, u to be determined. A tedious computation shows that the symmetry algebra
N is sixteen-dimensional with basis

(3.11)

q r/u
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Computing the commutation relations, we find that the operators Lj form a basis
for a simple fifteen-dimensional Lie algebra, necessarily isomorphic to sl(4, )
[15]. The operators {Lz, L4, Ls} span a Cartan subalgebra of sl(4,(g). Thus,
a3 sl(4,(g)( {E} and we can consider s1(4,) as the symmetry algebra
of p(1).

The operators Lj map solutions of the Euler-Darboux equation for (a, fl)
into solutions (a + , fl + p), , p 0,

___
1. Indeed from 0.11) and the remarks

following 0.9) we find

(26{ "-[- r/26q -[’- 0{ -[- r/fl)f,a h,a,

( -lt- 0{)L,fl L+ 1,fl, (r/t0t/ -[- )L,fl ---L,fl+ 1,

(3.12) (( ,) + + fl- 1)f,a f,a_ 1,

(( )a. + +/ )L, L-,,

(r/(r/ {)a, + a{ + fir/ {)f,,a L-1,a,

where f,,a({, r/), h=,a({, r/) are general solutions of the Euler-Darboux equation.
(Each of equations (3.12) is independent of the remaining ones.) In addition, the
operators L12 L13 induce the coupled equations

(3.13) (( r/)c3 fl)L,a L-1,fl+ 1, ((r/ )({ ()L-1,fl+l --/( 1)fa.

It is interesting to note that the so(5, (g) operators of the EPD equation do
not form a subalgebra of the above sl(4, ) operators even though the EPD
equation is a special case of the Euler-Darboux equation.

To determine the group action of SL(4, f) we remark that each of the triplets

satisfies the commutation relations

[j3, j+]

___
j+, [j+, j-] 2j3

and forms a basis for a subalgebra of s/(4, if) isomorphic to s/(2, (g). Furthermore,
each triplet generates a subgroup of SL(4, f) isomorphic to SL(2, f) and the six
subgroups so obtained generate the full symmetry group SL(4, ).

A routine calculation shows that {L1, L3, L2} generates the group action

(3.15)
+c ar/+c u ][Tl(g)f](, r/, t, u) f[_- -+- -b-’ d + br/’ d + b’ d + br/
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For f(, rl, t, u) f,,t(, rl)tua, expressions (3.6) and (3.15) agree. The triplet
{L6, L5,-1/2L2 + 1/4L4 + 1/4Ls} generates

Tz(g)f rl u)

’at c( q)
at c u(at

’at c(

while {LT, L14,-1/2L2 + 1/4L5 + 1/4L4} generates

[T3(g)f] (, q, t, u)

I u dl_bu,
t(au-crl)(3.17)

(a crl/u)-f au c(q )’ au c(rl )’
au crl

The triplet {Ls, -L, 1, 1/2L2 + 1/4L5 + 1/4L4} generates the action

[T(g)f] (. ,. t. u)

(3.18)
=(a + c/t)_y.[ at + c

u(a + c/t) ]d + bt’
q(a + c/t)- c/t,

d + bt’

and {L9,-Llo, 1/2L 2 + 1/4L + 1/4L} generates

[T(g)f] (. n. t. u)

(3.19)
(a + c/u)-f (a + c/u)- tic/u,

d +ri bu’ aud ++buj
Finally, {L,3, L12, 1/2L 1/2L4} generates

(.o t, u) =fl_ au ct dt bu ’au ct’dt b

Operators (3.15)-(3.20) generate the group action of SL(4,
As usual we can determine symmetry adapted solutions of p(lf 0 by re-

quiring that f be invariant under various one-parameter subgroups of the complete
symmetry group. The most important example is the system

plf 0 L4f ( y)f, LsT (fl
(3.21)

L2f (/ + a/2 + fl/2)f,
whose solution space is spanned by

(3.22)
f2(, r/, t, u) -r/+ 2F1(0,/t + 0 + fl; +/t + a;rl/)tu

for # + a not an integer. The significance of the twelve recurrence relations (3.12),
(3.13) when applied to these special solutions is revealing. The relations correspond
exactly to the twelve differential recurrence relations which raise and lower the
parameters a, b, c of 2Fl(a, b c; z).

Remark. If the parameters a, b, c in the hypergeometric equation

(3.23) z(1 z) d2f df abf 0+[c-(a+b+ 1)z]z
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are replaced by qc3q, rcr, scs as in the Euler-Darboux equation, then the resulting
partial differential equation is equivalent to p(1)f 0. In this sense the "natural"
symmetry group of the hypergeometric equation is SL(4, ff). Past group-theoretic
treatments of the 2F1 have used only SL(2, g) symmetry. Use of the full invariance
group leads to a variety of new identities via Weisner’s method. In this paper we
have expressed our results in terms of the Euler-Darboux equation. For the
purpose of applying Weisner’s method and SL(4, ff) symmetry to derive identities
for the 2F1 it is more convenient to start with (3.23). Except for a single example,
this study will be undertaken in another publication. Here we present some
properties of the 2F1 which follow immediately from equations (3.15)-(3.20).

From (2.9), (3.15) and (3.22),

(3.24)
[Tl(eo)f](, r/, t, u) h

(-1)u-u--z-2Fl(-p, fl; p o;z-1)tu,
Here, h is a solution of

P(1)h 0,

(3.25)
L4h (o 1/2)h, Lsh (fl 1/2)h,

L2h -p

that is, e and fl are unchanged while p changes to -p e ft. Since fl, f2 form
a basis for the solutions of (3.25) there must exist constants cl, c2 such that

(3.26)(- z)- 2F1(-#, fl; 1 # ; z-1)
C 2Fl(ll-+-o-+- fl, fl;1 + p + fl;z)+ cz(-Z)-U-zFl(a, -p; 1 p- fl;z).

The constants are easily computed"

(3.27) c2
r(1 a)r(/ + )

F(fl)F(1 )
c( )c(- -/)

Cl F(--p)r(1 p fl)’

where F(e) is the gamma function [9, vol. I, p. 108]. Similarly, evaluation of
T(eo)f shows that 2F(-t, fl; 1-p- e; 1- z) is a linear combination of
2F1(-/, fl; e + fl; z) and z-’-+ 2F1( 1 p 0 fl, 1 e; 2 e fl; z).

The function

[T(eo)A](, , t, u).= h

(3.28) z )t,ul_u_,_tu(1 z)U2fl -,fl; 1 p ; z
Z-- 1

is a solution of (3.21) with a , fl p fl, p p. Furthermore, h is
analytic in z at z 0. Therefore, h cfl and setting z 0 we see that c l"

(3.29) z)(1 z)"2F -#,fl; 1 p ;z 1
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This is one of the transformation formulas for the hypergeometric functions [9].
Similarly, Tz(eo)fl leads to the transformation formula

(3.30) (1 z)- a 2F1 z)z--1
2FI(1 ,fl; 1 /2 0;z)

and Ts(eo)T2(eo)fl leads to

(3.31)
(1 z)+a-x 2F1(-/2, fl; -/2 cz;z)

2Fx(1 , 1 -/2 fl; 1 -/2 ;z).

Combining these results we can obtain Kummer’s 24 solutions of the hyper-
geometric equation 9, vol. I, p. 105].

There are also non-Lie symmetries of the equation P)f 0. For example,
the transformation formula (3.31) suggests the symmetry transformation

tu ,(3.32) [Sf](, tl, t, u)
rl u

which can easily be verified directly. The action of S on fl leads to an identity
equivalent to (3.31). If f f,at’u, application of S yields

(3.33)

This transformation appears not to be a direct consequence of SL(4, g;) symmetry.
In conclusion we present an example of the use of Weisner’s method and

SL(4, ) symmetry to obtain generating functions for the 2F1 which are not
consequences of SL(2, (2) symmetry. (A systematic derivation of possible generating
functions will be carried out in another publication.) We follow the method
described in 1 and [11]. Let f(,rl, t,u) be a solution of the simultaneous
equations

(3.34)
(L2 1/2L4 Ls)f (7 + 1)f, (L2 + 1/2L, 1/2L)f pf,

p(1)f O, (L,o + L15)f O,

which is analytic at r/= 0. The first two equations imply

and the third implies

h=k tt-1
Substituting these results into P)f 0 we find

(3.35) f=(1 -z)2F,
2

2

4zw5’ 1-Y.l_p; tOu-
2 (1 z)2

z u/t,w rl
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unique to within a multiplicative constant. Since f can be expanded in a power
series in z, (3.21) and the methods of [11] imply

-4zw7 7"l-p;(1 Z)72F1
2 ’ (i 2]

(3.36)

c,,z".F(-n,n 7;1 p;w), Izl < 1.
n=0

Setting w 0 in (3.35) we find

(Another group-theoretic derivation of (3.36) is given in [11] .) We can obtain more
identities by applying the group operators of SL(4, ) to f and expanding the
resulting function as a series in the functions f. Similar methods applied to the
equation Qf 0 enable one to derive generating functions for certain sub-
classes of the 2F via S0(5, ) symmetry.

Acknowledgment. The author wishes to thank the referees for several helpful
suggestions.
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CAPACITY AND THE NONLINEAR NAVIER-STOKES EQUATIONS*

VICTOR L. SHAPIRO’

Abstract. A classical result concerning capacity theory and removable sets for harmonic functions
of finite energy is extended to solutions of the nonlinear Navier-Stokes equations. The theory of
multiple trigonometric series is used in proving the basic lemma, and a new theorem concerning capacity
theory and removable sets for first order systems is also established.

1. Introduction. Let f be a bounded domain in Euclidean N-space, EN,
N _>_ 2, and let f (fl, "’", fs) be a fixed vector in Ll(f). Also let u (u, us)
and p represent respectively a vector in W2() and a function in L2(f) (where in
W(f) the .j corresponds to the number of derivatives).

We shall deal for the most part in this paper with the nonlinear stationary
Navier-Stokes equations I4, p. 115],

(1.1)
vAui UjUi/Xj OP/Xi -+- fi O,

CU/CX O,

i=l,...,N,

where v is a constant. (In 5, we deal with the nonlinear nonstationary Navier-
Stokes equation.)

From a classical point of view the system (1.1) is equivalent to the following
system"

vAui [UiUj]/Xj c3P/Xi nt- fi O,

CUj/OXj O.

i=I,..-,N,

Consequently, and in view of the fact that u is in W(ff) we shall say (u, p) is a
distribution solution of (1.1) in fl, an open subset offL if the following holds"

(1.2)
[vuiA4) -t- uiujO4)/g3x q- pc3dp/gqx -Jr- 4)fi] dx O, i- 1,...,N,

[usO4o/Oxs] dx 0 for all 0 in C(’-’l).

By capacity in this paper we shall mean ordinary capacity. In particular, if
Z is a relatively closed set in f,, we shall say Z is of capacity zero (or sometimes
of ordinary capacity zero in Es) if

z ;z Ix yl 2-N dla(X) dla(y) + c for N>=3,

zfz log Ix Yl- dla(X) dla(y) + oo for N 2

Received by the editors December 28, 1971.- Department of Mathematics, University of California, Riverside, California 92502. This research
was sponsored in part by the Air Force Office of Scientific Research, Office of Aerospace Research,
United States Air Force, under Grant AFOSR 71-2046.
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for all nonnegative Borel measures in f2 having their support in Z with/4Z) 1.
We shall say (u, p) is in class e’(fZ) if u and p are as described above, that is,

ui is in W(f) for 1, ..., N and p is in L2(fZ).
We shall say a relatively closed set Z is a removable set for the nonlinear

stationary Navier-Stokes equations with respect to the class ’(f2) if the following
holds:

If (u, p) in /(f) is a distribution solution of (1.1) in f) Z, then (u, p) is a
distribution solution of (1.1) in .

Motivated somewhat by [2] (which was in turn motivated by [3]), by [1],
and by [6], we intend to establish the following result.

THEOREM 1. If Z f is a relatively closed set of capacity zero, then with
respect to the class /(f), Z is a removable set for the nonlinear stationary Navier-
Stokes equations.

With H(f) designating the subclass of vectors in W(fZ) defined in 4, p. 115],
we shall obtain as a corollary to Theorem the following result.

COROLLARY 1. Let Z f be a relatively closed set of capacity zero. Also let
u be in H(f), p be in Lz(f), and f satisfy a H61der condition in f. Suppose that
(u, p) is a classical solution of (1.1) in f Z. Then (u, p) is a classical solution of(1.1)
in f for N 2or3.

To be quite explicit, when we say (u, p) is a classical solution of (1.1) in f21, an
open subset of fZ, we mean that ui and p are respectively in C2(f21) and C(fZ) for

1, ..., N and satisfy (1.1) at each point x in f.
We shall say that f is a cylindrical domain in EN if there exists a domain

in EN_ and an open interval (a, b) of the real line such that f fZ* x (a, b).
Similarly, we shall say Z is a cylindrical set in Eu if there exists a set Z* in Eu_
such that Z Z* x (a, b).

If f is the identically zero vector, we shall refer to (1.1) as the nonlinear
stationary Navier-Stokes equations with zero external force.

As a corollary to Theorem and [1, p. 88], we shall also obtain the following
result.

COROLLARY 2. Let f be a bounded cylindrical domain in Eu, N >= 3, and let Z
be a relatively closed, cylindrical set contained in f. Then a necessary and sufficient
condition that Z be a removable set with respect to the class sg’(f) for the nonlinear
stationary Navier-Stokes equation with zero external force is that Z be of capacity
zero.

We shall deal with the analogue of Theorem for the nonlinear nonstationary
Navier-Stokes equations in 5.

We shall use the standard summation conventions in 1, 2, 4 and 5. In 3,
which deals with multiple trigonometric series, we shall not use the convention
when dealing with Fourier coefficients.

2. Proof ofTheorem 1, Corollary 1 and Corollary 2. We first state Theorem A.
THEOREM A. Let Z f be a relatively closed set of capacity zero. Let b(x),

vq(x), and F(x) be respectively functions in C(f), locally in L2(fZ), and locally in
L(f) for j 1, ..., N and q 1, ..., Q. Suppose that (v, ..., vo. is a distribution
solution of
(2.1) bt?vq/t?x + F 0

in f Z. Then (v, vo. is a distribution solution of (2.1) in f.
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To be quite explicit, when we say (v l, ".., vQ) is a distribution solution of
(2.1) in fl, an open subset of f, we mean

(2.2) fn [Vqc(b’J4)/cx2 F4] dx 0 for all q5 in C(fl).

Using multiple trigonometric series, we shall prove Theorem A in 4. Theorem
A is strongly motivated by our previous theorem [6, p. 604].

We now deduce Theorem from Theorem A.
First of all we observe from the fact that ui is in W(f) for 1, ..., N that

both of the following facts hold:

(2.3)

and

f [Ui(/Xj] dx fta [cgui/cxi] dx

for q5 in C(f) and i,j 1,..., N,

(2.4) cg(uiuj)/cgxj is in LI(

and furthermore

uujc94/cgxj] dx -fa [ccg(uuj)/cgxj] dx

Consequently on setting

for b in C;(f) and 1,..., N.

(2.5) vj

we see from (1.2), (2.3), (2.4), and the hypothesis of the theorem that for fixed i,

(v], ..., v, p) is a distribution solution of

(2.6) vc3vj/C3Xj 63P/CXi + [fi O(tliUj)/OXj] 0

and p arein f Z. But from (2.5) and the hypothesis of Theorem 1, we see that
in L2(f and If/- c(uiu)/cxfl is in L(f). We consequently conclude first from
Theorem A that (v, ..., vn, p) is a distribution solution of (2.6) in f; and in turn
from this last fact, (2.3), and (2.4) that

Jn [vuiAdP + uiujc34)/c3xJ + PC3Ck/cxi + ckfi] dx 0
(2.7)

for all 4 in C(f) and 1,...,N.

Next we obtain immediately from Theorem A that since (u1,’", uN) is a
distribution solution of Ouj/cxj 0 in f- Z, it is a distribution solution of
c3u/cxj 0 in f. Consequently,

(2.8) f uc3c/)/cx 0 for all q5 in C(f).
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But (2.7) and (2.8) together give Theorem 1, and the proof ofTheorem is complete.
To establish Corollary 1, we observe from (1.1), (1.1’), and (1.2) that (u, p) is

a distribution solution of (1.1) in Z. Consequently, we obtain from Theorem 1
that (2.7) and (2.8) hold.

Next, let (b, ..., b), where b is in C(), j 1, ..., N, and where

(2.9) Ocks/xs O.

Observing from (2.9)that npOc/Oxdx- 0 and also that nuAckdx
fn [Oui/Oxs Oci/Oxs] dx, we conclude from (2.7) and (2.9) that

(2.10) fa [vc3ui/c3xJ Oci/Oxs uiusOdPi/Oxs] dx fn ifi dx.

We consequently conclude from (2.10) and [4, p. 115] that u is a generalized
solution of (1.1) in f). But then it follows from [4, Theorem 6, p. 131] that ui can be
defined at the points ofZ so that it is in C2(f) for 1, ..., N. Now Z is of capacity
zero. Since c3p/cxi is in C(f Z), it then follows from (1.1) that c3p/c3xi can be
defined at the points of Z so that it is a continuous function in f for 1, ..., N.
But this implies that p can be defined at the points of Z so that it is in C(f).
Consequently (u, p) is a classical solution of (1.1) in f, and the proof of Corollary
is complete.

The sufficient condition of Corollary 2 follows immediately from Theorem 1.
We establish the necessary condition of Corollary by showing that it is a corollary
to [1, p. 88]. To do this, we suppose that )* (a, b) and Z Z* (a, b),
where (a, b) is a finite open interval and Z* is a relatively closed subset of the
bounded (N- 1)-domain *. Also we suppose that Z is of positive ordinary
capacity in Eu. Then, as is well known, this implies that Z* is of positive ordinary
capacity in Eu_ . Consequently, there exists a subset of Z*, call it Z]’, which is
compact in *, of positive ordinary capacity in Eu_ , and of (N 1)-dimensional
Lebesgue measure zero. It follows from [1, p. 88] that there exists a function
vu(x,..., xu_ ) with the following properties" vu is in W2(*), v is harmonic in

* Z*, vu is not a distribution solution of Laplace’s equation in *, that is,
there exists a ff in C(f*) such that J’n* vuAff dx, dxn_ O.

We define the vector u- (u,..., us) in f as follows" uj- 0 for j- 1,
.., N 1, un(xx,..., xu) vn(xx,..., xu_). Also we set p 0 in f. Then it

follows that (u, p) is in 5’(f) and in C(f- Z). Furthermore, with Z- Z’
(a, b), it is easy to see that with f- 0 in (1.1), (u, p) is a classical solution of

(1.1) in f- Z. Consequently, (u, p) is a distribution solution in f- Z of the
nonlinear Navier-Stokes equations with zero external force. If (u, p) were also a
distribution solution in of this set of equations, it would follow in particular
that us(x) would be a distribution solution of Laplace’s equation in . But this
would imply from Weyl’s lemma and the fact that us is already harmonic in

Z that vu could be defined in Z so that it would be harmonic in fl*. But
since Z is of (N- 1)-dimensional Lebesgue measure zero, this in turn implies
that vu was originally a distribution solution of Laplace’s equation in *, which
is a contradiction. The necessary condition of Corollary 2 is consequently
established.
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3. Fundamental lemmas. In order to establish Theorem A, we shall need
some results in multiple trigonometric series.

We shall use the following notation" TN {x’--n < xj _<_ n, j 1,..., N};
m will designate an integral lattice point; for a function U in LI(TN), we shall set

(3.1) O(m) (2re)- | U(x) e-i(m,x) dx.
"N

Also (x, y) will designate the usual inner product xlyl + + xy, and (x, x) /2
will be designated by Ixl,

Given U in LI(T), we shall say U is extended by periodicity to all of EN if
U is defined in all of E and is periodic of period 2re in each variable.

We first state some well-known facts in the theory of multiple trigonometric
series. (In this section we shall continue to use the summation convention only
when dealing with partial derivatives. In particular, we shall not use it when
dealing with Fourier coefficients. The situation will be clear from the context.)

LEMMA 1. Let. U be in LI(Tv) and set

(3.2) A(U,x, t)= l(m)eilm’x)-lmlt for > O.

Then f w,, IA(U, x, t) U(x)I dx 0 as O.
For a proof of Lemma 1, we refer the reader to [7, p. 76].
Next, we designate the open N-ball with center x and radius r by B(x, r) and

state the following lemma.
LEMMA 2. Let U be in L(Tu) and extended by periodicity to all of Eu. Define

A(U, x, t) for x in EN and > 0 by (3.2). Suppose that U is equal almost everywhere
in B(x, to) to a function which is harmonic in the ball B(x, to) where 0 < ro < 1.
Then limt_ o AA(U, x, t) 0 uniformly on compact subsets ofB(x, r).

For a proof of Lemma 2, in two dimensions, we refer the reader to [6, Lemma 5,
p. 609]. A similar proof prevails for N >_ 3.

Next, we establish the following fact.
LEMMA 3. There are functions 2j(x),.j 1,..., N, which are in C(E),

periodic of period 2re in each variable, and such that c32j(x)/c3xj for x in B(O, 1).
To establish Lemma 3, choose a function 2(x) which is in C[B(0, 2)], equal

to one in B(0, 1), equal toO in B(0, 2) B(0, 3/2), and is such thatfBo,2 2(x) dx O.
Set X(x) 0 in T B(0, 2) and continue 2(x) to all of E by periodicity of period
2ft. Clearly 2(x) is in C(E) and has an absolutely convergent Fourier series with
,(0) 0. In particular,

(3.3) 2(x) i(m)ei(m’x),
m:/:O

where

(3.4)

(3.5)

Ii(m)llml< for k-- 1,2,-..
m0

For x in EN, define 2(x) as follows for j 1,..., N"

2j(x) imj.(m) ei("’x)/Iml 2
m4:O
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From (3.4) and (3.5), it follows that 2j(x) is in C(EN) and periodic.
Also it follows from (3.3), (3.4) and (3.5) that

(3.6) c92j(x)/Oxj
m:# O

But 2(x) in B(0, 1), and Lemma 3 is established.
Next, for j 1,..., N we introduce the functions Hj(x) defined in

EN as follows

(3.7) Hj(x) lim
O :/: O

From [7, p. 72] we obtain that the following properties prevail:

Hi(x) is in LI(Tu) and

(3.8) fflj(m) imj/Iml 2 for m - 0,

/(0) 0.

In a similar manner, we introduce the function H(x) defined in Eu as follows:

(3.9) H(x) lim ei(m’x)-Iml’/Iml 2.
t0 m:/:0

From [7, p. 72], we also obtain that the following properties prevail:

H(x) is in LI(Tu) and

(3.10) /(m) Im1-2 for m : 0,

/(o) o.

Using (3.7) and (3.8), we next establish the following lemma.
LEMMA 4. Let Uj, j 1,..., N, and V be functions in LI(Tu) and extended by

periodicity to all of Ev. For > O, define A(Uj, x, t) and A(V, x, t) in a manner
analogous to (3.2). Suppose (U 1,..., Uu) is a distribution solution in B(x, to),
0 < ro < 1, of the equation c3Uj/c3xj + V O. Then

lim [c3A(Uj, x, t)/c3xj + A(V, x, t)] 0
tO

uniformly on compact subsets of B(x, ro).
To establish Lemma 4, we first observe that with no loss in generality we can

suppose that x 0. Next we set

V’(x) V(x)- 17(0) and U)(x)(3.11)
for j --1, N,

where the functions 2j(x) are defined in Lemma 3. It follows from Lemma 3 and
the hypothesis of Lemma 4 that

(3.12) (U],..., Uv) is distributionsolutionof OU)/cxj/ V’-O in B(O,ro).

Now from Lemma 3, we have that

(3.13) 17"(0) lim cA(2j, x, t)/Oxj l?(0) uniformly in B(0, 1).
t-0
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We conclude from (3.11) and (3.13) that the lemma will be established if we
show

lim [cA(Uj, x, t)/cxj + A(V’, x, t)] 0
(3.14) t-o

uniformly on compact subsets of B(0, to).
To establish (3.14), let b be a function in C[B(0, to)]. Extend b to all of TN

by defining it to be in zero in Ts B(0, ro). Then and all its partial derivatives
have absolutely convergent Fourier series, and it follows from (3.11) and (3.12)
that

tmjUj(m) + ’(m 6( m) O.
m0 j=l

Next, using (3.7), (3.8), (3.9) and (3.10) we define U(x), a function in L(T),
as follows:

(3.16) U(x)= (2rt)- fr, [2_ Uj(x-y)H(y)+V’(x-y)H(y)ldy.
We obtain from (3.8), (3.10) and (3.16) that

(3.17)

t:(o) o.

for m0,

In particular from (3.15) and (3.17), we have that

(3.18) (J(m)lml2(-m) O.

We conclude from (3.18) that frN U(x)Aqb(x)dx 0. But the support of b is
contained in B(0, ro). Consequently,

(3.19) | U(x)Ack(x) dx O.
(O,ro)

Since 4) was an arbitrary function in C;[B(0, 1)], we conclude from Weyl’s
lemma that U(x) is equal almost everywhere in B(x, to) to a function which is
harmonic in B(0, to). But then it follows from Lemma 2 that

(3.20) lim AA(U,x, t) 0 uniformly on compact subsets of B(0, ro).
t--*O

From (3.11) and (3.17), we see that

(3.21) AA(U, x, t) cA(U), x, t)/c?x + A(V’, x, t).

Relations (3.20) and (3.21) together give (3.14), and the proof of the lemma is
complete.

LFMMA 5. Let V be a function in LI[B(x,to)I, 0<ro< 1, and let Uj,
j 1,..., N, be functions in Lz[B(x, ro)]. Also, let Z be a closed set of capacity
zero contained in the interior of B(x, ro). Suppose that U, UN and V vanish
outside of a compact subset of B(x, ro). Also, suppose (U1, ..., Uu) is a distribution
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solution in B(x, ro) Z of the equation

(3.22) c3Uj/c3xj + V O.

Then (U1, UN) is a distribution solution of (3.20) in B(x, to).
With no loss in generality, we can suppose from the start that x 0. Next,

we extend V and U,..., UN to all of TN by defining these (N + 1)-functions to
be zero in TN B(0, ro). We then extend them by periodicity of period 2n in each
variable to all of

Next, we set for > 0,

A(Uj, x, t) (Jj(m) ei(m’x)-lml’

(3.23) and

A(V, x, t) ’(m) ei(m’x)- Imlt,

and observe from Lemma 4 and the Heine-Borel theorem that the following fact
holds"

If B is an open set with Z=B=B(0,1), then

(3.24) lim [c3A(uj, x, t)/c3xj + A(V, x, t)] 0
t0

uniformly in TN B.

Next, with H(x) defined by (3.9), we see from [7, p. 72] that we can find a
positive constant r/N such that

(3.25) H(x) + r/N >__ for x in

We define G(x) to be

(3.26) G(x) H(x) + IN for x in EN

and observe from [7, p. 72] that G has the following properties"

(3.27) (i) G is in C[EN m {2tom}I,

(ii) AG(x)= in EN- {2rtm},

(iii) there are positive constants aN and fin such that for x in TN 0,

IG(x) ulxl -m-)l -<fi for N >__ 3

and

IG(x)-N log Ixl-Xl flu for N 2.

In particular, it follows from (3.27) that a closed set Z’ B(0, 1) is of capacity
zero if and only if

fz, fz, G(x-y)du(x)d(y)=
for all nonnegative Borel measures # having their support in Z’ with #(Z’) 1.
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Let D be a bounded domain, and let D designate its closure. Following
[5, p. 24], we say D satisfies the condition of Poincar6 if each point on its boundary
is the vertex of a cone of revolution whose interior lies in D. Using the techniques
in the theorem given in [5, p. 33], it follows from (3.25), (3.26) and (3.27) that the
following fact holds"

(3.28) Let Rk c B(0, 1) be the union of a finite number of closed domains each
satisfying the condition of Poincar6. Then there exists a unique non-
negative Borel measure /k having its support in R with /(Rk)= such
that Wk(x [.Rk G(x y)dlk(y) is a continuous periodic function in EN
and W(x) takes a constant value in Rk. This constant value is equal to

[. Rk [. R G(x y) dltk(x d#k(y)

Now let Z be the set of capacity zero in the hypothesis of the lemma. Then,
using (3.28) and standard capacity theory [5, pp. 50-52], it follows that there
exists a sequence of closed sets {Rk}

_
with the following properties"

(3.29) Each Rk is the union of a finite number of closed domains each of which
satisfies the condition of Poincar6.

(3.30) Each Rk is contained in the interior of B(0, 1).

(3.31) Rk Rk+l for k= 1,2,.-..

(3.32) Z is in the interior of each

(3.33) If x is in TN Z, there is an Rk such that x is not in

(3.34) For each Rk, (3.28) holds. In particular, W(x)/I(lk) for x in

(3.35) lim l(/k) + .
kooo

(3.36) 0 <= W(x)/I(#k) =< for x in Tu and all k.

(3.37) lira W(x)/I(lk) 0 for x in Tu Z.

Next, we set/k(m) (2rt)-u.r,e -i(m’x) d#k(x) and observe from (3.26) that

(3.38) ((m)., Iml-2 for m 4= 0,

G(0) .
It then follows from (3.28) that

l,(m) ((m)fik(m)(2rc)(3.39)

and that

(3.40) Id(m)l I/(m)l 2 I(#)/(2zc)2u

From (3.23), (3.39) and (3.40), we next observe from Schwarz’s inequality
that for > 0 and fixed m,

(2re) -u f7 cA(Us,x, t)/cxj W(x)e -i(’’x) dx
"N

(cont.)
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(3.41) Ij=lmimjOj(m)l(m-
jl"= OJ(m)12lmj[2 d(m m)[ [I(pk)] 1/2

To establish the lemma, it is sucient to show that

(3.42)
N

imjOj(m) f’(m).
j=l

For suppose that (3.42) is established. Then it follows from (3.23) that

(3.43) c3A(Uj, x, t)/c3x A(V, x, t) for > 0.

Next, we have from Lemma that as 0,

(3.44)

IA(V,x, t) Vl dx O,

fr IA(Uj, x, t) UI dx O, .j-- 1,...,N.

Let b be a function C[B(0, to) Then from (3.43) and (3.44) we have

fB(O,ro) dp(x) V(x) dx lim | dp(x)A(V, x, t) dx
t-’O d B(O,ro)

lim | dp(x)c3A(Uj, x, t)/c3xj dx
t-,O d B(O,ro)

tO (O,ro)
c3dp/c3xj A(Uj, x, t) dx

fB c4)/cxj U2(x) dx,
(O,ro)

and the lemma is established.
It remains to show that (3.42) holds. Let m be a fixed lattice point. We shall

show that (3.42) holds with m replaced by m.
Let e > 0 be given. Since Uj is in LZ(TN) for j 1,..., N, it follows from

(3.38) that the last sum on the right in (3.41) is finite. Consequently, it follows from
(3.35) and (3.41) that there exists a kl > 0 such that

(3.45) (2r)-UfT cgA(Uj,x,t)/c3x W(x)e-’(m’)dxl/I[#]
__<e for kk and t>0.
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Since Z is of capacity zero and consequently of N-dimensional Lebesgue
measure zero, it follows from (3.36) and (3.37) that there exists k > 0 such that

(3.46) (2z)-Nf V(x)l W(x)l dx/I[#] < e for k >_ k2.
TN

Now set

(3.47) k3 max (kl, k2).

Then it follows from (3.36), (3.44), (3.46) that there exists > 0 such that

(3.48)

(2re) -N fw IA(V, x, t)l II/V3(x)l dx/I[#k3

=< (2rt)-ufr IA(V, x, t) V(x)l dx + e

=<2e for O<t<_t.

Next, we observe from (3.24), (3.29), (3.30), (3.32) and (3.44) that there exists
2 > 0 such that

(3.49) | Ic3A(Uj, x, t)/c3xj + A(V, x, t)l dx < e for 0 < t2.
.ITN-- Rk

Next we set

(3.50) 3 min (t, t2)

and observe from (3.23), (3.49), (3.34), (3.36), (3.45), (3.47), (3.48) and (3.50) that
for 0 < __< ta,

(2re)u[ im O2(m) + ’(m) e-Ira’
j=l

fr [gA(Uj, x, t)/c3xj + A(V, x, t)] 8
-i(m’x) dx

<=+lfR [c3A(Uj, x,t)/cxj+A(V,x,t)]e-i(m’X)dx
k3

<=e+ .In [cgA(Uj, x, t)/Oxj+A(V, x, t)]W3(x e -i(m’x) dxl/l[t.tk3
k3

_<2e+ fr., [cgA(Uj, x,t)/cxj+ A(V,x,t)]l,V3(x)e-itm’X)dxl/l[#k3
__< [2 + (2n)n]e + fT A(V, x, t)W(x)e-i(m’x) dx /I[[.tk3
_-< E2 + (2z)u]8 + (2rc)N2e.
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We conclude that

(3.51) imy Oj(m) + 17"(m) =< 4 elmIt8 for 0 < =< 3
j=l

Since e was an arbitrary positive number, we obtain immediately from (3.51) that

=1 imy Uj(m) (m). Consequently, (3.42)is established, and the proof of
the lemma is complete.

4. Proof of Theorem A. Letting fl designate an open subset of f (and
returning to the summation convention), we first observe that (v l, ..., vQ) is a
distribution solution of (2.1) in f21 if and only if (v, ..., vQ) is a distribution
solution in f of

(4.1) (bvq)/xj + F’= O, where F’= F- vq63b/xj.
Next we observe that bvq is locally in L2(y) and that F vq63b/63xj is locally

in L(Y). We conclude that Theorem A will be established once we establish the
following theorem.

THFORFM A’. Let Z f be a relatively closed set of capacity zero. Let u(x)
be locally in L2(D) for j 1,..., N and let F(x) be locally in L(f). Suppose that
(u, uN) is a distribution solution of
(4.2) c3uj/c3xj + F 0

in f Z. Then (ux, uN) is a distribution solution of (4.2) in f.
To establish Theorem A’, we see, using the notion of partitions of unity, that

from the start we can suppose that

(4.3) f=B(0, ro), where 0<ro< 1.

Next, let q5 be a function in C[B(0, to)]. In particular, suppose

(4.4) qS(x)=0 for B(0, ro)-B(0, r4), where 0<r4<ro.

Theorem A’ will be established if we show

(4.5) fB(o,ro) [ujc3qb/c3xj F4)] ax o.

To establish (4.5), we introduce r, r2, and r3 such that

(4.6) 0 < r4 < r3 < r2 < r < r0 < 1,

and choose a function 2(x) in C[B(0, ro) satisfying the following conditions:

j in B(0, r3)
(4.7) 2(x)

0 in B(0, ro) B(0, r2).

(4.8)

Next, in B(0, ro) we define the functions Uj and V as follows:

U 2u,
V 2F u82/cgxj.
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Also, we define the set

(4.9) Z’= Z CI B(0, r),

where B(0, rl) designates the closure of B(O, rl), and consider the following
equation"

(4.10) cgU;/cx; + V O.

We next establish the following"

(4.11) (U,..., UN) is a distribution solution of(4.10) in B(O, ro) Z.

To see this fact, let be a function in C[B(0, ro) Z]. Then 2 is a function
in C[B(0, ro) Z], and from (4.2) and the hypothesis of Theorem A’ we obtain

0 [u;8(2)/Sx;- 2F] dx
(0,to)

[2u;c/c?x;- (2F- u;82/cx;)] dx
(O,ro)

[U2c{/Sx2 V{] dx.
(O,ro)

Consequently (4.11) is established.
Next, we see that

(4.12) (U1,..., UN) is a distribution solution of (4.10) in B(0, ro) Z’.

To establish (4.12), select a function in C[B(0, r0) which has the following
properties’

in B(0, r2),
(4.13) ,(x)

0 in B(0, ro) B(0, (r + r2)/2),

and let { be a function in C[B(0, ro)- Z’]. Then it follows immediately from
(4.9) and (4.13) that { is a function in C;[B(0, r0) Z]. Consequently, we have
from (4.11) that

(4.14) [U;c()/cx V] dx O.
(0,to)

But from (4.5), (4.7), (4.8) and (4.13) we have

U;(x)()(x)/x- V(x)(x)(x)
(4.15)

Uj(x)c(x)/cxj V(x)(x) almost everywhere in B(0, ro).

But then from (4.14) and (4.15) we have

fn V{] dx O,[U;/x;
(O,ro)

and (4.12) is established.
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Next, we observe from (4.5) and (4.9) that Z’ is a closed set of capacity zero
contained in the interior of B(O, ro). Also, we see from (4.7) and (4.8) that
(U1, "’, Us) and V meet the conditions in the hypothesis of Lemma 5. We con-
sequently conclude from Lemma 5 that

(4.16) (U1, ..., Us) is a distribution solution of (4.10) in B(0, to).

Letting 4) be the function in C[B(0, ro)] described in (4.4) and (4.5), we have
from (4.16) that

(4.17) f [Uc3dp/c3x Vc/)] dx O.
(O,ro)

But from (4.4), (4.6), (4.7) and (4.8), we obtain

V(x),94(x)/,gx V(x)4,(x)
(4.18)

u8ck(x)/Sx F(x)ck(x) almost everywhere in B(0, to).

Relations (4.17) and (4.18) together give us (4.5), and the proof of Theorem A’
is complete.

5. The nonlinear nonstationary Navier-Stokes equation. In this section, fl
will be a bounded domain in E+ 1, where we now write for x + 1. Throughout
this section we shall assume fj is in LI(fl), j 1, ..., N.

We shall say (u, p) is in the class (fl), where u (u l, ..., u) if the following
holds"

p and u are in L2() for j 1, ..., N. Also u has first order distribution
derivatives in f which are such that c3u/Sx is in L2() for k 1, ..., N
and c3uffOt is in L(f).
Classically the nonlinear nonstationary Navier-Stokes equations are given

by

(5.1)
8u/dt- vAu + uOu/Sx + 8p/tx f O,

8uflOx O,

i--1,...,N,

where v is a constant (see [4, p. 141]).
As a consequence, we shall say (u, p) in N’(f) is a distribution solution of (5.1)

in D, an open subset of f, if the following holds"

[uc3dp/c3t + vuA + + p8ck/Sx + cf] dxUiUj/Xj

(5.2) =0 for i= 1,...,N,

uj[Ock/Oxj] dx 0 for all b in C(fl).

We shall say a relatively closed set Z is a removable set for the non-
linear nonstationary Navier-Stokes equations with respect to the class M(f) if
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the following holds:
If (u, p) in (f) is a distribution solution of (5.1) in f- Z, then (u, p) is a

distribution solution of (5.1) in f.
The following theorem holds.
THEOREM 2. If Z is a relatively closed set of capacity zero, then with

respect to the class (), Z is a removable set for the nonlinear nonstationary
NaPier-Stokes equations.

The proof of Theorem 2 is very similar to that ofTheorem namely, it follows
from Theorem A. We leave the details of the proof to the reader.
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SINGULAR PERTURBATION OF AN IMPROPERLY
POSED PROBLEM*

L. E. ADELSON-

Abstract. In this paper we compare the solution of an improperly posed Cauchy problem (assumed
to exist) for an elliptic operator having a small coefficient multiplying the highest order derivatives
with the solution of the appropriately defined Cauchy problem for the elliptic operator resulting from
setting equal to zero. We prove that if the two solutions belong to the appropriate spaces of functions,
then their difference in the ’2-norm over some appropriately defined subdomain is of order to some
positive power.

1. Introduction. There has been much work done in recent years on singular
perturbation for properly posed problems, both in ordinary and partial differential
equations. Nearly all of the published papers on this subject investigate the struc-
ture of boundary layers and make use of asymptotic expansions in establishing
convergence (in some norm) of the solution of the perturbed problem with a small
parameter to the solution of the unperturbed problem as the parameter goes to
zero. For work in this area see for instance [10], [18]-[22].

The techniques used in studying singular perturbations for well-posed
problems do not carry over to improperly posed problems. In fact such problems
have been largely ignored in the literature. One result in this area is due to Payne
and Sather [14]. They studied a specific case in which a Cauchy problem for an
elliptic equation reduced to an initial boundary value problem for the backward
heat equation and used a convexity argument to obtain the desired results. As-
suming the existence of solutions for the family of "perturbed" problems, these
authors have shown that one obtains convergence in 52 of the perturbed solution
to the unperturbed one. Their result is, however, somewhat impractical precisely
because of the assumption of existence of solutions for all values of the parameter
less than some fixed number. Their results, however, do prove that one may
compare the solution of the perturbed problem for a fixed value of the parameter
with the solution of the unperturbed problem (parameter zero).

The question of existence of solutions for all values of e (the small parameter)
in the interval 0 __< e <_ e0 presents no difficulty in most reasonable well-posed
problems for partial differential equations or ordinary differential equations.
Thus, in those cases one may actually allow e to go to zero and prove that the
perturbed solution converges to the unperturbed solution in some suitable norm.

On the other hand, in improperly posed problems for given data the solution
may well fail to exist for some or even all values of e in the interval. This difficulty
can be at least partially overcome by allowing for small variations in the data
over the range of values of e under consideration.

These existence questions are extremely complicated and we do not attempt
to answer them in this paper. Our main goal will be to compare the solution of
an improperly posed Cauchy problem (assumed to exist) for an elliptic operator
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with a small coefficient e multiplying the highest order derivatives with the
solution of the appropriately defined Cauchy problem for the elliptic operator
resulting from setting e equal to zero.

One such perturbed problem we consider is

ebLv + v u,

Lu E(x, e,, v, u),

in an N-dimensional domain D. Here b is a constant which may be positive or
negative. On E which is a piece of the boundary of D we specify Cauchy data for
v, grad v, Lv, and grad (Lv). We require that L be a uniformly elliptic operator
and that E satisfy a uniform Lipschitz condition in its last three arguments. We
also pose the corresponding unperturbed problem

Lw E(x, O, w, w)

in D with w and grad w specified on E. Of course, there are certain compatibility
conditions the data must satisfy.

It is well known (see, e.g., Hadamard [5]) that solutions of such improperly
posed problems even if they exist will not in general depend continuously on the
data. It has been shown, however, by John [6], Pucci [15], Laurentiev 7],
and others that if the class of admissible solutions is suitably restricted, then
solutions of the type of problem indicated above will in fact depend H61der
continuously on the data. The precise restrictions will be spelled out in the next
section.

We prove that if v and w belong to the appropriate spaces of functions, then
their difference in the 5Z-norm over some appropriately defined subdomain

D of D is of order e to some positive power depending on the sign of b and the
size of the subdomain. To achieve the result, we use the triangle inequality

v-w o<= v-u o,+ u-wlo,
and treat the two terms on the right separately. In fact we use more or less standard
techniques on the first term and logarithmic convexity arguments on the second.
This is somewhat reminiscent of the methods used by Schaefer 16] in studying
a different class of problems.

It is obvious from our results that if we were assured of existence of the solution
v (in the appropriate space) for a range of values of e satisfying 0 < e =< eo and
if in addition the corresponding solution w existed, then v would actually converge
to w in ’f’Z(D) as 3 -* O.

In this paper we also generalize our result to include the case in which we
allow the function E to depend also on grad v and grad u. This assumption essen-
tially cuts the exponent of e to half of what it is for the corresponding case without
the extra dependence.

2. Notation and statement of the problems. Let D be an N-dimensional
domain bounded by a closed surface C, and let E be that portion of C on which
Cauchy data are prescribed. The complement of E with respect to C is denoted
E’. For the purpose of this paper we shall assume Z (the closure of E) is a C 1-

surface.
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Let L denote the elliptic operator:

Iu

where we have adopted the summation convention over repeated indices and
the comma denotes partial differentiation. We also assume that the aij’s are C
functions of the space variables x (x l, "", xN).

Let the operator L be symmetric and strongly elliptic, i.e., the matrix
is symmetric and there exists a positive constant ao such that for all vectors
the inequality

N N

(2.1)
1

2_>aijij>=ao
ao i= i=

holds at every point in D.
We shall compare solutions v and w of the following set of improperly posed

Cauchy problems.
PROBLEM A.

with

e,bLv + v=u
Lu E(x, , v, u)

in D

Liv hi(x e), grad (Liv) gi(x, )

on 2;, 0, 1. (L denotes applications of L.) Here b is a constant and gi(x, e)
denotes for each a vector-valued function.

We assume that E satisfies a uniform Lipschitz condition in its last three
arguments, i.e., there exist constants 2o, 21, and 23 such that

(2.2) [E(x, , v, u)- E(x, O, f, )1 =< 2oe + 21Iv- g[ + A3lu- 1.
Furthermore, we assume that

(2.3) fo E2(0)dx <_ p2,

where E(0) E(x, 0, 0, 0) and P is a constant.
PROBLEM B.

Lw=E(x,O,w,w) in D

with

w ho(x, 0), grad w go(x, 0) on 2;.

On 2; we require the Cauchy data hi(x, ) and gi(x, e) to satisfy

(2.4) f,:h, ds <= n, flg,12 ds <= /
for known constants IIi and/i, 0, 1, independent of e. Also we assume

(2.S) Iho(x, e) ho(x, 0)1 0(e)
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Igo(x, e) go(X, 0)1 0(e).

To determine the boundary data for u and grad u, we substitute the data for
v and its derivatives into the first equation of Problem A. In this way we always
know that

and

Similarly,

and

]l/A-v Z"- fy. )1/2(u v)z ds O(e,)

grad (u v) z O(e).

u wll

grad (u w) z O(e).

We note that if instead of the boundary conditions prescribed for v we im-
posed

v ho(x, e) O(e),

grad v go(x, e) z O(e),

Lv hi(x, e) 0(1),

grad (Lv) gl(x, e)Iz 0(1),

w ho(x, O) r, O(e,),

grad w go(x, 0) . 0(e),

in addition to (2.4), (2.5) and (2.6), our results would remain unchanged. One can
construct examples where this relaxation is necessary in order that each of the
two problems A and B have a solution. As mentioned in the Introduction such a
relaxation might result in Problem A having a solution for a range of values of the
parameter e.
We now introduce a class of functions as follows" a function (p will be

said to belong to if

o
q) dx <= M2

for some prescribed constant M. In addition a function will be said to belong
to if

fo t2 dx + fo lgrad q12 dx <= M2
for some prescribed constant M. We shall be concerned with solutions v of
problem A and w of problem B which belong either to M or M. We assume
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throughout that for the particular value of e under consideration these solutions
exist and belong to the appropriate spaces. We assume further that these solutions
are sufficiently differentiable for carrying out the indicated operations. In each
case sufficient conditions can be readily found in the literature. Note that we do
not require a priori that u e M or M1.

We propose to prove that if v and w belong to M, then the difference of v
and w in the 2’2-norm for some subdomain of D is of order e to some positive
power. The power depends on the constant b and also on the size of the subdomain.

We shall not be able to compare v and w over all of D, but only over a class of
subdomains D D. We define these subdomains as follows"

Let f(x) const, define a set of (not necessarily closed) surfaces. This set is
to be so chosen that for each e satisfying

(2.7) 0<cr

the surface f(x) e intersects D and forms a closed region D, whose boundary
points consist only of points of E and points on the surface f const.

We require that f(x) have continuous second derivatives in D1. We prescribe
further that iff satisfies (2.7), then

(2.8) fl_-<7Dt D, 0<fl__<TN 1,

(2.9) ]grad fl >
(2.10) L f<=O in

(2.11) [Lf[ <= ao62d in D

where 6 and d are positive constants.
We assume that the surfaces have been so chosen that for e satisfying (2.7),

D has nonzero measure, but that Do has zero measure.
We compare the solutions v and w in the following sense. We show that

IIv wll 2D (v w)2 dx 0(t)),
,D

where 7() is a positive function of for 0 =< < 1 < 1 and 7(1) 0. Thus for
0 =< < x < our inequality will show that if e is sufficiently small, v will be
arbitrarily close to w in 52 over D.

3. Inequalities and bounds. In this section we shall introduce the mathematical
arguments and tools which are required for handling this problem and even more
complicated problems, but without the involved detailed arguments required for
these other problems. It is hoped that this will permit us to put across the ideas
more efficiently. In treating a generalization of this problem, we shall merely
have to extend the arguments of this section in various directions. The essence of
our methods for handling the indicated classes of singular perturbation will thus
be contained in this section.

3.1. Our first objective will be to show that for 0 < < the quantity
u vii zo= is of order e in general and under certain conditions is of order
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We first consider the function r(x) defined in D as

(3.1) :(x)
f(x)

1- x

in D U

in D -(D U X,),

where E, is the portion of E which lies on the boundary of D, and S will denote
the portion of the surface given by f(x) so that the entire boundary of D
is E U S,. Clearly z(x)= 0 on $1 and I(x)l =< in 1. Since f eC2(O),
I,,1 =< M3 and I,d,jI =< M4 in D for constants M3 and

Thus we have

(3.2) u-vl 2 f9(u-v)2dXK;D’r,S(u-v)2dxD

where s is a positive integer to be chosen so large that all subsequent integrals
over S vanish.

We now state and prove some lemmas which will allow us to compute the
desired results more readily.

LEMMA 3.1. If b is less than zero and v iQ1 is a solution to Problem A, then

(3.3) fo "cS(u v)2 dx OO32) nt- Re fo "cs-2(u l))2 dx

for a computable constant Ro.

Proof. From the equations of Problem A and Oreen’s identity we have

z(u v)2 dx be fo r(u v)Lv dx

(3.4) be f r(u v) ,(v u)
c3v

be
r, (u /))2

+ cgv 2

ds + be fo "r’Saij(u- v)’i(u V),j dx

ds - L’c(u v)2 dx

+ be fo z(u v)Lu dx,

where c3/tVv is the conormal derivative an(3/?x) on the boundary E Also since
we can bound the conormal derivatives in terms of the normal and tangential
derivatives, the boundary integrals in (3.4) involve data terms and are 0(e3).
Because of the boundedness of r and its derivatives we have I%v,l <= kay
and [LvSl =< k2"c 2 for computable constants kl and k2.
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Thus if we use the above bounds in (3.4) we get for a computable constant k3,

D
"CS(bl /9)2 dx 0(/33) -t- be o "cSaij(u v),i(u v),j dx

+ kae r,s-(u- v) dx + be (u- v)Lu dx.

Since b < 0 the ellipticity condition (2.1) allows us to drop the second term on the
right-hand side (R.H.S.). Since

(3.6) Lu E(x, e, v, u) E(O) + E(O),

we may use the Lipschitz condition on the last term of (3.5) to obtain

0 "cS(u- v)2dx O(e’3)-+- k3’f" fD "cs-2(tl v)2dx nt- Ibl yo ,lu- vl
(3.7)

E;oe + 6lvl + 331U- 011 dx + be fo z(u v)E(O)dx,

where 6 2 + 23 and fi3 ’’3"
We shall in this paper make frequent use of the arithmetic-geometric mean

inequality (henceforth abbreviated A-G inequality). Unless we specifically need
the constants which enter, we shall use the letters ,,,j for the coefficients of the terms
we shall subsequently wish to make small and kj as coefficients of the other terms
which are computable and may be large (but will not depend on e).

Now we employ the A-G inequality on various terms of (3.7) to arrive at

nt" k62 fo "cSE2(O) dx.

Now by choosing )2 and ])3 small enough, we can solve for the left-hand side
(L.H.S.) of (3.8) to obtain

D "cS(u-- l))2dx <-- O(e’3)-F fo zs-2(u-- )2dx-F fo "cSv2dx

(3.9)

Because v and E(0) satisfies (2.3), we may bound the two terms involving v
and E(0) in the following manner"

f19 "cSl)2dx fl l)2dx <= fll2dx <= M2"
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However, since both terms have only e2 coefficients, the first, third, and fifth terms
on the R.H.S. of (3.9) are bounded by a term which is 0(e2). We further use the fact
that since z __< 1,

;D "cS(u-- v)2dx <= f19 "cs-2(u-- v)2dx"

Hence we have completed the proof of Lemma 3.1. Note that the coefficients
in the 0(e2) term could in fact be computed explicitly.

LEMMA 3.2. If b is greater than zero and v fill is a solution to Problem A,
then

(3.10) fo rS(u v)Z dx <= O(e) + Rle fo "cs-Z(u v)2dx

for some computable constant R 1.

Proof We proceed exactly as in the proof of Lemma 3.1 up to inequality
(3.5), but we must now handle the second term on the R.H.S. differently. We
expand it out and use the A-G inequality on the cross terms making use of the
ellipticity condition (2.1) to obtain

(3.11)

+ k3 fo b fo "cS(u-v)Ludx.

We must now deal with the second term on the R.H.S. of (3.11). By Green’s
identity we have

foe z% u, u, dx=e zu ds- ds

(3.12)
ruLu dx + Lru dx.

By the Lipschitz condition and the A-G inequality we are led to

e fo zSaiju"u’J dx <= O(e)+e fo zslu v + vl[2oe + ,xlvl / (31u /)l] dx

fD1 "clu v + vl IE(0)I dx

(3.13)

T 2(U V -- /))2 dx

Ts- 2(U /))2 dx + k 15e fo, Ts 2 i)2 dx

"cSE2(O) dx

003) -+- k l4e "r 2(u 02 dx.
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We handle the last term on the R.H.S. of (3.11) as we did in the proof of
Lemma 3.1. With the bound for J’o v,iv,i dx and the use of (3.13), we complete the
proof of Lemma 3.2.

Let us now establish a further lemma.
LEMMA 3.3. Regardless of the sign of b, if v M is a solution to Problem A,

then for any positive integer p such that all integrals over $1 vanish,

(3.14) fo 72p(bl /))2 dx <= R

for some computable constant R.
Proof By use of the equation in Problem A and Green’s identity we have

(3.15)

rP(u v)2 dx be fo rp(u v)Lv dx

be zO(u v)-v ds

be fo zo(u v)’jaijv’i dx

be fo zP’jaij(u- U)U’i dx,

where the boundary integral is 0(e2). An expansion of the second term, use of the
A-G inequality and combination of like terms yields

(3.16) + kaef r-aiv,iv,dx

+ f rO(u v) dx.

Choosing 7 < 1, we may solve for the L.H.S. of (3.16). We must then use Green’s
identity on the second and third terms of the resulting inequality in which 74
is still at our discretion. Thus

(.7

where we have already bounded the Lr+ 2 which results and have kept the same
symbol 74 for our constant above. It is not exactly the same number as before,
but can still be made as small as we like.
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We now use the fact that b/3Lv u v to handle the fourth term on the
R.H.S. of (3.17), but this means that the resulting term is 0(1), that is,

(3.18) /3 fo r-p-2vLv dx <= k22 fo r-’-4v2dx + 76 fD r-’(u v)2dx.

The second and third terms are dealt with as before, only we must be careful to
take small coefficients with .ol r-O(u- v)2 dx terms. After doing this we again
use our bounds for v and E(0) to complete the proof of Lemma 3.3.

We next make use of the lemmas to derive the desired theorems. First we
observe that when b < 0, we have by iteration of Lemma 3.1,

(3.19)
fD1 r-S(u v)2 dx < 0(/3 2) + Ro/3 fo r’s- 2(u v)2 dx

< 0(/32) "l- R/32 fo r-s-a’(U v)2 dx.

Application of Lemma 3.3 to the last term with p s- 4 yields for s => 9 the
following theorem.

THEOREM 3.4. If b < 0 and v I is a solution to Problem A, then
2 0(2)

for in the interal 0 <= o < 1.
Combining Lemmas 3.2 and 3.3 with p s 2 and s 7 we are led to the

following.
THeOreM 3.5. If b > 0 and is a solution to Problem A, then

u v 0()

for in the interval 0 < 1.

3.2. We now employ the tool of logarithmic convexity to show that Ilu wl 2
D

is of order e to some positive power depending on the sign of b.
The following procedure is the same as the one used by L. E. Payne [13]

in which he computed bounds for solutions of non-well-posed Cauchy problems
for linear elliptic equations. Here we consider the equations

Lu E(x, /3, v, u),

Lw E(x, O, w, w)

with Cauchy data as prescribed in 2 for Problem set (A, B).
Let u w and define

where

[aij’,i,j + d/L] dx dq + Q,

(3.21) Q=ml fy.@2ds+m2fz@,i,ids+m3 fo, (u- v)2 dx + m4 V(Da,)/32
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and m1,"’, m4 are explicit computable constants. V(D,,) denotes the volume
of DI which is bounded for 0 < 0 < 1.

We show that as a function of 0, F satisfies a differential inequality of the
form

(3.22) FF"-(F’)z >= -K1FF’- K2F2

for explicit constants K and K2. The solution of this differential inequality will
then lead to the desired bounds.

By exactly the same technique as in [13], it is clear that we can choose the

m in Q such that F satisfies the continued inequality

(3.23)
d +

r02 dx + Q > F(e) > - rt2 dx + Q

where

(3.24) r aijf,if,j.

To establish (3.22) we require the same two lemmas Payne used in [13];
however, his proofs do not go through verbatim because of the differences in the
equations and in the Q. One major difference is the way we boundj’ j’o, (Lff)2 dx
and we indicate this here"

(L)2dxdrl=fo;. [E(x, e, v, u) E(x, O, w, w)] 2 dx dg]

< [20e + bl]u- vl + b3lu- wl] 2 dxdrl
(3.25)

<-_ do V(D)e + d (u v) dx drl

+ da (u w) dx drl,

where 1 and are linear combinations of 21 and 2a of the Lipschitz constants
and do, dl and da are the computable constants we get after applying the A-G
inequality to the cross terms which arise from squaring the integrand and com-
bining like terms.

We now state without proofs (which may be found in [1]) the two lemmas.
LFM_a 3.6. If F(oO is given by (3.20), then

IF’I F’ + K2F
for a computable constant K2.

LEMMA 3.7. If F(ot) is given by (3.20), then

fo. aij/,O, dx 2 r- l[aijt,ifj]2 dx >= K3F’ KF

for computable constants K3 and K.
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With the use of Lemmas 3.6 and 3.7 and the procedure of Payne [13] we are
led to (3.22) with computable constants K1 and K2.

It is well known (see, e.g., Levine [9]) that a solution of (3.22) which vanishes
for one value of e in the interval [0, eli must vanish identically. Thus without
loss of generality we may assume that F(e) > 0 for all e, 0 =< e =< el < 1. Then
setting

(3.26) r e- r,,
we find (regarding F temporarily as a function of a)

d2

(3.27) &r2 {log [Fr-r2/,]} >_ 0,

from which it follows by Jensen’s inequality that

(3.28) F(e)a-I(2/r [F(l)O.- K2/K](1-a)/(1-a)[F(O)](a-a)/(1-a)Here
-K11O’1 =e

and F is now regarded as a function of e. We note by (3.20) that F(0) _= Q, an
expression involving only data terms and from Theorem 3.4 or 3.5 depending
on the sign of b, F(0) is either 0(e2) or 0(e).

As has been noted in earlier papers (see e.g., John [6], Pucci [15]), in order
to make F(e) small for 0 < e < e 1, it is not sufficient to make F(0) small. One must
be sure at the same time F(el) does not become so large that the product is no
longer small. To stabilize the problem we therefore assume that the solution w
lies in the class M.

Since our u plays the role of the q9 in Payne’s paper we must know that Q
is small, but it is either 0(e2) or 0(e) depending on whether b < 0 and v e r or
b > 0 and v e M respectively. Using the fact that

(3.29) fo u2dx<=2fo (u-v)2dxq-2fo v2dxO(e’)+ 2M2 M5

for some computable constant Ms, we can compute (using (3.23)) an M6 such that

(3.30) F( 1)a - r/r,2 =< M62.
Insertion of (3.30) into (3.28) now gives

(3.31) F() <= (TKz/K{M(1-a)/(1-al)Q(a-a’)/(1-al)).
Hence we have the following theorem.

THEOREM 3.8. If V, W e 21, W is a solution of Problem B and u, v are solutions of
Problem A, then the difference u w satisfies the following continuous dependence
inequality for in the range 0 <= < 1 < 1"

2 < KM62(’)Q
Here K, M6, and v(a) are computable with 0 < v(a) < l, and Q is given by (3.21).
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Applying the results of Theorems 3.4 and 3.5 to the third term of Q and using
the facts that

and

u w)2 dx 0(e2)

Igrad (u w)l z ds 0(e2)

we immediately have the following corollary.
COROLLARY 3.9. With the same hypothesis as in Theorem 3.8, we conclude that

either

if b < O, or

2 0(2(-())[b/--W D

u w 2 0(xD,

if b > 0 and in addition v 6 ffl a. Here lies in the interval 0 <__ < < and
O <= v() < 1.

3.3. We now combine the results of 3.1 and 3.2 and use the triangle
inequality

to establish a further theorem.
THEOREM 3.10. If V M is a solution of Problem A, we M is a solution of

Problem B, and u is as in Theorem 3.8, then the difference v w satisfies one of the
following continuous dependence inequalities for in the range 0 <= < . < 1 and
v() with 0 <= v() < 1"

(i) If b < O, then

Iv wll 2 0(2(x-()))D

(ii) If b > 0 and v M, then

IIv wl 2 0(-(,))D

Remark. It is obvious of course that if b > 0 and we require v to belong to an
even more restrictive space, that is,

[v + Igrad vl 2 + (Lv)2] dx <= M2
for some prescribed constant M2, we shall again obtain the same order of e in
case (ii) that we established for case (i).

4. Extension of previous results. Up to now we have allowed the function E
to depend only on u, v, e, and the position variables. In this section we allow E
to depend also on the derivatives of u and v. Although we still obtain bounds for
I1 WlID which are of order e to some positive power, as we shall see the power of
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e is essentially half of what it was in the preceding section. Let us now write
E E(x, e., v, v,i, u, u,i), where v,i and u, denote general derivatives of v and u
respectively and assume that E satisfies a uniform Lipschitz condition in its last
five arguments, i.e., there exist constants 2o, "", 24 such that

IE(x, e, v, v,i, u, U,i E(x, O, v, v,i, u, a,i)l -< oe + 11v l + 2lgrad (v )l

+ 23]u a] + 241grad (u a)l.

In this section we compare solutions v and w of the following set of improperly
posed Cauchy problems:

PROBLEM A’.

with

ebLv + v u )’Lu E(x, e, v, v,i, u, u,
in D

hi(x, e), grad (Liv) gi(x, e)

onE, 0,1.
PROBLEM B’.

Lw=E(x,O,w,w,i,w,w,i) in D

and

w=ho(x,O), gradw=go(x,0) on

where b is a constant. We assume also that (2.3) to (2.6) hold.

4.1. It can be shown by essentially the same arguments as those used in 3.1
that Theorems 3.4 and 3.5 hold for Problem A’.

We now prove the following lemma which we shall need in the next section.
LEMMA 4.1. If V iQl is a solution to Problem A’, then

"cs+ 2(u v),i(u v),i dx <= 0() + ka f "cS(u v)2 dx

__1 [/4 + b] f zs+ 2(Lv)2 dx,
ao

where kl is a computable constant and 74 can be made less than [b[ so that if b is
negative we may drop the last term of the estimate.

Proof By the ellipticity condition (2.1) we have

(4.1) .cs+ 2(u v),i(u v), dx
1 fo "c + 2ai.i(u v),i(u v),.i dxao
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(4.2)

(4.3)

We proceed making use of Green’s theorem to obtain

.rs + 2aij(u v),i(u v),j dx

,(u v)+(u- v) v ds ft. c3"r’+ 2 (u v)2

cv 2
ds

+2(u v)L(u v) dx + fo L’c + 2 (u v)2

2
dx.

Since the boundary terms are 0(2) and we can bound Lz, we have

f, ,rs + 2%(u v),(u v), dx

0(g2)-b kx fD zS(u v)2 dx + fo zs+2(u v)Lvdx

fo "cs+ 2(u v)Lu dx.

We now employ the equations of Problem A’, and the Lipschitz condition to
produce

(4.4)

Zs+ 2aij(u v),i(u v),j dx

50(e2)-t-klfo zS(u v)2dx + b’g fo zs+2(Lv)2dx

+ fo Ts+2IU- /)l[/]’Oe -- 611/)1 + 621grad vl-- 631/2- /)1-- 641grad (u- v)]] dx- z+ 2(u v)E(O) dx.

We next use the A-G inequality after appropriate substitution of ]ble.]Lv] for
lu vl to get

(4.5)

fD TS + 2aij(U v),i(u v),j dx

< 0(82)d-kl f/9 TS(u u)2 dx+be fo T,s+2(Lv)2 dx

fD fD Ts+ 2(U /))2 dxq- k2e zs+2o2 dx + k3

+ ’ fo z+2aij(u- v),i(u- v),j dx + k,,e, fo "c+2aijv’iv’j dx
(cont.)
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if" 72F, fD "cs+ 2(Lv)2 dx + ks fl "cs+ 2(u- v)2 dx

+ k6g

We observe that

zs+ 2E2(0 dx.

(4.6) f z+ 2aijv,iv, dx O(e) + 73,g f T,s+ 2(L1))2 dx q- kT, f Tsl) 2 dx,

and by choosing 71 small enough so that we may solve for the L.H.S. of (4.5) we
obtain

"cs+ 2ai(u v),i(u v), dx

(4.7) __< 0()-- k8 fD s(/g /))2 dx --[-[72 -- 73 -- b]ef,) "rs+ 2(Lv)2 dx

We again make use of the bounds for v and E(0) to establish the lemma with
74 72 -- 73 still at our discretion.

Remark. Since we eventually only use Lemma 4.1 with b < 0, we could have
obtained the desired result more easily. It can be shown directly that

fD "s(l’/- V)2 dx e, f zaij(u-v),(u-v),j dx 0(e2).

And since J’o, z(u v)2 0(62)it follows that

"cSaij(u- v),i(u- v),j dx 0(e).

4.2. Let us now turn our attention to the problem of bounding Ilu wll
in the case E E(x, e,, v, v,i, u, u,i). The problem is basically the same as in 3.2,
namely, we consider the equations

Lu E(x, e,, v, v,i, u, u,i),

Lw E(x, O, w, w,i w, w,i)

with Cauchy data as prescribed at the beginning of 4 for Problem set (A’, B’).
Again we let u w and make use of logarithmic convexity arguments

with

(4.8) F(oO ( ) [aiO,iO,j + OLO] dx drl + Q,
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where

(4.9)
fO2ds + m f/,,O, ds + m3 foQ m (u /))2 dx

+ m4 fo (u- t)),i(bl l)), dx + ms V(D,)e2

and m l, "", m5 are explicit constants which may be chosen so that the analogue
of (3.23) holds.

We proceed exactly as in 3.2 up to Lemma 3.6 which we must now re-prove
in the following form.

LEMMA 4.2. If F() is given by (4.8), then

If’l <= KF’ + K2F
for computable constants K and Kz.

Proof Differentiating (4.8) we have

F’(a) [aij,it,j -q- L] dx dr

from which it follows that

(4.10) IF’I <-_ F’ + 2 OLd, dx drl

Now using the A-G inequality we have

fi fo fo fo lfo fnt2 dx dr + - (Lt)2 dx drl.(4. 1) ,L, dx d, <__ -Thus

(L@)2 dx dr [E(x, :, v, v,i u, u,i E(x, O, w, w,i, w, w,i)]2 dx dr

=< [20e + 6alu vl + 621grad (u- v)[ + c531u- wl

+ 6lgrad (u w)l] 2 dx drl

(4.2) __< doeV() + d (u v) dx d

+ d (u- v),(u- v),i dx drl

+ da (u w) dx d

+ & (u w),(u w), dx.
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Here we have used the Lipschitz condition and the A-G inequality and summed
like terms to obtain the computable constants do,’.’, d4. The last term on the
R.H.S. of (4.11) requires some manipulation. Using the ellipticity condition (2.1),
we obtain

fO;fo fo fod4 (u- w),i(u- w),i dx drl < __d’ aij,iff/,jdx drl
ao

+ L dx dao ao

+ (L0)2 dx dq
ao

+ d47 fo fD O2 dx

where we have used the A-G inequality with constant 7. We choose 7 d/ao,
substitute into (4.12) and solve for the term on the L.H.S to obtain

(L@)2 dx drl <- 2doe2V(D) + 2dl (u v)2 dx drl

+ 2d2 (u- v),i(u- v), dx drl + 2d3 + a)l 02 dx drl +-

Using (4.11) and substituting (4.13) into (4.10) we have

(4.14)

2d4 F’ (u /))2 dx drlIF’I + + 2dlao

F’< K nt- K2F
(by analogue of (3.23)) for computable constants K1 and K2.

We now prove the analogue of Lemma 3.7.
LEMMA 4.3. If F() is given by (4.8), then

(4.15) I_ aijO,iO,jdx 2 I_ r-’[aijO,ifj] 2 dx K3
g KF

for computable constants K3 and K4.
Proof The proof is exactly the same as that for Lemma 3.7 except for the way

we bound J’o. (- rl)(L)z dx; but it follows from (4.13) with the help of the
analogue of (3.23) that

(4.16) f_ ( r/)(Lk)2 dx CsF + C6F’

for computable constants C5 and C6.



362 L.E. ADELSON

We now form

FF" (F’)2 _>_ r2 dx au,i, dx ai/,if, dx
(4.17)

f+ F L dx 2[F’I /-v asd
where we have dropped a number of nonnegative terms on the right.

Because E depends on u,i we are unable to bound oLdx by the A-G
inequality;hence, we must resort to a different procedure. Call the term in braces
in (4.17) G; then

(4.18) { fo r2 dx fo aij@’i’J dx} 1/2= {G+ fo au"s dx)2} 1/2.

We now have

(4.19)

fo Ldx ;o [E(x, e., v, v,i, u, u,i) E(x, O, w, w,i, w, w,i) dx

<= fo lu- wl[2oe / 611u- vl / 621grad (u- v)l / 3lu- wl

+ 6,1grad (u w)l] dx

I[t 2 dx (u- w),i(u- w),i dx + m6F

(fD fD }1/2<= m7 rO2 dx aijO,iO,j dx + m6F

by the Lipschitz condition on E, the A-G inequality, Schwarz’s inequality, the
analogue of (3.23), and the ellipticity condition. Here m6 and m7 are computable
constants. Hence

fD (fD fD )1/2(4.20) OLO dx >_ m7 rO2 dx aijO,iO,j dx m6F.

Substitution of (4.20) into (4.17) gives

FF"-(F’)2 >= G- F m7 r2 dx aij,i,jdx

(4.21)

>= G mTF{G+ dx) 2}
m6F2 2IF’I -v ds d
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We next observe that G is a continuous function of 0; thus if we consider G
pointwise we see that when G > 0,

{G + fo a,j,,f,j dx) } 1/

(4.22)

by (3.25). Therefore,

, + Iel + vv ds d

FF" (F’)2 = G mF/- mFIF’I mF
(4.t

21F’I O-v ds dq

Completing the square for the first two terms yields

m6F2

(4.24)

FF" (F’)2 => mF2

m6F2 --(mTF + 2IF’I)

It can be shown (see [1]) that

(4.25) O-v dS drl <--_ K6F

for a computable constant K6. Using Lemma 4.2 we have for G > 0 that

(4.26) (mTK Jr- 2K 1K6)FF’

>= KTF2 KsFF’.

Now when G =< 0,

(4.27)

so that

<= fo aijO’if’JO dx

fo f ._-< IF’I + , ds dr

_-< IF’I + K6F,

FF"-(F’)2 >_ G mTFIF’I mTK6F2 m6F2 21FIK6F
(4.28)

>__ G- (mTK2 + rusK6 + m6 + 2K2K6)F2 -(mTK + 2KK6)FF’.
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Using Schwarz’s inequality on G and Lemma 4.3 we obtain for G =< 0,

FF" -(F’)2 -(m9K4 + rn7K2 + mTK6 + m6 + 2KzK6)F2

(4.29) --(m8K3 + mTK + 2KK6)FF’

>= --K9F2 KoFF’.
Thus regardless of the sign of G, combining (4.26) and (4.29) we have

(4.30)
FF" (F’)2 __> -(max (K7, K9))F2 (max (K8, Klo))FF’

F2 K 2FF
Therefore we have established the analogue of (3.22) with computable constants

Kll and K2.
By the same argument as at the end of 3.2, we are led to the analogue of

(3.31), that is,

(4.31) V(e) <=
But our Q has one term that did not appear in 3.2. We must therefore show that
the extra term is 0(e) in order to obtain the desired theorem.

Since

(4.32) fD (u- v)’i(u- v)’idx <-- ft zs+2(u- v)’i(u- v)’idx’

we have by Lemma 4.1 that

(4.33) fo (u-v),i(u-v),idx<=O(e)+kxxft) zS(u-v)2dx,

where we have assumed b <0 and dropped the last term involving
e J’o r + 2(Lv)2 dx. Hence, by the analogue of Lemma 3.1, we have

(4.34) fo (u-v),i(u-v),idx<__O(e)+Rokefo’rs-2(u-v)2dx
and by the analogue of Lemma 3.3 we have

(4.35) | (u v),i(u v),idx <= O(e,) + RoklRe O(e)., D
Thus, if b < 0 we have shown that the extra term in Q is indeed 0(e). Note we

could still show that Q is 0(e) even if b > 0. However, then we would have to assume
that .o (Lv)2 dx is bounded (independent of e) which does not seem to be a practical
hypothesis.

We have established the following results.
THEOREM 4.4. If V, W e 1C-1, W is a solution of Problem B’ and u, v are solutions of

Problem A’, then the difference u w satisfies the following continuous dependence
inequality for in the range 0 <= < < 1"

2 < RMZTV)Q1-()

Here R, My, and v() are computable, with 0 <= v() < 1, and Q is given by (4.9).



SINGULAR PERTURBATION OF IMPROPERLY POSED PROBLEM 365

COROLLARY 4.5. With the same hypotheses as in Theorem 4.5, and with b < O,
we conclude that

u wllo 0( ’-())

for in the range 0 <= < za < 1 and v(a) satisfying 0 <= v(a) < 1.

4.3. We now combine the results of 4.1 and 4.2 and use the triangle
inequality

v WlID <= IIv UlID / u WlID
to establish the following theorem.

THEOREM 4.6. If V M is a solution of Problem A’, w M is a solution of
Problem B’, u is as in Theorem 4.4, and b < O, then the difference v w satisfies the
following continuous dependence inequality for in the range 0 <= < 1 < and
v(oO with 0 <= v(oO < 1"

0(-)l)W D

Remark. The order of e here is the same as that in Theorem 3.10(ii) of the
preceding section or half of the order we computed in the previous section when
we assumed b < 0.

Acknowledgment. The author is very grateful to Professor L. E. Payne of
Cornell University for his helpful advice and suggestions.
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EXPLICIT INTEGRAL TRANSFORM PROOFS OF SOME
TRANSPLANTATION THEOREMS FOR THE HANKEL TRANSFORM*

SUSAN SCHINDLER"

Abstract. The transplantation theorem for Hankel transforms states that

g,,(x)l"x dx Igv(x)["x dx,

where

gu(x) G(z)(xz)l/2ju(xz dz, <p < oo, and -1/p <o< 1/p.

It was proved, in a very elegant way, by D. L. Guy in 1960. His proof is, however, an indirect one.
It does not completely illuminate (i) the role played by the singular integral transform which arises,
(ii) for what values of/, the singularity disappears, and (iii) when one may expect an L1 theorem. Our
proof explicitly gives the relationship, via an integral transform, between gu(x) and gv(x), and im-
mediately answers these questions. To find the kernel of this integral transform, we first suppose g
is a "good" function. The Weber-Schafheitlin formula is used and in the course ofjustifying its applica-
bility we obtain a fi-function. The kernel also involves hypergeometric functions for which the needed
estimates are derived. We then extend the representation obtained to more general gv; the mapping
theorems then follow easily.

1. Introduction. In 1960, D. L. Guy proved the first of the "transplantation"
theorems for classical expansions. His result is the existence of a constant
A(/, v, p, ) such that

Ig,(x)lPxp dx A Ig.(x)lPxp dx,

where 1 < p < ,- lip < < 1 1/p,t, v >= -1/2,g.(x)= j’ G(t)(xt)l/2j.(xt)dt,
and g(x) is given analogously. His proof is elegant, but rather indirect. It uses
Fourier transforms and convolutions, the Weber-Schafheitlin formula and the
M. Riesz multiplier theorem. We shall rely on the Weber-Schafheitlin formula
and fairly elementary techniques to find explicitly the kernel of the integral trans-
form which maps g to g,. The above Lp estimates will then follow from the Riesz
conjugate function theorem, and estimates, which we shall derive, for the hyper-
geometric function. We shall arrive at the formula

k/g
g.(x) + g(y).,(x, y) dy + cos

2

where for 0 < y < x,

]u’(x’ Y)= F(v + 1) F((- v)/2) x2 y2" 2F 2 2

and for y > x, i,(x, y) i,(y, x).

--;v + 1;

* Received by the editors December 9, 1971.
f Department of Mathematics, The Bernard M. Baruch College of The City University of New

York, New York, New York 10010.
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When p v + 2k, k 1, 2,..., this transformation is also bounded for
p 1, a < v + 1/2 and for p > 1 for a different range of a than Guy’s theorem
gives. Also, cos (pn/2- vn/2)= 0 when p- v 1 and here one gets the
generalized functions of Muckenhoupt and Stein [3].

For # >= -1/2, and G e LI(0, ) the Hankel p-transform of G is defined by"

(1.1) g,(x) G(z)(xz)X/zJ,(xz) dz.

We shall first find a relationship between gu and g when G is a fixed "good"
function (p, v > -1/2 from here on). Denote by C(0, o) the set of infinitely
differentiable functions ofcompact support in (0, ). Let )ff G e L FI C[0, )"
g c:(o, )}.

2. The la-transform of a function G f as a sum of integral transforms of
g. If G ,

G(z) gv(y)(yz)l/Zjv(yz dy, z >= O.

(This is fairly easy to show from the fact that the inversion formula is valid for g.)
Hence, for G s .f(,

g.(x) g(y)(yz)/J(yz)(xz)/J.(xz) dy dz.

We may view the inner integral as a Riemann integral. By the kind of Riemann
argument to be invoked in the lemmas, the inner integral may be split into two
Riemann integrals, each of which is Lebesgue integrable, that is, for 6 > 0,

or

g.(x) fo {f__, +fl}g(Y)(YZ)x-yl<_6
1/2jv(yz)(xz)l/2ju(xz dy dz

gu(x) g(y)(yz)/zJ(yz)(xz)X/zJu(xz dy dz
x-rl>__6

+ Cu,(G; 6; x).

The second term will approach a constant times g(x). We cannot directly apply
Fubini’s theorem; we apply Lemmas 1-4 instead to a fixed G

LEMMA 1. With Cu,(6 x) Cu,(G 6 x), there is a constant
(independent of G) such that

LEMMA 2. Let

lim Cu,(b;x C.,g(x), x > O.
o

G(z)
g,p(X) 7(xz)l/2jt(xz) dz.
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Then

lim g.,,(x) g.(x).
po

(Note that gu,o(x) is both a Lebesgue and a Riemann integral.)
LEMMA 3. Let

C.,(6 p x) -ff g,,(y)(xz)l/2ju(xz)(yz)l/2J,,(yz dy dz.

Then C.,v(d; p x) is a Riemann integral with limo o Cu,v(6 p; x) Cu,(6 x).
LEMMA 4.

c+O x_yl__<
gv(y)(xz)l/2ju(xz)(yz)l/2jv(yz dy dz Cu,v(( p x).

Proof of Lemma 1. The function W1/2jot(W is bounded for all w if e => -1/2
(see [5, p. 16]). Then

fo flx-yl <-’
gv(y)(xz)l/2Ju(xz)(yz)l/2jv(yz dy dz

x-yl <_,

_-< M611gl

Ig(y)[ dy dz

and so this contribution to C,,(6; x) tends to zero as 6 + 0. The contribution from
1 =< z < is somewhat more complicated.

First we expand the function g about x’g(y) gv(x) + (x y)h(y), where
h(y) is infinitely differentiable. To proveLemma 1 it is enough to prove thefollowing
facts"

(xz)l/2du(xz)(yz)l/2d,,(yz) dy dz C’

exists, and

(2.3) lim f; flo x_yl_<,
(x y)hv(y)(xz)l/2j#(xz)(yz)l/2jv(yz dy dz O.

We use the expansion [5, p. 14, (1.71.8)]"

W1/2jot(W)--COS(W
+sin (w

for w . Take

(2.4)
2 4’

o" X ,
C1 --/tt nt- fly, C2 fl#-
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Then

cos (xz + flu) cos (yz + fly)dy dz
x-yl<__,

_1 fl sin ([2x + 6]z + ft, + fl) -zSin ([2x 6]z + flu + fl) dz

+ _gl f sin (6z + flu fl)- Sinz (-6z + flu fl)dz.

The second integral becomes

_f sin (. + -uSin (-u + .u cos f snU.u
which approaches cos (/2 w/2) as 0. We shall show that all other integrals
contributing to C.,(; x) tend to zero with , that is,

v_ C’(2.5) C., cos
2 2] ’""

Now

sin ([2x + 6]z + C)- sin ([2x 6]z + C)dz
z

cos(2x + 6 + C) cos(2x 6 + C1)
2x + 6 2x- 6

fe lcos([2x+6]z+C) cos(2x-6]z+C)}dz.-ff 2x + a 2x- 6

The integrated term clearly approaches zero; so, too, does the integral, by the
dominated convergence theorem.

Next, we take the remainder after one term in our expansion for (xz)/zJ,(xz)
and we examine

0 yz)/2J,,(yz) dy dz.

By using the standard differentiation formula" Dww’J,(w) w’J,_ (w), [1, p. 11,
(50)], this can be written as"

O(z-2) (yz)-"- /2(yz)+ xJ(yz)z dy dz

O(Z-2){(O’2Z)I/2Jv+ l(O’2Z) (OlZ)l[2Jv+ l(O-lZ)} dz

+ (v + 1/2) O(z- 2) l(yz)X/zJ+ (yz) dy dz.
x-l<= Y

Both integrals approach zero, by dominated convergence.
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We must still work with the product of the leading term for (XZ)I/2,J#(xz) and
the remainder after one term of the expansion for (yz)l/2jv(yz). First

sin (yz +
cos (xz + .) dy dz

,1<_, yz

fl cs (xz + flu) {-cs (yz + flv) ’2

fl cos (yz + fl)
y2 dy dz.

Z2 Y y= a y[ < 6

The bracketed expression is bounded, approaches zero, and the usual reasoning
shows that the double integral has limit zero.

We next have to evaluate

cos (xz + .) 0 dy dz.
x-rl

(The "O" term is the remainder after 2 terms in the expansion for (yz)l/2J,(yz).)
This is easily seen to approach zero with c5 by the dominated convergence theorem,
completing the proof of (2.2).

Considering next (2.3), it is easy to see that

h,,(y)(x y)(xz)X/2ju(xz)(yz)l/2j(yz dy dz 0

as $ 0, again, by the dominated convergence theorem. To find the contribution
for =< z < oe, we first replace (yz)X/zJv(yz) by cos (yz + ). Then

h,,(y) (x y)cos (yz + ,) dy

1
z I/z(y) (x y)sin (yz + )

1 fl Dr[h(y) (x y)] sin (yz + ) dy
:z rl <_ ,

h(y)(x- y)sin (yz +
y-" O’1

+-Dr[h,,(y)(x- y)] cos (yz +

Drz [hv(y)(x y)] cos (yz + ) dy.

Now the last two terms are bounded by a constant over zz and both approach
zero as 6 approaches zero. Hence their contribution to

h,,(y)(x y)(xz)/2Ju(xz cos (yz + ,) dy dz
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has limit zero. We have to show that

lim (xz)/J"(xz). h(y)(x y) sin (yz + ) dz 0.
,$0 Z =

Now (xz)/J.(xz) v//rt cos (xz + ,) + O(1/xz) and by the usual reasoning,

lim O
1 _1 h(y)(x-y).sin(yz+) dz=O.

60 Z y=a

Our next task is to show that
2cos (xz + U)h(y)(x y)sin (yz + ) dz --+ O.

Z

This expression equals

( sin ([2x + 6]z + C1)h(o2) + sin ([2x 6]z + C1)hv(Ol)dz
2 31 z

6 f, sin (-6z + C2)h(a2) + sin (6z + C2)hv(al)dz.+5 z

The first term equals

6 cos([2x + 6]z + C)h(a2) cos([2x ]z + C1)h(al)l:= }- (2x + 6)z
+

(2x 6)z

6f lcos([2x+f]z+C1)h(o2) cos([2x-6]z+C)h(a)}dz."i- - 2x + a +
2x a

Inspection and the dominated convergence theorem show that this approaches
zero. By integration by parts, the second integral equals

tcos(-6z + C2)hv(o-2) cos(az + C2)hv(Crl)/
2 z z

+ -}1 cos (-6z + C2)h(a2)z2- cos (6z + C2)h(a)dz,
and, again, the two terms have limit zero. We now have shown that

lim (xz)/2J.(xz) h(y)(x y) cos (yz + ) dy dz O.

The second term in the expansion of (yz)/2j(yz) is a constant times

sin (yz + )
yz

Now

(XZ)I/2Jla(XZ) h(y)
Z x_yl__<di y

--(x y) sin (yz + fly) dy dz



PROOFS OF SOME TRANSPLANTATION THEOREMS 373

by integration by parts of the inner integral. It therefore has limit zero. The
remainder in the expansion of (yz)l/zJ(yz) is O{(yz)-2} and the dominated
convergence theorem is once again sufficient. The proof of (2.3), and hence of
Lemma 1, is complete.

Lemma 2 is obvious, since G is continuous and in LI(0, ).
ProofofLemma 3. We must show limp o Cu,(6 P; x) Cu,(6 O; x) Cu,(6 x).

Now

g(y)(yz)l/zJv(yz) dy
x-yl_<

1
-gv(y)(yz)l/ZJ+ l(YZ)

Dy{g(y)(yz)--1/2}(yz)+ 1j+ l(yz) dy.

Therefore,

g(y)(yz)l/2jv(yz dy

lg(y)(yz)I/zJ+ x(yz)
tr2

g’(y)(yz)/zJv+ (yz) dy

g,,(y)(yz)- 1/2j + (yz) dy.+ (v + k): ,I

Let us first work with the integrated term, evaluated at a l. We multiply it by
(xz)l/Zju(xz), divide by z" and integrate with respect to z. By the Weber-Schafheitlin
integral [6, p. 401, (2)], we obtain, for/ + v + 2 > p > 0,

gv(t71)(Xt71) 1/2 fO Jl(xZ)Jv+zp l(lZ)
dz

gv(trx)(xtrl)l/2 (o’1)v+ 1-’((/ q- V + 2- p)/2)

2x:C?--i 2F-(/ v + p)/2)

/+v+2-p v + 2-1a- p
;v+2;

2 2

We have x and a fixed so this expression is continuous at p 0. Evaluation of
the integrated term at y o2 leads us to consider the other noncritical case of
the Weber-Schafheitlin integral. We see that the contribution of the integrated
term to C.,(6 p x) is continuous at p O.

The unintegrated terms are both O(z-+1/2)++ 1)= O(zI/2)+) for z O.
Since 1/2 + v > 0 and (xz)l/2ju(xz) is bounded, we see that the integral of these
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terms j’ol.., dz/zp are continuous functions at p O. For =< z < , we have

lfl {g’v(Y)- v+)g-v!t(YZ)I/2J+(Yz)dY,Z x_yl_<

and one more integration by parts shows that this expression is O(z-2). The
dominated convergence theorem finishes the argument.

Proof ofLemma 4. Clearly

f;e-CZfl g(y)(xz)l/2ju(xz)(yz)/2. J(yz) dy dz
x_yl__<

has the desired limit, and integration of

g(y)(yz)/2jv(yz) dy
x-yl__<

by parts and reference to the dominated convergence theorem shows that

g(y)(xz)/J.(xz)(yz)I/J(yz) dy dz- x_yl_<0

tends to the same limit.
We now work with

J g,,(y)(xz)l/2ju(xz)(yz)l/2J,,(yz dy dz + C,,v((3 x).g.,(x) ff P;

Note that as a consequence of the proof of Lemma 4 both terms here are Lebesgue
integrals (dz). Clearly,

foe- zlim G(z)(xz)l/2ju(xz dz (xz)l/2ju(xz) dz
c, O --and so by Lemma 4,

fo fl g(y)(xz)l/2Ju(xz)(yz)/2j(yz) dy dz- y >=

f e-CZ fllim g,(y)(xz)/2ju(xz)(yz)a/2j(yz) dy dz.
cO -- x-y] <_6

Now the inner integral is bounded so that Fubini’s theorem applies and we have

f foJu(xz)J(yz)lim gv(y)(xy) a/z e dz dy.
c0 x_yl>__ Z- +p

Let

Ju(xz)J(YZ)(2.6) Ic,p(x, y) e dz
z-l+p

We need a lemma concerning lc,o.
LEMMA 5. Let x > O. Thefunction g(y)(xy)X/2Ic,o(x, y) is bounded by afunction

which is in L(dy) on Ix Yl >= 6 and lim+o I,o(x, y) Io,o(x y).
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Proof The essence of the argument is contained in [6, pp. 399-401]. For the
proof of the second part of the statement, note that the integral for lo,p(x, y)
converges (x 4= y) and

f Ju(xz)Jv(Yz)lo,,(x,y) lim :v dz

f czJu(xz)Jv(YZ) dzlim lim e- +,-R’ c,O Z

Replacement of either (xz)l/ej.(xz) or (yz)l/ej(yz) by the remainder after a one-
term expansion for large z gives something uniformly convergent in R as c $ O.
For the leading terms we have

(xy)-1/2 limco f0
(xy) -1/2

Consideration of

e-- cos (xz + ,,) cos (yz +

--lim u[cos (xz + yz + . + [.)
c+0

+ cos (xz yz + . -/L)] clz.

--cos wz dz
Zp

for w 4= 0 shows that the limit as c $ 0 is uniform in R, finishing the proof for the
second part of the lemma.

We first prove the asserted boundedness for y < x 6. With

A =max{Ip+v-p+21,1v-p-p+ 11}, 0<c<C<6,

X (C2)/(x2 + C2), we have, according to Watson [6], that IIc.pl is bounded by
the sum of two series I’c,, and I’c’,, and

(1/2),+T(1/2)(1 w/x)-a’y
l,p(x, y) <= (x2 + C2)(la+V_p+2)/2

F(/+v-p+2+2m)

,.=o m.
y"

’F(v + + m)lF(( v + p)/2 m)lF(( + v p + 3)/2 + m)

The power series has radius of convergence 1/4 and

2Ex//x2 + c2 C]--
(X- ()(%//X2 -1

t- (2
__

a)
2x2 2’

and so l’c,o(x, y) < L’(la, v, x)y. We also obtain the same kind of bound for I",p
Since v > -1/2 this establishes the existence of the required L bound on

O<=y<__x--a.
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The proof for x + 6 =< y is easier. Taking

A 2 max {l + v p + 21, I-v + p + 11},
letting 0 < c _< C < 6, Y C2/(y: + C2), reversing the roles of/, v and x, y, we
see that lc,p[ is bounded by the sum of two series, which we again call I’c,p and
I’,. We have

(1/2)V+UF(1/2)(1 X//)-A2x,Ic,o(x, Y) <= (y2 qt_ C2)(V+la-p+2)/2

F(v+/z-p+ 2+ 2m)
,,-o m F( + + m)lF((v + p)/2- m)lF((v + U- p + 3)/2 + m)

w/2( y2

The radius of convergence is 1/4. Now
x < (y- )I/y

2(w/y2 + C2 C)= 2Y2 2

for each y. Hence, there is an r/, 0 < r/< 1/2, such that for x + 6 =< y e supp g,
x/(2(w/y2 + C2 C)) < ft. This implies that

L’(/, v, x)(1
I,(x, y) <

(y2 + C2)(v+l-p+ 2)/2

on x + 6 <__ yesuppg. Now ((1 X/--)-A)/((y2 + C2)(+"-+2)/2) is bounded
for these values of y, and so gv(y)(xy)l/2I,o(x, y) has the needed L bound on
x+f<=y.

Lemma 5 allows us to take limc+o under the integral sign, that is,

lim f g(y)(xy)l/Zlc,p(x, y)dy g(y)(xy)I/Zlo,o(x, y)dy
c{O "lx-sl >- d lx yl >=

and

gu,o(x) g(y)(xy)I/2Io,o(x, y)dy + C,,(6 p x)
x-yl>__a

+ gv(y)(xy)/2lo,o(x, y) dy + C,,(c5 p;x).

We need to see how the integrals behave as p $ 0. By the Weber-Schafheitlin
integral [6, p. 401, (2)],

2y((/ + v + 2- p)/2)
lo,(x, y)= 2ox+_or(v + )r((- v + )/2)

(+v+2-p v-+2-p .y2)2F 2 2
;v+ 1,

for y x 6. This is continuous in p and y on {0
a compact set, so Io,(x, y) is bounded there. The dominated convergence theorem



PROOFS OF SOME TRANSPLANTATION THEOREMS 377

implies that

lim g(y)(xy)/elo,(x, y) dy g(y)(xy)/ lim Io,(x, y) dy.
plO po

Foryx+ 6, we have

2xUF((p + v + 2- p)/2)
Io,o(x, Y)

2Oy, + 2- OF(p + 1)F((v p + p)/2)

(v+p+2-p p-v+2-p
"2F1 2 2

;p+ 1,

Now 2FI((v + p + 2- p)/2, (p- v + 2- p)/2; p + 1;w)is continuous in (p, w)
on {0 < p < Po, 0 w =< Wo < 1}. In consequence, it is bounded there. Hence
IIo,p(x, Y)I =< (BxU)/(Y"+2-P), which implies that Igv(y)(xy)/Zlo,p(x, Y)I is bounded,
independent of p 0, by a function in L(dy) on x + 6 __< y < o, and so

lim gv(y)(xy)/2Io,o(x, y) dy g(y)(xy) /2 lim lo,p(x y) dy.
pO +6 +6 pO

Letting 1(x, y) limp+o Io,p(X, Y), and recalling Lemma 3, we see that

(2.7) gu(x) + g(y)(xy)l/Zl(x, y) dy + C,,,,(6 x).
+6

3. The integral kernels ],,v(x, y). We shall separate the singular part of
I(x, y). From the Weber-Schafheitlin integral, we have for 0 __< y < x,

2F((p+v+2)/2) yV p+v+2 v-p+2 .y2]I(x, y)
F(v + 1)F((p v)/2) x+ 2 2F1 2 2

v + 1,-
(3.1) 2F((p+ v +2)/2) _)v __v-ftv+kt .y2)--F(v+ 1)F((p-v)/2) x2_yzzF1 2 2 ’v+ 1,-
by Euler’s identity [1, vol. I, p. 64, (23)]. Similarly, for x < y < o,

2F((p+v+2)/2) ()" (p- v v + la x_2)(3.2) I(x, y)
F(p + 1)F((v #)/2) y2 X2 2F1 2 2

;p + 1;

We next introduce some notations"

(xz) /zju(xz) (yz) /zJ,,(yz)
(3.3) i,,v(x, y) (xy) 1/2 lim | dz

p$ 0 dO zP

and

(3.4) e(p, v)

Then

r((p- v)/2)r((v- p)/2)(v- p)"

i,,,(x, y) i,.(y,
Previously, this would have been called (xy)X/2I(x, y).
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and

(3.6) (p, v) -(v, p).

We now rewrite (3.1) after letting 6 $ 0, to obtain, for G

gu(x) + g,(Y)u,v(x, Y)dy

(3.7) + g(y) u,(x y)- dy
/2 x2 y2j

(, v)x
+ CPV gtY)x2 y2 dy + Cu,gu(x).

/2

We shall see that the integrals over 0 y x/2 and 2x y < and the integral
of the difference exist as Lebesgue integrals.

To prove the mapping from g to gu is bounded on the space LP’(0, ), we
note the estimates, easily obtained from (3.1) and (3.2)"

A(U, v)
X

(3.8) II,,Jx, y)l =< A(, v)
Y

We also need the following results.
LEMMA 6.

for 0 < y <= x/2,

for 2x <y< o.

and

0(, v)xilU,v(X’ Y)-
X2 y2

=0
Ilog (1 y2/x2)l

x/2 <= y < x,

0(, v)y Ilog (1 x2/y2)l],,(x,y)- --- O x =< y < 2x.
y

Proof We shall only consider the case x/2 <= y < x. The other case follows
from (3.5) and (3.6). We have

(, v)xitt,v(X’ Y) X2 y2

(xy) 1/2

X2 -y-2 F-(v + 1)F((/z- v)/2)
v-p v+p

"2F1 2 2

y2_]

(xy) 1/2 XJX2 y2

(Xy) 1/2

X2 y2 )I’ 2F((/+v+2)/2)
F(v + 1)F((p- v)/2)
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since
(xy)l/2 yV Xv (xy)l/2 0(xV- 1)
X2 y2 X X + y X

unless v 0, in which case the term in question does not appear, and also
(xy) 1/2 X--- X1/2(y 1/2 X 1/2) O(1)(X- y).

To estimate the expression in square braces, let w y2/x2 and call the resulting
expression s(w). The hypergeometric function satisfies the appropriate condition
for Gauss’s theorem [4, p. 28, (1.7.6)]; hence, from (3.4), limwl s(w) 0. We may
therefore apply L’Hospital’s rule to s(w)/(1- w)log(1- w)- (1- w). This
gives

s(w)
wl(1-w)[log(1-w)- 1]

2F((# + v + 2)/2). ((v -/t)/2)((v +/)/2)
lim
wX F(v + 1)F((/- v)/2)(v + 1)

2Fl((V t + 2)/2, (v + t + 2)/2; v + 2; w)
log (1 w)

Since (v- U + 2)/2 + (v + U + 2)/2 v + 2, this limit exists [4, p. 29, (1.7.8)].
Hence for some constant A(t, v), we have Is(w) w)[log(1 w) 1])l =< A(/, v)
for1/2w<__ 1, andso

x2 y2 kr(v + 1)F((/ v)/2) ,-,v + 1, (/, v)

=< A’(kt,x v)
log Y2}

The lemma is proved.
In brief, a measurable functionf is in Lp’, 1 < p < oe, if

f Ip,= If(x)lPxp dx < .
We consider the mapping T,,v defined by

(3.9) (T.,vh)(x) h(y)Slu,(x, y)dy + C’.,h(x).

Toseethat Tu,isaboundedoperatoronLP’for 1 < p < o,-lip < < 1 l/p,
we have only to apply the boundedness of the following operators"

f(Y)
x+y

i f x-Y2) l f? x_2f -- f(y) log 1--- dy + f(y) log 1- dy
X x/2 X
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and

f- f) y x
f(y--) dy.

Rewriting Tu,vh as in (3.7), using the estimates in (3.8) and the identities x/(x2 y2)
1/2[1/(x + y) + 1/(x y)], y/(x2 y2)= 1/2[1/(x y)- 1/(x + y)], we obtain the

following theorem.
THEOREM 1. If Tu, is defined by (3.9), then T,, is a bounded operator on LP’(O, )

whenever 1 < p o and -lip lip.

4. Extension to G L with gv LP’. Finally we want to show that T,,v
does carry v-transforms in Lp’ into corresponding/-transforms. First we need
two lemmas.

LEMMA 7. Let G ,, that is, G L 0 C[0, o) and g, C(O, ). Then
g L and consequently G(z) equals the Lebesgue integral

f gv(y)(yz)l/2j(yz) dy.

Proof Since G e L1, g is continuous on [0, oe). It is thus enough to show that
g(x) O(x-2) for x oe. From (3.7), with v and/ interchanged, we see that for
x > 2 max {t’gu(t 4: 0}, gv(x) f/2 gu(y)],u(x, y) dy. Hence by (3.1), Ig(x)[
_-< (mllg,]] o)/(x2), and g e L1. Since G e, it is infinitely differentiable, and this
finally guarantees that v-inversion holds for G.

LEMMA 8. Let < p < and lip < < 1 1/p. Then the adjoint of T,,,
defined on Lq’-(1/p + 1/q 1), is Tv,u.

Proof Let H e #f and G e /u" Then

f (Tu,vh)g" hu(x)gu(x dx

ffff H(y)(xy)l/2ju(xy)gu(x dy dx

ff ifU(y)G(y) dy hg hvTv,ug,,

since H, g., g e L andI gu(x)(xy)l/2ju(xy dx G(y) .o g(x)(xy)l/2j(xy dx,
by the definition of Jf and Lemma 7. Since C[(0, oe) is dense in Lp’’ and T., is

* ,.g.. Continuitybounded, h may be replaced by any h e Lp’. Hence
of the operators, again, implies that T. ...

We can now prove our Lp’’ integral representation theorem.
THEOREM 2. Let 1 < p < , --1/p < < 1 1/p, H e L, he Lp’. Then

ru,h h..
Pro4 First, by Lemma 8, I (Tu,h)g. I hg for arbitrary G e .. Now

H e L and by Lemma 7, so is g; hence by Fubini’s theorem, and the inversion
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part of Lemma 7,

h,,(z)g(z) dz H(y)g,,,(z)(yz)(yz) dy dz

H(y)G(y) dy.

Also since H, gu L1, this integral equals, by Fubini’s theorem, fhugu. The gu’s run
over the dense (in Lp’) set C(0, ) and so Zu,h hu, as required.

It should be noted that if either of p or v equals -3, and the other is greater,
the proofs become simpler, and Theorems and 2 continue to hold.

5. The case p v + 2k (k +1, +2,...). We turn now to the special
case p v + 2k, k 1, 2, ..., or (v -/0/2 k, and so, by (3.2), v+ 2k,,(X, Y) 0
whenever y > x. By the equality preceding (3.1), we have for y < x,

2F(v + k + 1) y .y2v+2k’v(x’Y)---
F(v + 1)F(k)

(xy)I/2 2F1 V + k + 1 -k + l’v + 1
XV+2

The hypergeometric function is a polynomial of degree k in ya/x. (In fact,
it equals

F(v + 2)F(k) ,o)(1)P_+11 (2y2)/x2); P++I1’0) is a Jacobi polynomial.)
F(v + k +

L/ ,(x, .v)
x -o

where 7j ,j(v, k)is constant and ?’o 2F(v + k + 1)/F(v + 1)F(k). Hence if
G e L and g e some Lp’, Theorem 2 gives

lk fo: )
2j++ /2

7j g,,(y) dy + (--1)kg,,(X).g + 2(x) x : o

(We also used (2.5).) Now G C(0, ) implies g L2’ and so for G C(0, or),

f G(z)(xz)l/2j,+ 2k(XZ) dz

lk foj G(z)(yz)l/2jv(yz dz dy
Xj=O

+ (- 1)k 6(z)(xz)/2J(xz) dz.

For G Cc(0, ), Fubini’s theorem applies where relevant.

o
G(z)(xz)I/2J,+ 2k(XZ) dz

fO kl fO (_)2j+v+l/2G(z) 7j (yz)l/2jv(yz) dy dz
X j=0

(cont.)
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+ (-- 1) G(z)(xz)I/zJ(xz) dz.

Since C(0, ) is dense in Cc(O, ), that is, continuous functions of compact
support in (0, ), this implies that

7j (YZ)/2j(Yz)dY
Xj=O

+ (-- 1)(xz)/zJ(xz).

(Note. One can prove (5.1) for k by the recursion formulas and extend it to
k 2, 3,... by induction. Also, formula (5.1) is valid for all real v.) We obtain,
for any G L1,

g + 2(x) x j= o

2j+v+ 1/2g(y) dy + (- 1)’g(x),

all real v, but we are really only interested in the case v >= 1.
For j 0, 1, ..-, k 1, let S be the operator formally defined by

(5.3) (Saj’)(x)
x f(y) dy.

We shall prove a simple lemma about Sa and use it to obtain some stronger
results about T + 2,.

LZMMA 9. Suppose <= p <= oo and g: 2j + v +3p c, (3 g= 2j + v + 1/2
for p 1. Then there exists a constant Ap Ap(6,j, v) such that [[Sf(x)xap
Ap f(y)ya whenever f(y)y2a++ 1/2 dy O.

Proof First let p m. Then if 3 < 2j + v + 3/2,

oI(Sjf)(x)xal x2J++ 3/2-6 f(Y)Ya y2j+v+ 1/2-6 dy

f(y)y
2j+v+ 3/2-6

If 6 > 2j + v + 3/2, the condition onfimplies that

i(Sjf)(x)xl < f y2j++ /2- dy
x2j++ 3/2-IIf(Y)YII

Ilf(y)yall
IeJ + v + 3/ 1

Now letp= 1. If6<2j+v+ 1/2,

y++ /e-lf(y)lN dN dxI(Xf)(x)lx dx x++

fo2j + v + 1/2
If()lN d
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(by reversing the order of integration). If 6 > 2j + v + 1/2, we use the condition
onfand reverse the order of integration to get

I(Sjf)(x)lx dx if(y)lyyaj +v+ 1/2 X- 2j-v- 3/2 + 6 dx dy

12j + v + 1/2- 61
If(y)ly dy.

The lemma then follows for < p < c by interpolation; if 6 2j + v + 1/2 or
2j + v + 3/2, a change of measure argument is required too.

We note that if v > 1/2, then the lemma holds for 1 =< p =< oe and
c5 < v + 1/2, and in particular for 6 0, with no extra condition onf. Finally, the
lemma and (5.2) give two theorems.

THEOREM 3. Let 6 < v + 1/2. If <= p <= there is a constant Bp Bp(k, v, 6),
k 1, 2, such thatfor G L1, gv+ 2k(x)x6llp <= Bpl[gv(Y)Y p.

TI-IEORErVl 3’. Let < p < and 6 4: 2j + v + 3/2jbr p , 6 2j + v + 1,/2
for p= 1, and k=O, 1,..., j=O, 1,...,k-1. Then there is a constant

Bp--Bp(k,v,f)such that ifG6L, then gv+2k(x)x p < Bp gv(y)y p whenever

gv(y)y2j+v+ 1/2 dy 0

for allj 0, 1,..., k 1.
Note that for k 1, the condition on gv in Theorem 3’ states roughly that

G(0) 0, or that

g(y)(yz)/J(yz) @ o

as z 0. For higher k, the condition would state something about derivatives of
G at 0. Inspection of the proof shows that the conditions are necessary to obtain
the two-sided 6-range.

Note that if t v 2k, k 1, 2, ..., then

v- 2k,v(X, Y) iv,v- 2/(Y, X) ]u+ 2k,u(Y, X)

2F(+k+l) lxU+l/2 x2F(/+ 1)F(k) yy"+l/2 zF / +k+ 1;-k+ 1;/+ 1;

0

for y > x,

for y < x,

and, as before, for all v, and G e L1,

gv-2(x) 7) gv(Y) dy + (-1)gv(x).
j=0

For completeness, we state the following pair of theorems. The proofs would
obviously be along the lines of those of the last pair.

THEOREM 4. Let k 1, 2,..., and 6 > 2k v 1/2. If 1 < p <= oc, there is
a constant Bp Bp(k, v, 6) such that if G L1, ]]gv-2k(X)Xfllp 5 BpIIg(Y)Y p.
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THEOREM 4’. Let k 1, 2,..., <= p <__ and 6 # 2k 2j v 1/2 for
p , 64: 2k- 2j- v- 3/2 for p= 1, j--O, 1,...,k= 1. Then there is a
constant Bp Bp(k, v, ) such that ifG L1, Igv- 2k(x)x [p =< Bp gv(y)y[[ p whenever

g(y)y2k 2j- 3/2 dy O, j=0,1,...,k- 1.

Note that for =< p < , Theorem 3 can be restated as" "Let k 1, 2,...
and < v + 3/2. Then there is a constant Ap(k, v, ) such that if G L1, Ilg-2llv,
< Apllg p,." Theorems 3’, 4 and 4’ can be restated similarly, to give an easy
comparison with the more general result of Theorem 1.

We may also note that we had, in general, by (3.1) and (3.2) and the proof of
Lemma 6,

L,(x, y) _-<
for y < x/2,

x

A(lU’y v)() u+l/2

for y> 2x,

and

(/z, v)x (llog (1 (y2/x2))L (x, y)- -- o
X _) v+l/2

/2x

and

],,v(x, y) ---- O
x

x < y < 2x.

Of the terms in these expansions, the only one which does not yield L or L
results of the kind we have in Theorems 3, 3’, 4, 4’ is that involving a(/, v). This
term vanishes only when #- v is an even integer. Thus we may say that our
theorems give best possible results on L and L, and we evidently have stronger
Lp results (1 < p < ) if/ v an even integer.

Acknowledgment. The author would like to thank Professor Richard A.
Askey for his helpful suggestions in the preparation of this paper.
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SOME MONOTONICITY PROPERTIES OF BESSEL FUNCTIONS*

LEE LORCH?, M. E. MULDOONf AND PETER SZEGO:

Abstract. It is proved that the sequence

rg(t dt
k=

is decreasing for all v, for < < -, and for suitable u, where rgv(t is an arbitrary Bessel function of
order and Cvk its kth positive zero. This subsumes and unifies results obtained by G. Szeg6 and R. G.
Cooke, extending and sharpening some. For one of his results Szeg0 used a Sturm comparison theorem
which is shown here to permit the requisite generalization and to incorporate and extend other results
originally proved by quite different methods. Auxiliary results are derived. Various remarks are col-
lected in the final section.

1. Introduction and results. G. Szeg6 has proved I2, p. 104] that the sequence
of areas

(1) ICC(t)l at
k

under the successive arches of an arbitrary Bessel (cylinder) function rgv(t), with
kth positive zero Cvk, form a decreasing sequence when is selected properly
(see Corollary 3 below) and, using a different approach, that [5, p. 281, (19)]

j=,2k

(2) t-J(t) dt > O, k 2, 3,4,...,
0

where J(t) is the Bessel function of the first kind, Jk is its kth positive zero, and
is the unique value satisfying

(3) t-J(t) dt O.

He showed that -1/2 < =< 0 and mentioned that D. R. Snow had computed e
to be -0.2693885

Using the Sonin integral [5, p. 279, (12)], [11, p. 373, (1)] as indicated by
Szeg6 [5, p. 280, (16) if.I, it can be shown that (2) remains valid when e is replaced
by any larger value, and consequently that

(2’) t-vJ(t)dt > O, z > O, v > .
The inequalities (2) and (2’), with accompanying discussion and inferences,

are found in the Notes which G. Szeg6 appended to a posthumous [5, p. 275, first
footnote] paper of Ervin Feldheim in the course of preparing it for publication.
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Our purpose here is to connect the Szeg6 results with one another so that
each emerges from the method he used to establish the first; his own proof of (2)
follows a quite different line of reasoning. This unification yields (Corollary 2)
a sharper and more general formulation for (2’). Also, a lemma due to R. G. Cooke
[3, p. 282] can be subsumed and generalized by this approach (Corollary 4).
Remarks on these results are collected in 6; 2, 3, 4, 5 are devoted to proofs.

The Szeg6 and Cooke results are contained in the following.
THEOREM 1. For all v, andfor -o < < -, the sequence

(4) if- llv(t)l dt
k=

is decreasing, where is the smallest integer such that

1/212(7 9v2)/(3 27)] /, 0 < < 23-, Ivl(5) cv __> 2(v;,)
(0 otherwise.

Thus, when Ivl >= 1/2 or when <= O.
If O < < 1, then <= 2 and when Ivl >= 1/2. If cv(t Jr(t) (still with

/=< 1), then for any v.
The final assertion in the theorem can be generalized. This is recorded

separately as Corollary 1 because its proof is rather more tedious (and is based on
less elementary arguments) than the other proofs required here and we do not
wish it to obscure the main line of argument. The extension is not required,
for example, for our proof of Szeg6’s positivity results (2) and (2’), nor for our
generalization of Cooke’s lemma (Corollary 4).

COROLLARY 1. If? <= and c >= Yvl (for example, when cg(t) =- Yv(t)), then
in Theorem 1 even for the remaining range Iv[ < 1/2’.

Here y denotes the first positive zero of Y(t), the Bessel function of the.,

second kind.
That this corollary does subsume the final sentence of the theorem follows

from the inequalityj > yx valid for v > -1/2 (see [7 (a), p. 364, (i) for v >__ 0, and
Corollary, p. 366, for 0 > v >-1/2 (after replacing v by -v), whereby
Jr1 > Y-,I > Yv], since y increases with v > -1/2 [11, p. 508, (3)]).

Upon choosing ,- 1- v, Theorem becomes (in view of (3))a sharper
and more general version of (2’). The precise result is as follows.

COROLLARY 2. For v > --1/2, the sequence

(6) t-lcg(t)l at

is decreasing, where is the smallest integer such that

(7) [0 /y v>=1/4.
Here <= 2 for all v > -1/2, and 1 when v >_ 1/4 or when cgv(t J(t). The
Szeg6 inequalities (2) and (2’)follow on choosing v a and c(t) J(t) in (6).

In Corollary 2, also for %(0 Y(t) (or, more generally, for any
%(0 for which c1 >- yvl), at least when v =>/, where/ is defined by the equation
y, 2(/; 1 -#). The root kt is unique, since y increases for v > -1/2 while
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2(v;1 v), as defined by (7), decreases. Moreover, -1/2 </ < 0, since 2(-1/2;)
x/q > .38 > y_ 1/3.1 (the last inequality is obtained from [11, p. 714]) and

2(0, 1)= 1/2x/} < .89 < Yol [11, p. 748].
Using the York University computer facilities, Dr. Marian Shepherd has

calculated p to be -0.1866..., where there is uncertainty about the last digit.
We thank her most cordially.

The Szeg6 result on (1) [2, p. 104] follows on choosing 7 in the theorem;
we have added only the two last sentences in the next corollary.

COROLLARY 3. For all v, the sequence of areas (1) is decreasing, where is the
smallest integer such that

cv > 2(v;1) 1/212(1-- 9v2)] /2 if ,v,<1/2,
8) 0 if Ivl _-> 1/2,
Here < 2. When Ivl >_-1/2, or when (for Ivl < 1/2),ca > y (for example, if
cv(t) J(t) or c(t) Y(t)), then rc 1.

The following result reduces to the Cooke lemma I3, p. 282] in the special
case (t) J(t); it is obtained from Theorem on putting 7 2 v. (Cf. 6 (xi)
for a further generalization.)

COROLLARY 4. If v > 1/2, then

(9) - lCg(t)l dt
k=

is a decreasing sequence.
In view especially of Corollary 1, it is of some interest to characterize those

nontrivial Bessel functions

v(t) AJ(t) + B Y(t) Ivl < -3for which cx >= Yvl in the following way.
THEOREM 2. For 0 =< v < l, c >= yv when and only when AB <0; for

-1/2 < v < 0, c >= y if and only if A 0 or B/A <= -tan vrr. (It is assumed
throughout that A and B are not both zero.)

In the latter case (-1/2 < v < 0), tan vrr < 0, so that c1 => y whenever A
and B have opposite signs, or one is zero, and also for certain values in which they
have the same sign, such as J_ /,(t) + Y_ 1/4(t) which equals x/Jx/4(t). A change
of behavior occurs at v -3.

2. Proof of Theorem 1. This is based on an application of a Sturm-type
lemma, formulated by G. N. Watson [11, p. 518], sharpened and applied in
greater detail by E. Makai [8], to the differential equation

(o) y" + o(x)y o,
where q(x) is monotonic. In particular, this lemma states that the areas under
successive arches of the graph of y(x) decrease (increase) when q(x) increases
(decreases).

Here, as in [2, p. 104], we choose

(11) o(x) 4x-(1 4f12v2 + 4flZxZt)x-2; y(x) x’/Zcgv(xt), fl > 1.
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Regardless of the value of v, qg(x) is an increasing function for all x > 0 for
which

(12) x2 > 1/4(1 4f12v2)f1-2(fl 1)-

Hence, for such x, the areas bounded by successive arches of y(x) form a
decreasing sequence. Now with xa,

fCv,kly(x)l dx - - l%(t)l dr,
k Cvk

,,1/ is the kth positive zero ofwhere 7 3/(2/) and x
We note that 0 < 7 < , since oe >/ > 1. Conversely, given any 7, 0 < 7 < -,

there is a unique/ > 1, namely/ 3/(27), which can be used in (11). Substituting
this value for/ in (12) yields (5) and the main part of the theorem is proved for
0 < <-}.

If 7 <- 0, pick such that 0 _< 2(v; 6) < cvl, 0 < 6 < 23-, and write

fcTV,kt- (t) at e-{t- (t)} ,it,
Cvk

k 1,2,.... Here 7- 3 < 0 so that - is a positive decreasing function.
Hence the second mean value theorem shows that the integral on the left, being
equal to the one on the right, has the same sign as

- Ic(t) dt, k 1,2,

and the principal assertion of the theorem is proved for all 7 =< 0 as well as for
0 < <-}.

The proof shows that z for all %(0 when 7 < 0, in conformity with
definition (5) of 2(v 7).

To prove the assertions concerning the range 0 < 7 =< 1, it is sufficient to
consider 7 1, since 2(v; 7) -< 2(v; 1), 0 < 7 =< 1, for all v.

That z =< 2 for such 7 follows from the inequalities 2(v 7) =< 2(v; 1) N -,, <
and c2 > [6, p. 1254, Remark (i)], val.id for all v.

When Ivl _>- , (5) requires 2(v; 1) 0 and so z 1 for such v and 0 < 7 -<_ 1.
Thus, only the remaining range Ivl < 1/2 need be considered for the final case

in which cg(t) J,,(t), with, still, 0 < 7 -< 1. Here j > j_ /2, 1/2n > 1, since
jv increases with v for v >-1 [11, p. 508], so that jl > 2(v;1)>= 2(v;7),
0<7_<1.

The theorem is proved.

3. Proof of Corollary 1. Without loss of generality it can be assumed that
%(0 > 0 for 0 < < y, since c => yv. Using again the observation, already
made in the course of proving the parts of Theorem 1 concerned with the range
0 < 7 =< 1, that 2(v; 7) -< 2(v 1) for 0 < 7 =< 1, it follows that n ify > 2(v 1).

Hence, it suffices to show that

(13) Yvl >= -}[2(1 9v2)] 1/2, --} < v < -.
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Now [11, p. 748], Yol 0.89... > 1/2x/ and Yvl is an increasing function of v
for v > -1/2 [11, pp. 508-509], so that (13) holds for 0 =< v < 1/2. Since Yvl increases
with v and the right member of (13) is even, this can subsumed in the substantially
more complicated proof for 0 > v > -1/2 which follows.

From [11, p. 714] it is clear that

.38 > y_1/3,1 > .36 > 1/2.
Moreover, Yol > 98-. Writing y(v) Y,,1, we have [11, p. 508, (3)]

d2 fodv2 log y(v)] 4 K(2y(v) sinh t)y’(v)(sinh t) e- 2 dt

-4 Ko(2y(v sinh t)te- 2 dt < O,

since Ko(t) > 0 and K’o(t) < 0 for 0 < < oe. Thus, the increasing function
log y(v) is concave down on the interval -1/2 < v < oe. The respective unattained
lower bounds 1/2 and - for y(- 1/2) and y(O) show that

log y(v)> 3v log-} + log 98-, -1/2 < v < 0.

The result (13) will follow, for this range of v, if

3v log -} + log ] => -log 3 + 1/2 log 2 + 1/2 log (1 9v2),

This is equivalent to

(64/9)3+1 => 2(1 9v2),

which, in turn, follows from the sequence of inequalities

--}<v<=O.

-<=v<=O,

(64/9)3v+ >__ 73v+ et3+ 1)log7 >__ e(log 7)(3v + 1)

=> 4(3v + 1) >= 2(1 9v2), -1/2__< v__<0.

This completes the proof of (13) and that of Corollary 1.

4. Proofs of Corollaries 2, 3, 4. Corollary 2, except for the last two sentences,
follows on specializing 7 to be 1 v in (4) and (5); this gives (6) and (7) respectively.

To show that z =< 2, it suffices to recall that cv2 > 1, all v [6, p. 1254, Remark (i)]
since 2(v;1 v) < 1, -1/2 < v < 1/4.

To show that z when (t) J(t) we recall that Jl increases with v for
v > 1 [11, p. 508]. Thus, from (7),

Jvl > J-1/2,1 1/2g > 1 > /],(V 1 v), V> --.
The Szeg6 inequality follows as described on pairing arches. Corollary 3

follows from Theorem and Corollary 1 on putting 7 1.
Corollary 4 follows on putting 7 2- v in the theorem and noting that

(5) gives

2(v;2 v)= 0, v > 1/2.
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5. Proof of Theorem 2. We may put A without loss of generality, the
case A 0 being trivial. The Wronskian of f(t), g(t) is defined, as usual, to be
/(f, g; t) f(t)g’(t) f’(t)g(t). From [11, p. 76, (1)], with v(t) Jv(t) + BY(t),

2
(e, Y;t)= (L, Y;t)= > 0, > 0.

7tt

The definition (for noninteger v)

Y(t) (csc v)(cos v)J(t) J_

implies (again for noninteger v)

(t) (1 + B cot vrc)Jv(t) (B csc vrc)J_ (t).

With the familiar asymptotic equation

J(t)[2F(1 +v)]-lV, v> -1, ast0+

in mind, we divide the proof of Theorem 2 into four parts.
(i) If O <= v < 1 and B <= O, then cvl > YI.
For B 0 the result is known [7(a), p. 364, (i)].
IfB < 0, then (0) + m, since Y(0) oe. Furthermore, 0 < //(cg, Yv; cv)

-c’(c)Y(c), whence Y(c) > 0 and cvl > YI as asserted.
(ii) If-1/2 < v < 0 and B <= -tan vrt, then again c > Yv.
Here (t)> 0, 0 < < c1, and the reasoning of (i) applies to yield the

desired result.
(iii) IfO <= v < 1 and B > O, then yv > Cv.
Here (t) < 0, 0 < < c, with 0 < ///(, Y; y)= cv(y)y,(y). Thus,

(Yvl) > 0 and y > c.
(iv) If -1/2 < v < 0 and B > -tan vn, then again y > c.
As in (iii), Cgv(t < 0, 0 < < cvl, c(y) > 0, so that yx > c1.

6. Remarks. (i) In Theorem 1, the range of cannot be extended. For
the areas become equal when Ivl 1/2 and increase [8] when Ivl < 1/2. For the same
reason v cannot be extended in Corollary 2 to the value v -1/2, nor in Corollary
4 to the value v 1/2.

(ii) Szeg6’s monotonicity result on areas (Corollary 3) cannot, in general,
be extended to include the area of the first arch, that is, the one beginning at 0
and terminating at Cvl (a relevant question when 1), since [11, p. 394, (8)]

f Yo(t) at o.

For this case (v 0, Cdo(t _= Yo(t)), we have n 1, since Yo .89... >
2(0;1). Here the first arch bounds a smaller area than does the second arch.

This is true also for Y(t), - < v < 0, as can be inferred from Ill, p. 394, (7)],
together with Corollary 1.

(iii) When cdv(t) _= J(t), v > -1, on the contrary, the first arch does begin
the sequence of arches with decreasing areas. This was proved by R. G. Cooke [4].
The example in (ii) shows also that Cooke’s theorem cannot be extended from
J,(t) to arbitrary cd,(t), not even to Y(t).
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(iv) A particularly simple proof of Cooke’s theorem [4] has been devised by
J. Steinig [9].

For the range Ivl > 1/2, E. Makai proved [8] results of Cooke type [4] in a more
general setting, in a very neat way, using the differential equation method employed
here in 2.

(v) There is a misprint in 2, p. 104] in describing Szeg6’s result on (1). There,
the value of ,(v" 1) in (8) is printed with the square root replaced by the cube
root. This slip was noticed also by J. Steinig, as we learned from correspondence
with him.

(vi) Theorem 1 and Corollaries 1, 2 and 3 give conditions under which
< 2 in (4). However, for Ivl < 1/2, can be arbitrarily large, when 7 (<) is

sufficiently close to 23-. More precisely, given and v, where Ivl < 1/2, by choosing
7 < properly we can have at least the first elements of the sequence (4) increase
before the sequence begins to decrease. This is a consequence of the Sturmian
lemma used in 2. All that is needed is to pick/ in (11) so that qg(x) is a decreasing
function for 0 < x < cv, for example, by choosing so that, in (5), 2(v; 7) cv,
Ivl <

(vii) R. Askey, in the final paragraph of [1], advances an interesting conjecture
related to (2’) and (3), by allowing the exponent of the factor t-1 in the integrand
to differ from the order of J,(t).

(viii) J. Steinig utilizes integrals similar to those occurring in (4) in his study
of the sign of Lommel functions [10].

(ix) The differential equation (10), with qg(x) defined by (11), can be used also
to prove Theorem 5.4 of [6, p. 1253]. Doing so eliminates the need to separate
the cases Ivl >= 1/2 and =< Ivl < 1/2 (as was done in [6]), since 0’(x) is completely
monotonic, 0 < x < , for Ivl _-> 1/2 when/ 23-.

(x) Theorem 5.4 [6, p. 1253] makes more precise the. result of Corollary 3
when Ivl >= 1/2 since that theorem shows, for such v, that the sequence ofareas is
completely monotonic. A similar partial (in v) extension of Theorem 1 of this note
can be effectuated by the method of proof of Theorem 5.4 of [6].

(xi) Corollary 4 (Cooke) can be strengthened similarly [6, Theorem 5.1,
p. 1251; Theorem 5.2, p. 1252]. The sequence (9) is completely monotonic, not
merely decreasing.

Acknowledgment. The authors wish to thank the referee whose careful read-
ing led to the clarification of several points. Similar thanks go to Professor J.
Steinig.
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AVERAGED INTEGRAL TRANSFORMS*

D. M. ROGNLIE$ AND B. C. CARLSON:

Abstract. An integral transform f(s)= f(t)tp(s, t)dt can be averaged over the convex hull of
{st, -", Sk} to produce an analogous function F(s, ..., Sk) of several real or complex variables. The
question arises whether it is legitimate to take the average under the integral sign, so that F(sl, ..., Sk)

f(t)O(Sl, ..., k" t) dr, where O is the corresponding average of q. Conditions for the validity of this

equation are of interest in the theory of special functions because the kernel (I) may be a Bessel function,
elliptic integral, or other hypergeometric function when q is the kernel of a Laplace, Fourier, or Stieltjes
transformation. Sufficient conditions ofvalidity are established in the case ofthese three transformations
and the inverse Laplace, Fourier, and Mellin transformations. The averages have some but not all of
the operational properties of the corresponding ordinary transforms. Some examples are given in-
volving various special functions.

1. Introduction. The one-sided Laplace transformation,

f(s) f(t) e -t dt,

has been generalized in several ways. A function f(tl, "", tk) can be transformed
with respect to each variable separately to produce a multiple Laplace transform
f(sl, ..., sk) [4]. The kernel e -st can be replaced by a similar but more com-
plicated function such as a Whittaker function or Meijer’s G-function with
argument st; there is an extensive but scattered literature about this type of
generalization, and a number of references can be found in [5]. Ofcourse the kernel
of the multiple transform also can be replaced by a more complicated function, as
in [9], for example. In the present paper the function f(t) to be transformed
depends on only one variable, while the transform F(s 1, "’", Sk) depends on several
variables and can be constructed from f(s) by an averaging process. Because
F(s,..., s) f(s), inversion is accomplished by inverting the ordinary Laplace
transformation.

It is the averaging process [2] which provides a natural starting point and
determines the kernel of the transformation. Let a function g be continuous on a
domain in the z-plane containing the points z l, ..., zk and their convex com-
binations u. z : UiZi" We define

(1.2) G(b, z) fE g(u. z) dpb(U),
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where the region of integration is the set E of all positive weights (ul, "’", uk) with
uk U u_ 1. The measure is

(1.3) d/b(u)= F( b - uj-1
i= j= F(bj) dul du,_ 1,

where I" is the gamma function and the parameters b l, bk have positive real
parts (briefly Re b > 0). Since j’ dpdu)= 1, G(b, z) is an integral average of g
over the convex hull of {zl, ..., z}, denoted by con (z). Moreover, G(b, ..., b,;
z x, ..., z) is symmetric in the indices 1, ..., k.

Let the average off in (1.1) be

(1.4) F(b, S) fE f(u" S)db(U),

and let the average of the exponential function be

(1.5) S(b, z) f e d/b(U).

We shall inquire under what conditions (1.1) implies

(1.6) F(b, s) f(t)S(b, -st)dr,

where -st (-st, ..., -st). The kernel S(b,-st) of this averaged Laplace
transformation is in many ways closely analogous to e-, and (1.6) reduces to
(1.1) if sl s. The particular cases of S include some important special
functions such as the confluent hypergeometric function

(17) e- Wt Fl (b c zt) S(b c b wt + zt wt)

Integrals containing the left side of (1.7) in the integrand can thus be put in the
form (1.6) and in some cases evaluated most easily by way of (1.1) and (1.4).

Several other transforms will be averaged in a similar way. In the case of the
Stieltjes transform the kernel is a power instead of an exponential function, and
the average of a power will be denoted by

(1.8) Rt(b, z) fE (U. Z) dUb(U), 0 , con (z).

Special cases of the R-function include Legendre functions, elliptic integrals, and
the hypergeometric function 2F1.

For each type of transformation, the same problem occurs that we confront
in passing from (1.1) to (1.6). The integration which converts f(s) into F(b, s) must
be taken inside the integral in (1.1) to obtain (1.6). The change in order of integration
will be justified in 2 when the first integral is a multiple integral over E of the type
occurring in (1.4). However, if f is analytic on a domain in the s-plane, the con-
version to F can be accomplished by a single contour integration. This procedure
is used in 3 and leads to less restrictive conditions of validity in some cases.

We discuss in 4 some operational properties of the averaged transforms and
in 5 some examples of the averaged Laplace and Stieltjes transforms. The last
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section contains four lemmas which are used frequently in 2 and 3. For other
connections between averages and transforms, see [3] and [1].

2. Averaging by multiple integrals. We shall average the Fourier, Laplace and
Stieltjes transforms and the inverse Fourier, Laplace and Mellin transforms. In
each case we shall assume conditions on a function which allow the order of
integration to be changed. In the first three cases both the ordinary and averaged
transforms are analytic on certain domains.

2.1. Fourier transform. If h is a function defined on the real line N, the Fourier
transform of h is defined for possibly complex s by

(2.1) h(s) (2rt)- 1/2 h(t) e -is’ dr,

provided that this integral exists. We denote the average of h by H(b, s).
THEOREM 1. Let K and K2 be positive constants, and let a and a2 be real

constants with a < a2. Assume that h is measurable on N and that Ih(t)l
< K exp (--alt), --(3 < < 0, and ]h(t)l < K2 exp (-act), 0 < < . Then h(s)
is analytic on the open strip D {s’a < Im s < a2}. Moreover, if Re b > 0 and
s (Sx,..., Sk) e Dk, then

(2.2) H(b, s) (2)- x/. h(t)S(b, -ist) dr,

where S is defined by (1.5).
Proof. We write h(s) hi(s) + h(s), where

i(s) (2)- x/ 7.i(s, t) dt

and Zl(s,t)= h(-t)es, 7.(s,t)= h(t)e-s for teN+ (the positive real line).
Suppose that al < Px < P < a. To apply Lemma 2 (see 6), let dr(t)= dr,
X= N+, fl {s’Ims>pl}, f2 ={s’Ims<P2}. Now Zi(s,t), i= 1,2, is
analytic in s for each e N+ and measurable in for each finite s, and [Zi(s, t)l
=< K exp (-IPi- ai[t), s e fi, e ff+. Thus [Zi(s, t)[ is majorized by an integrable
function of and, by Lemma 2, hi is analytic on fi. Hence h is analytic on

fx ["1 fz {s’pl < Im s < P2}. Given any s e D we can choose Pl and/92 SO that
s e fx I"l f2. Therefore h is analytic on D.

The integral average of h is

2

fE;O/(b, s) (2rr)- 1/2 i(li" S, t) dt d#b(ll
i=1

by (1.2). We now choose Pl and P2 so that Sl, ..., sk e fl f2. Then u.seD. f’l "2
and hence I;i(u s, t)l is majorized by an integrable function of as before. We can
therefore apply Lemma 3 with 2 N+ and /q9 Zi to obtain (2.2). It follows from
Lemma 1 that/(b, s) is analytic in b and s on a domain in CZk defined by the con-
ditions Re b > 0 and s e D; similar remarks apply to the Laplace and Stieltjes
transforms below.

We are obliged to an Editor for these references.
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The two-sided Laplace transformation is the same as (2.1)except that the
kernel e -ist is replaced by e -st. Thus Theorem still holds if the strip D is now
defined to be {s’al < Re s < a2} and the kernel in (2.2) is replaced by S(b, -st).

2.2. Laplace transform. The one-sided Laplace transform f of a functionfis
defined by (1.1) and its average F by (1.4). The proof of the next theorem is similar
to that of Theorem 1.

THEOREM 2. Let f be measurable on +. For real constants M > 0 and a,
assume that If(t)l M eat, +. Then f is analytic on the half-plane Re s > a.
Also, if s 1, "’", sk lie in this half-plane and if Re b > 0, then (1.6) is true.

The averaged Laplace transform is related to other integral transforms, the
most interesting case being the Hankel transform

(2.3) hv(X h(t)J(xt)(xt) 1/2 dt,

where Jv is a Bessel function. By (5.7) we have

(2.4)

by(x) h(t)) 2v
+ 1/2, v + 1/2; ixt,--ixt)(xt) 1/2 at

1(1 + v)

2-VxV+ 1/2

r( + v)
(v + 1/2, v + 1/2;-ix, ix),

where F is the averaged Laplace transform of f(t)= V + 1/2h(t) with b --b2

v+1/2, Sl= -ixands2 ix.
Incidentally, F(b, s) in (1.6) is not the multiple Laplace transform of F(b, t),

where F(b, t) is the average of f(t). This is shown by the example f(t) t, k 2
and bl b2 1. We have f(s) s -2 Re s > 0, and (1 l’x,y) (xy)-I
Rex > 0, Rey > 0. On the other hand, F(1, 1;t,v) 1/2(t + v) and its double
Laplace transform is- e -xt dt e-XV(t "+" U) du 1/2(xY)- l(x-1 t_ y- 1).

2.3. Stieltjes transform. Ifg is a function defined on [ / and a is any complex
number, then the Stieltjes transform of g is defined by

;o(2.5) ,a(S) g(t)(s + t)-" at

whenever this integral exists. Since the integral is not well-defined if s lies on the
negative real axis, we assume s 4:0 and larg sl < t and we take larg (s + t)[ < r
for e N+. The average of a will be denoted by Ga(b, s).

THEOREM 3. Let g be measurable on + and let a be a fixed complex number.
Assume that [g(t)[ =< Mt- 1(1 + t)Rea-2(, e +, where M and are positive con-
stants. Then a is analytic on the s-plane cut along the nonpositive real axis. More-
over, if Re b > 0 and if the convex hull con (s) is contained in the cut plane, then

(2.6) G,(b, s) g(t)R_,(b, s + t) dr,

where R_ is defined by (1.8) and s + t (Sl + t, ..., sk + t).
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Proof. In Lemma 2 let X + and let fl be a bounded open set whose
closure is contained in the cut plane. Take dr(t) dt and q(s, t) g(t)(s + t) -a.
Then q(s, t) is measurable in for each s and analytic on for each +.
Since [arg (s + t)[ < g by assumption, we have

[q(s, t)[ [g(t)(s + t)-a[ __< [g(t)[elml[s + t[ -Rea

enlImalMt- 1(1 + t)gea-2f(t),

where

f(t) sup Is + t[ -R, t +.
Being the supremum of a collection of measurable functions, f is measurable.
Since Is[ is bounded away from zero on and also bounded above, f(t) remains
bounded as 0 and tRe"f(t) remains bounded as . Hence [q(s, t)[ is
majorized by an integrable function, and it follows from Lemma 2 that a is
analytic on . Given any s in the cut plane we can choose fl so that s ft. Hence,, is analytic on the cut plane.

The average of, is

(2.7) G,(b, s) g(t)(u, s + t) dt dPb(U),

the integrand being measurable on E x E+. Choose a bounded open set in
the cut plane so that con (s) . Then, since u. s, the same argument as
before with s replaced by u. s shows that ]g(t)(u-s + t) -a] is majorized by an
integrable function of t. Applying Lemma 3 with 2 [+ and g and using
(1.8), we have (2.6).

The inverse Fourier, Laplace and Mellin transforms are of the form

f(t) fz f(s)q(s, t)ds,

where 2 is a path in the complex plane. We are not concerned here with inversion
theorems, and the notation is not intended to imply that f is necessarily the direct
transform off. In each case the conditions whichfwill be assumed to satisfy include
analyticity on a strip containing 2. They make f continuous on either or +.

2.4. Inverse Fourier transform. If/i is analytic on a horizontal strip in C, its
inverse Fourier transform is defined by

(.S) () ()- / (s) e ds, e ,
+i

where the path of integration is a straight line Im s V lying in the strip. The
average of h will be denoted by H(b, t).

THEOREM 4. Let h(s) be analytic on the strip al < Im s < a2 and satisfy
h(s) 0 as Is[ in the strip. Assume h is Lebesgue integrable on some line
Im s V, al < /< a2. Then h as defined by (2.8) is continuous on and independent
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of 7 for a < 7 < a2. Also, if Re b > 0 and t (t l, .", tk) Ek, then

(2.9) H(b, t) (2n)- 1/2 h(s)S(b, ist) ds,
O-oo+i?

where ist (istl, ..., istk).
Proof. Let 7, a < 7 < a2, be fixed. Then

(2.10) h(t) (2n)- 1/2

Since/ is Lebesgue integrable on the line Im s 7, this integral exists and defines
a continuous function of on , and so h is continuous on for this 7. A simple
application of Cauchy’s theorem shows that h is independent of

We write the average of (2.10) as

H(b, t) (2n)- 1/2 fl(O" + iv) ei+ i)(u’t) da db(U).

The exponential factor is measurable on E x [ and is bounded in modulus by
f eIlr, where T max {Itl, "", Itl}. Since Ilf is integrable on [2, we may
apply Lemma 3 with 2 [2 and h to obtain (2.9).

The proofs of the next two theorems are similar to that of Theorem 4.

2.5. Inverse Laplace transform. If f is analytic on a vertical strip in C, its
inverse Laplace transform is defined by

_I+i f(s) e’ ds, [,(2.11) f(t)

where the path of integration is a straight line Re s =7 lying in the strip. We
denote the average off by F(b, t).

THEOREM 5. Let f be analytic on the strip a < Re s < a2 and satisfy f(s) - 0
as ]s]
a < 7 < a2. Then f as defined by (2.11) is continuous on

for a < 7 < a2. Moreover, if Re b > 0 and t [k, then

[.+io

1 f(s)S(b, st) ds.(2.12) F(b, t)

2.6. Inverse Mellin transform. The inverse Laplace transform is converted
into the inverse Mellin transform by choosing the new variable x e -t, [.

Thus, if is analytic on a vertical strip in C, its transform is defined by

(s)x ds, x +.(2.13) m(x) -ii _,o
We denote the average of m by M(b, x).

THEOREM 6. Let satisfy the same assumptions as f in Theorem 5. Then rn as

defined by (2.13) is continuous on + and independent of 7 for a < 7 < a2. If
Re b > 0 and x +, then

_iv+ io (s)R_(b, x) ds.(2.14) M(b, x) /’
),- io
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The function M is continuous in x on R+ by Lemma because m is continuous
on N+. Similar remarks apply to H and F above. All three functions are holo-
morphic in b for Re b > 0.

3. Averaging by contour integrals. If a point s of the complex plane is en-
circled by a positively oriented contour /, and if g is holomorphic on 7 and its
inner region, the Cauchy integral formula states that

(3.1) g(s) g(z)(z s)- dz.

Since the average of s- is R_ (b, s) by (1.8), the analogue of (3.1) is

(3.2) G(b, s) g(z)R_ (b, z s) dz,

where z- s (z- s 1,..., z- sk) and / encircles s 1,..-, sk but need not en-
circle con (s). It is shown in [2] that G(b, s) is a holomorphic function of b and s
if

_
bi - 0, 1, 2, and s 1, "’", sk lie in the inner region of 7- The function

defined by (3.2) is an analytic continuation of the function defined by (1.2).
To avoid dependence on the rather lengthy proof of these statements [2], we

preferred in 2 to use only the representation (1.2). However, we now show
briefly how to use (3.2) to relax the assumption made previously for the three
direct transforms that Re b > 0. For the Stieltjes transform one can also allow
the variables s 1,..., sk to lie on both sides of the negative real axis instead of
requiring their convex hull to lie in the cut plane. Howeeer, the contour-integral
method is not useful for the inverse transforms, which are not in general re-
strictions of analytic functions to the real axis.

Taking g(z) e -iz’ in (3.2) and defining z (z,..., z) and t (t, t),
we find

(3.3) S(b, ist) e-iZ’R_ l(b, Z S) dz,

and similarly, with g(z) (t + z)-" where e N +,

(3.4) R_o(b, t + s)= (t q- Z)- aR l(b, z s) dz.

Throughout this section ; denotes a positively oriented rectifiable Jordan curve
which encircles s 1,"., s, and in (3.4) ; lies in the z-plane cut along the non-
positive real axis. We define c = b and assume c - 0, 1, 2, For the
following theorems the proofs of analyticity are the same as for the corresponding
theorems of 2.

3.1. Fourier and Laplace transforms.
THEOREM 7. Theorems and 2 remain true if the assumption Re b > 0 is

replaced by c O, 1, -2, ..., with S now given by (3.3).
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Proof. Referring to the proof ofTheorem 1, we choose /so that , 1 f"l ")2"
By (2.1) and (3.2) we have

"(b, s)=
(2n)-112 I f02hi

{h(- t) ei’ + h(t) e-i’z}R_ l(b, z s) dt dz.

Now h is measurable on [R and, by the same argument as before, h(-T-t)e +itz is
majorized on 7 by an integrable function of t. By Lemma 4 and (3.3) we obtain
(2.2). The proof for the Laplace transform is similar.

3.2 Stieltjes transform.
THEOREM 8. Theorem 3 remains true if s l, "", s lie in the cut plane and the

assumption Re b > 0 is replaced by c v O, 1, 2, ..., with R_ now given by (3.4).
Proof. Let /lie in the cut z-plane. By (2.5) and (3.2) we have

G(b, s) / g(t)(z + t)-aR (b, z s)dt dz--1

Now g is measurable on E+ and, since E+ and 7. lies in the cut plane, (z + t)
is continuous on / E+. As in the proof of Theorem 3, Ig(t)(z + t) -"] is majorized
on 7 by an integrable function of t. By Lemma 4 and (3.4) we obtain (2.6). The
function G,(b, s) is holomorphic in b and s if c 4= 0, 1, 2, and s l, "’, Sk lie
in the cut s-plane; similar remarks apply to the Fourier or Laplace transform
with s l, ..., Sk in a strip or half-plane.

4. Operational properties and convolutions. Some ofthe operational properties
of ordinary Fourier, Laplace, and Stieltjes transforms carry over at once to the
averaged transforms while other properties do not. If G(b, z) is defined by (1.2)
and if H(b, z) is similarly the average of h(z), then G(b, z) + fill(b, z) is the average
of g(z) + flh(z), where and fl are constants, but the average of g(z) h(z) has in
general no simple relation to G and H. Also, the average of g(z + fl) is G(z + [I),
where ,z + fl (zl + fl, Zk + fl). We assume here that g is continuous on
con (z +

As an example consider the function f(t) with Laplace transform f(s) and
averaged transform F(b, s). The function f(t/) has ordinary Laplace transform
f(s), and it follows from the last paragraph that the averaged transform is
(b, czs). The function eta’f(t) has ordinary transform f(s- fl) and averaged
transform F(b, s [I). Similar statements hold for the Fourier transform and, in
the first case, for the Stieltjes transform.

If n is a positive integer the function (-t)"f(t) has the ordinary Laplace
transform ft")(s), and its averaged transform is

(4.1) Ft")(b, s) F(b, s)
i=l

(see [2, (5.16)]). A similar statement holds for the Fourier transform. The averaged
Stieltjes transform (2.6) satisfies

(4.2) (")(b, s) ,(b s))(a).Go+
which reduces if Sl Sk to the corresponding known property of the
ordinary transform. Here (a), a(a + 1)... (a + n 1).
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The Laplace transforms of f’(t)= df/dt and ’of(x)dx involve sf(s) and
s-if(s), respectively, and the averages of these functions do not have a simple
relation to F(b, s). Thus the property of Laplace (and Fourier) transforms which
makes them useful in solving differential and integral equations does not carry
over to the averaged transforms. If g(t) has the ordinary Stieltjes transform ,a(S),
as in (2.5), the averaged Stieltjes transform of g’(t) is easily found to be

(4.3) aGa+ l(b, s) R_a(b s)g(0), Re a > 0,

while that off’o g(x)dx is

(4.4) (a 1)- lra_ l(b, s), Re a > 1.

Both statements are generalizations of well-known properties of the ordinary
Stieltjes transform.

The ordinary Fourier or Laplace transform of a convolution of two functions
is the product of their transforms. This property also fails to hold for averaged
transforms because the average of a product is not the product of the averages.
However, it is useful to regard the convolution

(4.5) h(x) f* g(x) f(x t)g(t) dt, x e ,
as an integral transformation with f(x- t) as kernel. We can then express the
averaged transform,

(4.6) H(b, x) fE h(u. x) d/b(u),

as a convolution transform of g with an averaged kernel.
THEOREM 9. Let f and g be Lebesgue integrable on , and assume that f is

finite and essentially bounded on . If h f* g and Re b > 0, then

(4.7) H(b, x) F(b, x t)g(t) dt, x

where x t (x t, xk t).
Proof. Since f is essentially bounded on E, there exists a finite constant

M > 0 such that Ifl =< M almost everywhere on [. Thus

If(x- t)g(t)l dt <= M [g(t)l dt MN,

where N is finite. It follows by (4.5) that Ih(x)l-< MN. Since h is bounded and
Lebesgue integrable (see [8, Theorem 7.14]), and since f is finite, essentially
bounded and Lebesgue integrable, the averages H(b, x) and F(b, x t) exist and
are finite on by [7, Theorem 2.3]. Moreover, by (4.5) and (4.6),

(4.8) H(b, ) f(u t)g(t) dt dlb().
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The integrand is measurable on E x [ and, if ]b] is the total variation of/b,

If(u" x- t)g(t)[ dt dlpb(u)l __< MN d[pb(u)[ < o.

By Fubini’s theorem we may change the order of integration in (4.8) and thus
prove (4.7).

5. Examples. Besides establishing some interesting integral representations
of certain special functions, Theorems to 8 provide a new way of evaluating the
ordinary transforms of some rather complicated functions. As examples we shall
consider the Laplace transforms of some products of confluent hypergeometric
functions. The averaged Stieltjes transform will be used to evaluate some integrals
of elliptic integrals and of other hypergeometric functions.

We shall need the following list of properties of the R and S functions and
their relations to other special functions. Their homogeneity is expressed by

where 2z (2z,
the properties

(5.2)

(5.3)

Rt(b Z) tRt(b z), S(b, z + k) exS(b, z),

’’, ,Zk) and z + k (z + 2, ..., z "-t- ,). The R-function has

g,(o, b, b", x, y, z) R,(b b", y, z)

yaR_.(b c b; x, y) ybR_b(a, c a x, y),

(5.4) R-c(b,z) H z?bi, C--- Z hi"
i=1 i=1

The inverse circular, error, Bessel, and second Legendre functions are related to
R and S by

(5.5) R_ 1/2(1/2, 1; x, y) (y x)-1/2arc COS (x/y) 1/2, 0 <= x < y,

(5.6) erf (x) 2n-/2xS(1/2, 1; -x2, 0),

X
(5.7) Jr(x)

2vF(1 + v)
S(v + 1/2, v + 1/2;ix,- ix),

(5.8)
nl/2F(v + 1)

R-v-(v + 1, v + 1;x + 1,x- 1).Qv(x)
2v+ F(v + 3/2)

(5.9) R_,(b, z)
F(a)F(a’)

t’a’-I H (t nt- Zi)-bidt,
i=1

a+a’=c=bi,
where a and a’ have positive real parts and [arg zi[ < n for i= 1,-.-, k. The
integral is elliptic if four of the parameters a, a’, b, .-., b are half-odd-integers
and the rest are integers. For example, the special case denoted by RK is related to
Legendre’s integral K(k) by

(5.10) RK(X y) g 1/2(1/2, 1/2, x, y)
2 1/2 1/2]=-y vF(1-x/y)

Finally, R has the integral representation [10, (1.5)]
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By applying Theorem 7 to the Laplace transformation

(5.11) e-St dt F(a)s-",

where a and s have positive real parts, we find

(5.12) t"- 1S(b, st) dt F(a)R_ a(b, s),

By (5.1),

(5.13) t"-1 e-ptS(b,

c#O,

-st) dt F(a)R_,(b, p + s),

where Re a > 0, p (p,..., p), Re(p + s) > 0, and c # 0,
ticular, if k 2 and a c b + b’, (5.4) shows that

-2,-... In par-

(5.14) fo e- v,S(b, b’ zt, wt) t r(c)(p + z)- (p + w)- b,

Regarding this as a Laplace transformation, we apply Theorem 2 and [2, (4.22)]
to obtain

(5.15)

S(fl, fi’ rt)S(b, b’ wt) dtqt, zt,

F(c) [uq + (1 u)r + z]-b[uq + (1 u)r + w] -b’ dp(,,)(u)

--F(c)(r+ z)-’(r+w)-b’R_ 7-c,b,b’,’l
q+z _q+)’r + z’r +

where c=b+ b’,7= fl+fi’,Rec>0, Refl>0, Refl’>0, and q+z,q+w,
r + z, r + w are nonzero and have arguments less than z/2 in magnitude.

We illustrate the use of (5.15) by finding two Laplace transforms, the first
one previously known and the second apparently not. With the help of (5.1),
(5.2), (5.7) and (5.8), we have

(5.16)

re-s J(at)J(bt) dt

(ab/4)v t2vS(v +1/2 v + 1/2" -st + iat -st- iat)
[r(v + )]

S(v + 1/2, v + 1/2;ibt,-ibt)dt

abr(v + 1/2)
g/2I-’(V -+- 1)

R_ v_l/2[v +1/2, v +1/2;s2 +(a+ b)2,s2 + (a-b)2]

rc(ab)l/2 Qv-1/2
S2 -it- a2 q- b2

2ab
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where Re v > 1/2 and all four of the numbers s 4- ia 4- ib have positive real parts.
The second illustration, which makes use of (5.1), (5.2), (5.5) and (5.6), is

;e-,t- 1/2 erf [(Zt) /2] erf [(wt) /2] dt

4(zw)/ t/S(1/2 1"-st-zt,-st)S(1/2 1"-wt O)dt

(5.17)

ZW) 1/2

2 ss R_1/2[1/2, 1;s(s + z + w),(s + z)(s + w)]

[ zw j] 1/2(ns)-/2 arc sin
(s + z)(s + w

where s, s + z, s + w, and s + z + w are nonzero and have arguments less than
/2 in magnitude. This integral is not listed in the compilation by Ng and Geller
[6], nor is a similar integral [7] involving the product of an error function and a
Bessel function.

By applying Theorem 8 to the Stieltjes transformation

(5.18) (s + t)-" dt B(v, a- v)s-",

where Re a > Re v > 0 and B is the beta function, we find

(5.19) 1R_a([I s + t) dt B(v, a v)Rv_a([I, s),

where s 1,"’, s, are points in the cut s-plane, t (t, ..., t), II (ill, "’", fix),
7 flj, and 7 - 0, 1, 2, If a 7, (5.19) reduces to (5.9) by.way of (5.4).
Few other special cases of (5.19) are listed in present tables, even for 2.
Choosing 2 and a 7 fl + fl’, we use (5.3) to obtain

f; l(z + t)-a(w + t) -’ dt B(v,- v)R_(fl, if;z, w)
(5.20)

B(v, v)w + R_( v, v z, w).

Regarding this as a Stieltjes transformation, we apply Theorem 3 and [2, (4.21)]
to prove

fo’t-lR_a(b, + t)(w + t) -’ dtZ

(5.21)
B(v, v)w-’ fE R_a(y v, v; u. z, w) d/b(u)

B(v, c)w-’R_(bl, "’", bk, v;zl, "’", zk, w),

where we require v c in the last step. In summary, the first and third members
of (5.21) are equal if v+c=fl+fl’, c==lbi, Reb>0, Rev>0, and
zl, ..., Zk, W are points in the plane cut along the nonpositive real axis. The last
condition is permitted by analytic continuation.
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We illustrate the use of (5.21) by evaluating two integrals which do not seem
to be listed in present tables. The first, with an elementary integrand, is

t"- a(z + t)-" arc cos dt
+

(5.22)
--(y X) 1/2 ta-2(Z + t)-R_ 1/2(1/2, X + t, y + t)dt

B(a 1,3/2)(y x)l/2z 1R_ 1/2(1/2, 1, a 1 x, y, z),

where Re a > 1,0 _< x =< y, and z is in the cut plane. If a is half an odd integer, the
last R-function is a complete elliptic integral of the third kind [10].

The second example, with the elliptic integral (5.10) in the integrand, is

(5.23) t 1RK(X + + t)(Z + t) 1/2 dt B(s 1)z-1/2Ry _1/2(1/2,1/2, S’

where Re s > 0 and x, y, z are points in the cut plane. If s is half an odd integer, the
R-function on the right side is an incomplete elliptic integral of the first (if s 1/2)
or second kind. If s is an integer, it is a complete elliptic integral of the third kind.

6. Four lemmas. The first two lemmas were used in showing that certain
transforms are analytic or continuous on specified domains. Lemmas 3 and 4
were used in changing the order of integration in 2 and 3, respectively. Although
Lemma 2 is useful in other contexts, we have not seen it stated elsewhere in print
except in a weaker form [8, p. 220, Problem 15] in which Iol is required to be
bounded.

LEMMA 1. If g is holomorphic on a domain D in the complex plane C, then
G(b, z) g(u. z) d/b(u) is a holomorphic function of b and z on a domain Q c c2k
defined by the conditions Re b > 0 and con (z) c D. Ifg is continuous on an interval
I of the real line, then G(b, t) is holomorphic in b for Re b > 0 and continuous in
t on Ik.

Proof. Lemma is a modification of [2, Theorem 1].
LEMMA 2. Let v be a real or complex measure on a measure space X, an

open set in C, and tp a function defined on X. Assume that q(s, t) is a measurable
function of for each s , q(s, t) is analytic on for each X, and Iq(s, t)l is

.majorized on ) by a function @(t) which is Lebesgue integrable with respect to v on
X. For each s define

(6.1) Fp(s) fx qg(s, t)dv(t).

Then Fp is analytic on f.
Proof. From the definition of we have, for s, So f and s 4: So,

(6.2) 5(S)s -- So5(s) fx qg(s, t)s -- s oqg(s’ t)
dv(t).

Let K c f be a compact set and let 7 = f be a positively oriented rectifiable
Jordan curve of length L such that 7 U 1(7) = f and K = I(7), where 1(7) denotes
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the interior of 7. Let 6 be the distance between K and 7. Then, since (p is analytic
on 7 I(7), we apply Cauchy’s integral formula and obtain

q,ls, t) OlSo, t)
S SO 27cls- sol z- s z- so

dz

/" Iq0(z t)l
2 Iz- sl Iz- sol Idzl

L(t)/2rr62,
where s, so e K, s 4= So, and e X. Thus

q,(s, t) q,(So, t)
S SO

is measurable in and is majorized by an integrable function. We choose So to be
an interior point of K and let s tend to So through a sequence of points in K. By
the Lebesgue dominated convergence theorem we may take the limit under the
integral sign in (6.2). Since qg(s, t) is analytic in s, the right side of that equation
tends to the finite limit

(?qg(So,t)dv(t)
x So

and hence 5 has a derivative at So. For every So f we can find a compact set
K c f containing So in its interior, and thus 5 is analytic on f.

LEMMA 3. Let z1,’", zk be fixed complex numbers, let 2 be a connected sub-
set ofa straight line in C, and let lb be the measure defined by (1.3) on the set E of
all positive weights (u l, "’, uk) whose sum is unity. Assume that (t) is measurable
on 2, qg(u. z, t) is measurable on E x 2, and [(p(u. z, t)[ f(t) on E x 2, where [1 f
is Lebesgue integrable on 2. Then, for Re b > 0,

(6.3)

Proof. The integrand on the left of (6.3) is a measurable function on E x 2.
We have also

where I/bl denotes the total variation of /b. It is easy to verify that II(E)
--.f dl/b(u)l < oe. Since the second factor on the right also is finite, Fubini’s
theorem can be used to change the order of integration on the left-side of (6.3).

LEMMA 4. Let 7 be a positively oriented rectifiable Jordan curve in C and let
s l, ..., s be fixed points in the inner region of 7. Let 2 be a connected subset of a
straight line in C and assume that is measurable on 2 and that (p(z, t) is continuous
on 7 x 2. Define z (z, ..., z). If z lO(t)q)(z,t)ldt is bounded on 7 and if
2= bi =/= O,- 1, -2,... then

(6.4) f fa ,(t)q)(z, t)R_ l(b, z s) dt dz fa f g,(t)q)(z, t)R_ x(b, z s) dz
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Proof. Since R_ l(b, z s) is continuous in z on 7 [2, Theorem 4], the inte-
grand on the left of (6.4) is measurable on 7 2. Even if the integrand and dif-
ferentials are replaced by their absolute values, the integral is finite because of the
assumption of the lemma and because R_ is bounded on 7. We may therefore
apply Fubini’s theorem again.
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SPHERICAL CONVERGENCE AND CERTAIN SINGULAR
INTEGRALS*

RICHARD ESCOBEDOf

Abstract. This paper establishes a partial generalization to Euclidean N-space of a one-variable
result which relates convergence of the conjugate Fourier series of a function to the existence of the
conjugate function. Conjugates are taken with respect to a certain class of Calder6n-Zygmund kernels.

1. Introduction. Letf be a function in LI(-n, n] and periodic of period 2n.
For m an integer we set

f(m) (2n)- f(y) e-" dy.

If K(x)= 2x-, then/(x) denotes its principal-valued Fourier transform"

/(x) lim lim (2n)-1 K(y) e -ixy dy.
r-O R ]( R,R)-(-r,r)

In particular, K(0) 0 and K(m) -i sgn m.
Let x be a fixed point. Suppose that f(m) O(1/m). Hardy and Littlewood

[2] showed that a necessary and sufficient condition that

lim f(m)(m) e-imx (finite)
R Iml <R

is that

lim lim (2n)- l f(x y)K(y) dy
rO R- dr

We intend to establish here a (partial) generalization of this theorem to
Euclidean N-space, En, N >_ 2, when K(x) belongs to a certain class of Calder6n-
Zygmund kernels. We shall use some techniques from a recent paper by Professor
Victor L. Shapiro [5].

2. Notation. We shall use vector notation"

X (X l, XN) Y (Yx,’", YN),

(x,y)=xly + +xuyu and Ixl=(x,x)/2.

We let Tu {x]- n < xj =< n, j 1, ..., N}. f will stand for the N-dimensional
unit sphere centered at 0 and df for the natural (N- 1)-dimensional volume
element of f.

Iffis a function in L(TN) and periodic of period 2n in each variable, and m is
an integral lattice point in Eu, then

f(m) (2n) -u f f(y) e -i(m’y) dy.
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Let P,(x) be an homogeneous polynomial of degree n, n => l, which is harmonic
in EN, and let x’= x/Ixl. Then P,(x’) is called a surface spherical harmonic of
order n and P,(x’)/[x]N= P,(x)/[xl"+ is called a spherical harmonic kernel of
Calder6n-Zygmund type. Let K(x)= P,(x)/Ixl"+. Then /(x) designates the
principal-valued Fourier transform of K"

/(x) lim lim (27c)-u f K(y)e -i(x’y) dy,
O R *] B( O ,R B( O ,r

where B(x, R) denotes the N-dimensional closed ball with center x and radius R.
From 4, p. 69] we see that K(0) 0 and for m 0,

K(m) (--i)n2NF((n P,

If Y, is a surface spherical harmonic of order n, then Y, will denote the
sup norm of Y, on f.

For future reference, we list here two useful formulas (viz., (2.1) and (2.2)),
the first of which can be found in 7, p. 368] and the second in 4, p. 5].

j)iJJ(2.1). eizcs 2VF(v) (v + +2(Z)P(cos q),
Zj=0

where v (k 2)/2, Jfl is the Bessel function of the first kind of order fl and the

P are the Gegenbauer (ultraspherical) polynomials defined by the equation

(1 2r cos 0 + r2) E r2P(cs 0).
j=l

For the second formula, assume that W is a function in L on f with respect
to df. Then W can be expanded in a series of surface spherical harmonics
1, Chap. 11], W = 0 Y(x), where

(2.2) Y(x) F(v)(J2+ +i v) f, P[(x,. y)]W(y) d)(y).

(Y is a surface spherical harmonic of order j.)

3. Statement of Theorem. For our theorem we shall take a more general
Calder6n-Zygmund kernel.

THeOReM. Let K(x) W(x)/Ix], where W(x) = Y,(x/]xl), Y, is a surface
spherical harmonic of order n and

(3.1) nllYll < oo.

Letfs L(TN) be periodic ofperiod 2 in each variable. Assume

(3.2) If(m)l o(1/R)
R<_lml<_R+

and Jbr the fixed point x Eu,

lim
Roo l=<lml=<R

f(m)(m) ei("’) e (finite).
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Then

(3.3) li_,m lim (2re) -u BR O,R B(O ,r
f(x y)K(y) dy

Proofof Theorem. We first establish a lemma which will be useful in the proof
of our theorem.

LEMMA. Assume the hypotheses of the above theorem and also assume that
f(o) O. Then

(3.4)
lim | f(x y)K(y)dy (2g)v+l lim
R dB(O,R)-B(O,r) R’- l_<lml_< R,

ei(m,XT(m)

,1= (-i)"Y,
m

x,,v(Imr)

for every x in Eu where v (k 2)/2 and x,,v(s) fF (J,+ v(u)/u + ) du.

Proof ofLemma. Define G(x) [.B(O,R)- B(O,r)f(x y)K(y) dy. Then

J m fT ;l(2rc)N
e dx f(x y)K(y) dy

(O,R)-B(O,r)

(27C)u (O,R)- B(0,r)

K(y) dy fr e-i(m’x)f(x y)dx

(2n)u 0,R,- B0,

e-i(m’y)K(y) dy r e-i("’x)f(x) dx

f(m) e- i(m’y)K(y) dy.

Since G(x) is continuous we have by [3, p. 55] that the Fourier series of G(x)
is Abel summable to G(x) everywhere, that is, for every x e Eu,

t"
(3.5) G(x) lim ei(m’x)-Imlt(m) I e-i("’r)K(y)dy

t 0 0 ]B(O,R) B(O,r)

We now calculate B(O,R)-B(O,r)e-i(m’y)K(Y)dy. From hypothesis (3.1) and the
Lebesgue dominated convergence theorem we have

(3.6)

fB( O ,R B( O ,r

g

f -ilmlocose-i(n’Y)K(y) dy --fi dp e
n=l

-fi dp e Y.(y) drY(y)
n=l

n=12 - dp e Y(y) dn(y),
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where q9 is the angle between y and m. By using (2.1) and the orthogonality of the
surface spherical harmonics we see that (3.6) is equal to

(R j, v(-Imlp)
2T(v) (v + n)i" +

L (- [mIp)VP
dp fn P,(cos q)Y.(y)df(y),

which in turn, by (2.2), is equal to

2F(v) (v+n)i"
2rt+l

(n + v)F(v)
Y

p(_lmlp)

2’. 2rtv+a i"(-1)"Y,
n=l

(2re)+ (-i)"Y,
n=l lmlr U

+v--du.

Hence

e-im’’)K(y) dy
(O,R) B(0,r)

(2rt)+1 (--i)nY
n=l

and so from (3.5) we obtain

(3.7)
G(x) (2re)+’ lim ei(m’x)-Imltf(m) (-i)"Y,

t0 m#0

Now if we can show that

ei(m’x)f(m) y= i)" Y,
m . ImlrlmlR J’u;+ (U)_ du

exists (finite), then we shall have

(3.8)
G(x)- (2)v+l lim

R’--* 1_< iml__<R,

ImlR Jn+v(U

lml u-4-
du,

eim’’)f(m) i)" Y
m

n=l

since spherical summability implies Abel summability to the same sum.
We shall now show that the series is indeed spherically summable. We first

estimate rlmlR (j, (u)/u + ) du. Assuming for the moment that n > 3, we integrated Imlr +
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by parts and obtain

ImlR Jn + v(bl______) du un +----d]mlr II +
dlmlr

)bln ImlRJn+v- -2(3.9) ;---
Jn + (U) ImlR

U +
Iml

lmlR j,, + () u" 3 du+ (n 2)

ImlR J" l(u)
du+ (n 2) +v-

"lira[ bl + 2

where we have used the fact that (d/dx)[x-"J,(x) -x-"J,+ (x). For the second
term in (3.9) we get

(3.10)
lmlR j,+_ (u)

(n-2) -1/2 du =< (n 2)
[J, +_(u)[

") lmlr UV+2
du.

Using the fact that IJv+,(u)l u v, n a positive integer, we see that

fl,,,IR IJ, (u)l
(n 2) + du

lm[ /,/v + 2

flmlR ll flmlR_< (n 2) v+: du (n 2) du
"lmlr l,l "lmlr -<(n- 1) +-(n-2)
]mlr ]mlR r

2(n )
Imlr

Similarly, the first term in (3.9) is, in absolute value, bounded by 2limit.
]mlR (Jn v(u)/ul +v)dul < 2n/Imlr, n > 3 Hence there is a constant ATherefore a Imlr +

such that
lmlR Jn + v(u) h n

(3.11)
dlmlr Twv du

Imlr
n >

Returning to the series in (3.8) we get

lim f(m)l (- i)"
R’ Iml R’ lmlr

+

lim If(m)l
R’ lmlR’ lmlr uiW du

nlll Killlim A E If(m)l
Imlr’R’ lmlR’

by (3.11). This last expression is equal to

(3.12) A 2 Z If(m)l Z n;" =<
j= j<=[ml<j+

A.A’ I(m)l
1 j= - j<=lm}<j+
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where A’ , nl Y,I (A’ < o0, by hypothesis). By hypothesis (3.2),
Y’, If(m)l o(1/j),

j<_lm[<_j+

so that the expression in (3.12) is less than or equal to (const./r)1 1/j < ,
thus establishing (3.8).

Write (3.8) as

(3.13)
G(x) (2rr)v+ lim ’,

R’-m <_lml<_R’
eim’x)f(m) =1 i)" Y.

m

{Z.,(Imlr) Z.,(ImlR)
The same method that was used to obtain inequality (3.11) can be used to obtain

(3.14) J,+(u)
m[R ul +du

n.B
< B a constant, n >-ImR’

We then can rewrite (3.13) as

G(x) (27)v+l lim ei(m’x)f(m) E (- i) Yn
R’ l=<[ml__<R’ n=l ml X.,(Imlr)

(2/r)v+l lim ei(m’x)?(m) (- iYYn
R’ <_]ml<_R’

which is the conclusion (3.4).

4. Proof of Theorem. Without loss of generality, we can assume that x 0,
f(0) 0 and cz 0.

We first write (3.4) of the lemma (at x 0) as

f f(- y)K(y) dylim
--’ (2z) O(o,m_n(o,,.

(2rC)-/2{[] E
j= j<=lml<j+

f(m) y’, i)" Y,
n=l

(3.15) -(2:roy+ lim e,m,,,f(m (_if, y, m
Z,,,,,(mlR)

R’o l_<lml_<R, n=l

Sr SR,
each of the two series being convergent by virtue of (3.14). For SR we have

(3.16) ISRI < (2re)+
const.

R j=lJ2’

using the facts that =1 nil Y, < c and R =< Iml-< R +1 If(m)l o(1/R), along with
inequality (3.14). Since the constant in (3.16) is independent of R, we see that
SR -- 0 as R - c. Hence from (3.15) we get

lim G(x) lim ( f(x y)K(y) dy
R R ’J B( O,R B( O,r
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[1/r]+ j<_lml <j+
f(m) nEl i)n

Sl(r -1-

where [1/r] is the greatest integer in 1/r. The task is to show that

(4.1) lim Sl(r) O,
r--*O

(4.2) lim S2(r 0.
rO

(4.3)

We first establish (4.2).

IS2(r)l
[l/r]+ j<=lm[ <j+

If(m)l III Y,
n=l

< const. 2 If(m)l 2
[t/rl+l j<_lml<j+

by (3.14). By the hypotheses, the expression in (4.3) is bounded by

const. o(1/j:)=o(1)
F [1/r]+l r [1/r]+l

and (4.2)is disposed of.
From [4, p. 69] we have for m - 0,

R(m)= (-i)"Y,,
n=l

1/j2 (1)O(r)= o(1),

r(n/2)
2F((n + N)/2)zc/2’

and from [7, p. 391] we have

(2C)u/2 U- du
F(n/2)

2NF((n + N)/2)rcu/z"

Using these two equations we conclude that

0 lim f(m)(m)
Roo l<[m[<R=

lim
re)N/2

f(m) (-i)’Y,
Ro (2 =<[m[_<R n=l

m

Let
[l/r] m) fJn+v_(+?2 Z f(m) Z (-i)’r. -- du.S(r) (27)N/2 J= j<_[m[<j+

Then lira S(r) 0. Thus if it can be shown that
rO

(4.4) lim (S(r) Sl(r)) O,
r--*0

then (4.1) will be established and the theorem will be proved. We now establish (4.4).
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From the definitions of S(r) and Sl(r) we can write

f(m)S(r) Sl(r)
(2rt)m/2 j= j<-Iml <j+(4.5)

2 (_il g
m

u7_7_ du.

From [6, p. 61] we see that IJ,+v(u)l =< const., u +v, where the constant depends
only on v. With this inequality we obtain

[lml, Jn+ v(u)
(4.6) J0 HI+

Using (4.6) in (4.5) we have

IS(r) Sl(r)l < (2rt)N/2s j$1ml

const, r []
L o(1/j)j.

=< const. Imlr.

If(m)l III Y.III const. Imlr
n=l

But
1/rl l/r]

r o(llj)j r o(1)-- o(1),
j=l j=l

which is the required result.
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LYAPUNOV THEORY AND PERTURBATIONS OF DIFFERENTIAL
EQUATIONS*

JOHN V. ERHART’]"

Abstraeto In this paper we discuss qualitative properties of thesolution of systems of ordinary
differential equations and perturbations of such systems in the event a Lyapunov function is known
whose derivative along solutions of the system satisfies a strong negative definite condition. Bounded-
ness and stability of sets are discussed along with the observation that a Lyapunov function with a
strongly negative definite derivative must be positive definite and radially unbounded. These results
are used to discuss certain types of perturbations of systems of differential equations. Several examples
are given to illustrate the main results.

1. Introduction. The qualitative behavior of the solutions of perturbed non-
linear systems of differential equations is often studied by obtaining a Lyapunov
function for the unperturbed system and using it as a Lyapunov function for the
perturbed system. In this paper, we wish to investigate the properties of solutions
of a system of differential equations when a Lyapunov function is known whose
derivative along solutions of the system satisfies a strong negative definitive
condition, and to discuss several types of perturbations of such systems. The
theorems of discuss stability and boundedness of solutions of systems when
such a Lyapunov function is known. In 2 we show that, under certain conditions,
this type of Lyapunov function must necessarily be radially unbounded and
positive definite. The results of and 2 are used in 3 and 4 to obtain similar
results for perturbed nonlinear systems. In particular, Theorem 2.2 enables us to
apply standard stability theorems to perturbed systems.

Consider the system of differential equations

(N) x’ f(t, x)

and its perturbed system

y’ f(t y)+ g(t y)
(p)

where x and y are elements of R", the set of n-dimensional column vectors, and

f g:[0, ) R" R" are continuous. We denote by p(t, to,Xo) a solution of (N)
such that p(to,to,Xo)= xo and by y(t, to,Yo) a solution of (P) such that
y(to, to, Yo) Yo. Let D be an open and connected subset of R" containing the
origin and let I [0, ).

Throughout this paper, I[x[[ will denote the Euclidean length of a vector
x R" since a differentiable norm is desirable. For e > 0 and H = R", let

and

S(H, ) {x R" d(H, x) < }
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where d(H, x) inf x Y[I "Y e H}. Also let

{x R"’d(H,x) 0},
He= {x e R"’x q H},

and

AH x e R"’x e H and x e HC}.
The family of functions F I x D R", D R that are locally Lipschitzian

with respect to x e D will be denoted by Co(x). If, for every compact set K c R",
there exists a constant L(K) such that IIF(t, Xl) F(t, x2)ll <= L(K)Ilxl x211 for
X and x2 in K c D and te I, we shall say F(t,x) belongs to the class Co(x).
C’ will denote the family of functions F(t, x) defined on I x D, D c R", whose
components have continuous first partial derivatives with respect to
t, X1,X2, Xn.

DEFINITION. A continuous function V:I x D R 1, D R", is called a
Lyapunov function if V Co(x) and V is bounded from below.

Let V be a Lyapunov function. For (t, x) I x D we define

V’N)(t, x) lim sup (l/h){ V(t + h, x + hf(t, x)) V(t, x)}.
h0

If VIN)(t, x) <= 0 for (t, x) [to, l] D and p(t)is a solution of (N) that remains
in D for [to, tl], then (using Lebesgue integration)

v(t, p(O) V(to, p(to)) <= v(t, p(s)) ds for [to, l].

DEFINITION. VIN)(t,X is strongly negative definite relative to a compact set
HcR" if for every e>0, there exists a constant d=d(0>0 such that
(t,x)eI x S(H,e)implies that VIN)(t,x <= -dllf(t,x)ll/(1 + Ilxll).

The above definition can be extended to any closed set H R", but this will
not be necessary for the results ofthis paper. We will often make use ofthe following:

Hypothesis A. The function f(t, x) of equation (N) is said to satisfy Hypothesis
A for x0 R" if there exists r/> 0 and a continuous function v :I I such that

v(t) dt and Ilf(t, x)ll v(t) for all (t, x) e I x S(x o, q).
The types of stability and boundedness discussed in this paper are as defined

in Yoshizawa [4].

1. Stability and boundedness.
THEOREM 1.1. Let H be a compact subset ofR". Assume there exists a Lyapunov

function V I x H - R1 such that:
(i) V(t, x) is boundedfor (t, x) I x AH

(ii) there exists a continuous function q’I I such that o q(t) dt < , and
jbr every > 0 there exists d d(e) > 0 such that Jbr (t, x) in I x St(H, e),
we have

ViN)(t,x) <= -dill(t, x)ll/(1 + x )+ q(t).

Then solutions of(N) are equibounded.
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Proof H compact in R" implies that there exists > 0such that S(H, 1) c S(’).
Let o e I and a > " be given and define the following constants"

d" By (ii) there exists d > 0 such that

VIN)(t,x) <= -dlif(t,x) /(1 + x]j) + q(t)

for (t, x)e I x S(H, 1).
LI" Set L1 max {V(to,X)’X e S() ffl He}.
L2" Hypothesis (i) implies there exists L2 R such that V(t, x)<= L2 for

all (t, x) e I x AH.
L" Let L max {L, L2} + j’ q(t)dr.
M" Let M be such that V(t, x) >= M for all (t, x)e I x Hc.
fl" Set fl fi(to, ) exp(1/d)[JMI + L + In (1 + )].
Notice that fl > + , so that S(H, 1) c S(e) c S(fl).
We now show that for x e S(), lip(t, to, x)[] < fl for all _>_ to. Assume there

exists a solution p(t) p(t, to, Xo) of (N) with right interval of definition [to, T),
T__< o,where]lx < e, such that for some t* > to, p(t*,to,Xo) >=ft.

Since S(H, 1) c S(), either"
(a) p(t) e H for e [to, t*]; or
(b) there exists __> to such that p(l) e AH and p(t) e H for e[, t*].

Assume (a) holds. There exists t > to such that p(t)e AS(a) and p(t)e SO(e) for
e It1, t*]. Consider U(t, x) V(t, x) + q(s) ds. For all (t, x) e I x St’(H, 1), we

have UN)(t,x) <__ -dllf(t,x)[[/(1 + []xl[). Therefore,

g(t*, p(t*)) g(to, p(to)) <= -dl If(s, p(s)) /(1 / lip(s)1)1

Using the fact that p(t) ’l <= p’(s)[[, we obtain

t*

C(t*, p(t*)) U(to, p(to)) <- -d Ilp(s)ll’/(1 + Ilp(s)ll)ds

_-< dl In (1 + p(t*) In (1 + p(t,) )1

-d[(1/d)(lMI / L / In (1 + ))] + d In (1 + )

Therefore,

V(t*, p(t*)) U(t*, p(t*)) q(s) ds

t*

< V(to, p(to))+ q(s) ds- IMI- L =< -IMI,

which contradicts the fact that M is a lower bound for V in I x Hq

Assuming (b) holds, we obtain as above, U(t*, p(t*)) U(, p(t)) <= -IMI L
which again contradicts the fact that M is a lower bound for V in I x H’1. Therefore,
for Xo e S(e), lip(t, to, Xo) < j(to, e) for all >__ o. For e < let/3(to, e) =/3(to, ’),
proving that solutions of (N) are equibounded.
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THEOREM 1.2. Let H be a compact subset ofR". Assume there exists a Lyapunov
function V’I x H I such that V(t, x) 0 for all (t, x) e I x AH and hypothesis
(ii) of Theorem 1.1 holds. Then, iff(t,x) satisfies Hypothesis A for all x Hc, all
solutions of (N) approach the set H as tends to infinity.

Proof. By Theorem 1.1, all solutions of (N) are bounded. Therefore, given
any (to, Xo) I x R", the solution p(t, to, Xo) of (N) is defined for all __> to. Let
p(t) p(t, to, Xo) be any solution of (N). We first show that there does not exist
a sequence {t,} tending monotonically to + oe (the notation we shall use hereafter
is {t,}T + o) such that the sequence {p(t,)} has a cluster point in Hc.

Assume the contrary. Then there exists an ff e H and a sequence {t,}T /
such that p(t,) -, as n --, oe. Let d(, H)/3 and let the constant d of hypothesis
(ii) be found. Let the > 0 and the v(t) of Hypothesis A be found for ff and f(t, x),
and let a min {e,’}. Since p(t) is bounded, there exists M > 0 such that
+ lip(t) < m for all >= to. Let d d/m.

If p(t) as --, o, there exists _> to such that p(t) S(, ) for all _>_ [.

Therefore, for all >= , f(t, p(t)) > v(t) and Vi)(t, p(t)) <= -d[ f(t, p(t)) + q(t).
Letting U(t, x) V(t,x) + o q(s) ds, so that U)(t, p(t)) <__ -[lv(t), we have
V(t, p(t)) <__ U(t, p(t)) <= U(I, p(l)) [1 i v(s) ds which tends to oe as approaches
+ oe, contradicting the fact that V(t, x) is bounded from below. Therefore, there
does not exist a >__ such that p(t) S(, ) for all >__ [, and so p(t) -) as ---, .

Since ff is a cluster point of the sequence {p(t,)} and p(t) -p as oe, there
exist sequences {t,}T + oe and {t,’}T + oe such that p(t)eS(2, a) for te[t’,,t’]
and p(t’) p(t’,) > /2 for all n. We now consider two possibilities" either

(a) there exists t* such that p(t) H for all > t*; or
(b) there exist sequences {[,}T + oe and {,}T + oe such that p(t)e H for

[[,, ,] and p(t) H for e (,, ,+ 1)"
Assume (a) holds. Choose k large enough so that t, > t*. Letting U(t,x)

V(t, x) + 2 q(s) ds, we have UIN)(t, X) <= 0 for all (t, x) in I x H and UIN)(t, X)
<__ --d[[ f(t, x) for (t, x) e I x S(ff, a). Therefore, for all __> t,

u(t, p(O u(t, p(tll <-_ u(s, p(sll

<__ -21 f(s,p(s)) ds
j=k

<__ -l p(t’j)- p(t))[[.
j=k

As --, oe (and therefore, as n --, c) this expression approaches o, contradicting
the fact that V is bounded from below.

Now assume (b) holds. Let m >__ be such that t;, > 2. Pick r __> m large
enough that e(r m + 1)/2 > j’ q(t)dt and let k be large enough that [k > t;’.
Since p([,) e AH and p(,) e H for every n, we have

o v(, p()) v6, p())
k-1

fOX_< [U([j+, p([j+ 2)) U(j, p(j))] + q(t) dt (cont.)
j=l
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U(N)(S p(s)) ds + q(t) dt
j=l

< -d[If(s, p(s))[ ds + q(t) dt
j=m

=< -dllp(ty) p(t})ll + q(t) dt
j=m

<= -d(r- m + 1)a/2 + q(t) dt < O.

This contradiction establishes the fact that no sequence {t,} T + o exists such that
{p(t,)} has a cluster point in He. Therefore, if p(t) does not approach H as
there exists a sequence {t,}T + oe and fl > 0 such that fl > d(H,p(t,)) for
n 1, 2, .... But p(t) is bounded, implying that the sequence {p(t,)} has a cluster
point in He, which was just shown to be impossible. Therefore, p(t) approaches H
as --, and the theorem is proved.

COROtJARY 1.1. If, in Theorem 1.2, H {0}, then every solution of(N) tends
to zero as approaches o.

Theorem 1.2 is similar to the following theorem of Burton [1].
THEOREM. If there exists a Lyapunov function V’I x R" R such that

VIN)(t, x) <_ 0 for all (t, x) I x R", V’(N)(t X) is strongly negative definite relative to
a compact set H R", and f(t,x) satisfies Hypothesis A for all x He, then each
solution p(t, o, Xo) of (N) approaches H as approaches T, where (to, T) is the
maximal right interval ofdefinition of p(t, to,Xo).

Theorem 1.2 does not require that V be defined on all of I x R", but only on
I x He; and the condition that ViN)(t, x) be strongly negative definite relative to H
is modified somewhat by hypothesis (ii), making Theorem 1.2 a very useful tool
in the perturbation theorems in 2. Burton’s theorem, however, does not require
knowledge of V on I x AH as does Theorem 1.2.

THEOREM 1.3. Let H be a compact subset of R". Assume there exists a
Lyapunov function V:I x H (’1 S(H, B) I, B > O, such that V(t, x) 0 for all
(t,x)e l x AH and VIN)(t,x is strongly negative definite relative to H for all
(t, x) I x H (’1 S(H, B). Then H is stable, that is, for every > 0 and to I, there
exists 13 > 0 such that xo S(H, 6) implies p(t, o Xo) S(H, e) for all >- o

Proof Let 0 < e < B and to >= 0 be given. There exists d d(e/2) > 0 such
that for all (t,x) in I x S(H,B) f-I Se(H,e/2) we have Viy)(t,x <= -d [f(t,x)ll.
V continuous implies that there exists 0, 0 < 0 < e/2, such that Xo H fl S(H,
implies V(to, Xo) < de

Let xo H (3 S(H, ) and consider p(t) p(t, o, Xo). If p(t) q S(H, ) for all
>_ to, there exist l, t2 > to such that p(tl) AS(H,e/2), p(tz)AS(H,

p(t) S(H, e) for all s It1, t2], and p(t) S(H, e) Se(H, e/2) for all e It1, t2].
Since V(t, x) 0 for all (t, x) e I x AH and Vis)(t, x) <__ 0 for all (t, x) e I x H
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S(H, B) we have V(tl, p(tl)) =< V(t0, p(to)). The condition on Vis)(t, x) implies

r(t2, P(t2)) < r(tl, p(tl)) + -d If(s, p(s))l ds

<= V(t 1, p(tl) d p(t2)- p(tl)ll

<= V(to, Xo) de/2 < -de/4

contradicting the fact that V(t, x) >= 0 for all (t, x).
Therefore, p(t) S(H, ) for all >= to, proving the theorem.
THEOREM 1.4. If, in addition to the hypotheses of Theorem 1.3, f(t, x) satisfies

Hypothesis Afor all x in H 0 S(H, B), then H is asymptotically stable. In particular,
if H {0} and f(t, O)= 0 for all e I, the zero solution of (N) is asymptotically
stable.

Proof By Theorem 1.3,/4 is stable. Therefore, given to >= 0, there exists > 0
such that Xo S(H, z) implies that p(t, to, Xo) S(H, B) for all >= o. Therefore, we
can show, as in the proof of Theorem 1.2, that p(t, 0, Xo) tends to/4 as approaches
infinity, proving the theorem.

The following example shows that the conditions of Theorem 1.4 do not
necessarily imply uniform or exponential asymptotic stability.

Example 1.1. Consider the scalar equation

(1.1) x’-- -g(x)/(t + a),

where a > 0, g :R R is continuous, and xg(x) > 0 for x 0. The function
f(t, x) -g(x)/(t + a) satisfies Hypothesis A for all x e R {0}. To show this
we choose r/- Ixl/2 and let k inf{g(2):2 eS(x,r/)}. Then If(t,x)l >= k/(t / a)
and j k/(t + a)dt + .

Consider the following Lyapunov function:

V(x) Ixl.

We have that V’l.)(t, x) -g(x)/(t + a) -If(t, x)l. The conditions of Theorem
1.4 are satisfied and so the zero solution of (1.1) is asymptotically stable.

In particular, for g(x) x, we can easily see that the zero solution of(1.1) is
asymptotically stable but not uniformly asymptotically stable: given e > 0 and
(to, Xo) I R 1, the solution x(t) Xo(to + a)/(t + a) < e if and only if

> [Xo(to + a)/e]- a.

2. Properties of V(t, x).
THEOREM 2.1. Let H be a compact subset ofRn. Assume there exists a continuous

function f:I R" R that satisfies Hypothesis A for all x H and a Lyapunov
function V such that the conditions of Theorem 1.1 hold. Then V(t,x) + as

Ilxll uniformly in t.

Proof Let e > 0 be fixed. There exists d > 0 such that for all (t,x)I
x SC(H, e/2),

Vlh)(t,X) -d If(t,x)ll/(1 + xll)+ q(t).
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Let J max {[x ]’xAS(H,E)}, K ln(1 + J) + (l/d) j’ q(t)dt, and let M be a
constant such that V(t, x) >= M for all (t, x) I x Hq

If V(t, x) -/. o as x --. , then there exists L > 0 such that for every N > 0,
there exist anxNandto__>0suchthat XN] > N and V(to,xN) < L. Let N be so
large that xN ->_ exp [{(L + IMl)/d} + K] so that In (1 + IlXNl{) > [(L + IMl)/d]
+ K and V(to, xu) < L.

Let p(t)= p(t, to, XN) be a solution of (N). Claim" There exists > o such
that p(tl)e AS(H,E). Suppose the assertion is false. Then p(t)e St(H,E) for all
>= to. Since by Theorem 1.1, p(t)is bounded, the sequence {p(n)} must have a

cluster point in SO(H, ) which we can show is not possible as was done in the
proof of Theorem 1.2. The only alternative is to have p(tl) AH for some tl > to,
proving the claim.

We may choose so that p(t) St(H, E) for all [to, 1]. Now, as in the proof
of Theorem 1.1, we obtain

V(tl, p(t)) V(to, p(to)) < -dl In (1 + p(tl)l) In (1 + p(to)

+ q(t) dt <= -[MI L,

which contradicts the fact that V is bounded below by M.
Therefore, V(t, x) + as }}xll o, proving the theorem.
THEOREM 2.2. Assume there exists a Lyapunov function V sati.sfying the condi-

tions of Theorem 1.3 for H {0}, and some B > O. Then, ill(t, O) 0 and f(t, x)
satisfies Hypothesis A for x S(B)- {0}, then V is positive definite for (t,x) I
x S(B/2). More precisely, V(t,x) >= &(Ix I)llxl where k’I I is a continuous

nondecreasing function such that k(O) 0 and k(r) > O for r > O.
Proof Let 2 S(B/2). If I11 0, then V(t, 2) 0 for all e I by hypothesis.

If 11211 :/: 0, let E 11211/2 and let the d d(e) > 0 be found such that for (t, x)e I
x IS(B) f-) S(E)], we have Vir(t,x) <= -dl f(t,x) Let p(t) be a solution of (N)
passing through 2. If p(t) Sc(E) f-I S(3E) for all sufficiently large, the sequence
{p(n)} has a cluster point in St(E) f"l S(3E). Since f(t,x) satisfies Hypothesis A for
all x in this annulus, we can show as in the proof of Theorem 1.2 that the existence
of such a cluster point is impossible.

Therefore, given any to e I, there exists t > to such that p(tl, to,
and p(t, to, 2) lies in St(E) S(3c) for [to, tl]. Therefore, we have

V(tl, p(tl, to, 2)) V(to, Y) <= -d If(s, p(s, to, 2)) ds

<= -dllp(tl, to, 2) 211

Since V(t, p(tl, to, 2)) => 0, we have V(to,2) _-> dE d 2 /2. Since d(e)is a non-
decreasing function of e, we take k( x d( x I/2)/2, so V(t,x) <= k( x )[Ixll for
all (t, x) I x S(B/2). The theorem is proved.

3. Perturbation theorems. In this and the following section we discuss
perturbations of systems (N) for which is known a Lyapunov function whose
derivative along solutions of (N) satisfies a strong negative definite condition.
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Consider the following example"

(S) x’ -x/(t + a) for a > 0 and x a scalar.

The zero solution of (S) is asymptotically stable but neither uniformly
asymptotically stable nor exponentially asymptotically stable. The function
g(t, x)- x/(t + a)satisfies"

(i) [[g(t, x)ll o( x )(as Ilxll ---’ 0)"
(ii) ][g(t, x) < 7(t), where j’tt+ 17(s ds -, 0 as ---, ;

but does not satisfy"
(iii) IIg(t, x) <= 2(0 Ix I, where .[’ 2(0 dt < o.

The zero solution of x’ x/(t + a) + g(t, x) 0 is stable but not asymptotically
stable. Also notice that the function V(t,x)= Ixl/(t + a)is such that Vis)(t,x

-Ixl/(t + a) is strongly negative definite relative to any compact set H
Therefore, we cannot expect to discuss perturbation terms that only satisfy
conditions (i) or (ii) above. In this section we discuss perturbation terms which
satisfy condition (iii) above. Section 4 deals with perturbation terms that are
dependent upon the function f(t, x) of (N).

THEOIM 3.1. Assume there exists a Lyapunov function
V’I x S(B)--+ I, 0<B__<c,

such that"
(i) V(t, O) 0 for all 6 I;

(ii) [V(t, x l)- V(t, x2)[ _-< LIIxl x2 for some L > O, for all e I, and all
X ,X 2 S(B);

(iii) VIN)(t, x) < -II f(t, x) for (t, x) e I x S(B) {0}.
Assumef(t, O) Ofor all e I and thatfsatisfies Hypothesis Afor all x e S(B) {0}.
Then, if for all x e S(B), g(t,x) =< 2(t) x]], where 2"1 --+ I and o 2(t)ds <
the zero solution of (P) is asymptotically stable. In particular, if B c, the zero
solution is asymptotically stable in the large.

Proof Let y(t)= y(t, to,Xo) be any solution of (P) for (to,xo)e I x S(B).
Hypotheses (ii) and (iii) imply that for (t, y(t)) I x S(B) {0}, we have

V)(t, y(t)) <= Vivq)(t, y(t)) + L[[g(t, y(t))

< -Ilf(t, y(t))l[ / L g(t,
(3.1)

y’(t) g(t, y(t)) +/llg(t,

__< y’(t) + g(t, y(t)) + g(t, y(t))

Letting U(t, x) V(t, x) + xll we have for (t, y(t)) e l x S(B),
__< (1 + L)Ig(t, Y(t))ll <= (1 + L)2(t)U(t, y(t)). Therefore,

]y(t)][ =< U(to, Yo) exp (1 + L) (s) ds for (t, y(t))e I x S(B).

Since V(t, 0) 0, given to e I and e > 0, there exists r/= q(t0, e) > 0 such that
[[y < r/ implies y(t)[[ < e for all >= to. Therefore, the zero solution of (P) is
stable.
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Now, for given to e I and IlYoll < r/(to), since y(t, to, Yo) is bounded, there
exists M > 0 such that

IIg(s, y(s)) ds <= 2(t)l[y(t)]] dt <= M < c.

Therefore, using (3.1) we have, as in the proof of Theorem 1.2, Ily(t, to, Yo) 0
as --+ m. This proves that the zero solution of (P) is asymptotically stable.

It is interesting to compare this theorem with a result of Strauss and Yorke
[3, Theorem 4.1] which requires uniform asymptotic stability of the zero solution
of (N). The following example illustrates our result in the case that the zero solution
of (N) is asymptotically stable but not uniformly so.

Example 3.1. Consider the following system of differential equations"

(Q) x’ Ax/(t + a), a > O,

where x e R" and A is a constant n x n matrix whose characteristic roots have
negative real parts.

We make use of the following theorem (cf. LaSalle and Lefschetz [2, p. 83]).
THEOREM. Let A be an n n matrix whose characteristic roots have negative

real parts. Let C be a positive matrix (that is, the quadratic form xTCx is positive
jbr all nonzero vectors in R"). Then, if C is a symmetric matrix, the matrix equation
ATB + BA -C has a unique solution B, and B is a positive symmetric matrix.

We also note that for a given positive symmetric matrix B, there exists a non-
singular matrix D such that B DTD (cf. LaSalle and Lefschetz [2, p. 16]).

Let E be the identity matrix, and let B be the symmetric positive matrix
such that ATB q- BA -E. Consider the Lyapunov function V(x) (xWBx) /2.
Since B is a positive matrix, V(x) > 0 for all x # 0. Let D as above be such that
B DTD, so that (xTBx) 1/2 (xTDTDx) 1/2 IlDxll <= lID[l" ]]xl[ where

IIDII ]dijl 2
i,j=

Then we have

Vi)(x) [(xr)’Bx + xrBx’]/2(xrBx) /2

[xrArBx/(t + a) + xrBAx/(t + a)/2(xrBx) 1/2

[(-1/(t + a))xTxI/2(xTBx) 1/2

< --(1/(t -F a)) xII2/2]IDI] llxll

<= -dl x/(t +
where d 1/(211AI ID I). Therefore, V satisfies hypothesis (iii) of Theorem 3.1.-

Claim. There exists L > 0 such that for all x, x2 R" we have

Iv(t, Xl) v(t, x2)l _-< L x x2

We note that for a fixed nonsingular matrix P, the function (x)= IIPxl
defines a norm on R". Also, if II" is any norm on Rn, we have

IllXl - x2111] <= x x2] forallx,x2R".
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We noted above that there exists a nonsingular matrix D such that DrD B,
and that V(x) IlDxll for all x e R". Therefore, since V is actually a norm on R",
V satisfies

Ir(xl) r(x2) V(x1 x2) O(Xl x2) D

proving the claim for L liD
Since Ax/(t + a) satisfies Hypothesis A for all nonzero x in R", if g(t, x)

-_< 2(0 x where j-o 2(0 dt < o, then the zero solution ofx’ Ax/(t + a) + g(t, x),
a > 0 is asymptotically stable in the large.

THEOREM 3.2. Let H be a compact subset ofR". Assume there exists a Lyapunov
function V" I x H --, I, Ve C’, such that"

(i) V(t, x) is bounded for all (t, x) e I x AH
(ii) there exists k > 0 such that for (t, x)e I x H

][grad V(t, x) x <= k V(t, x);

(iii) VIN)(t, x) < f(t, x) for all (t, x) e I x Hq

Then if g(t, x) -< 2(0 x where 2"I I and o 2(0 dt < o, solutions of(P) are

equibounded.
Proof H compact implies there exists [ > 0 such that H

and to _-> 0 be given and define the following constants"
K" Since V is continuous, there exists a constant K K(to,e) such that

V(to, Xo) <-_ K for all x e S().
L" By (i) there exists a constant L > 0 such that V(t, x) < L for all (t, x)e !

x AH.
M’Let M max {K, L}.
fl" Let fl fl(to, z) (M + )exp k .[’2 2(0 dt.

Note that/ > z. We now show that for all Yo S(e), the solution y(t) y(t, to, Yo)
of (P) remains in S(/).

Assume there exists a solution y(t) y(t, to, Xo) of (P) with Yol < e such
that for some t* > to, y(t*) >= . Either"

(a) y(t) e H for all e [to, t*]; or
(b) there exists __> to such that y(t)e AH and y(t) H for
Assume (a) holds. For e [to, t*], we have (assuming, without loss of generality,

that k >__ 1)
Vip(t, y(t)) <= Vi(t, y(t)) + grad V(t, y(t)) I. Ig(t, v(t))

< f(t, y(t)) + grad V(t,y(t))ll. Ily(t) 2(0

__<- I):’(t)+ g(t,y(t))+

<= y’(t) + k2(t)[ y(t) + V(t,y(t)).

Letting U(t, y) y + V(t, y), we have Uip)(t, y(t)) <__ k)(t)U(t, y(t)). Therefore, for

Ily(t) <= U(t, y(t)) < U(to, y(to) exp k 2(0 dt <

contradicting the fact that y(t*)[I _-> /. Assuming (b) holds, the argument is exactly
the same for e If, t*].
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Therefore, y(t, o, Yo) </(to, e) for all > to and Yo e S(). For z =< , let
/(to,e)=//(to,) so that Yo <e implies Yo < and y(t, to,Yo) <(to,e)
for all Yo e S(e) and >__ to, proving the theorem.

THEOREM 3.3. If, in addition to the hypotheses of Theorem 3.2, V(t, x) 0 for
(t, x) I x AH and f satisfies Hypothesis A for all x Hc, then every solution y(t)
of(P) approaches H as tends to infinity.

Proof By Theorem 3.2, every solution y(t, to, yo)of(P)is bounded and therefore
defined for all __> to.

Let y(t) y(t, to, Yo) be any solution of (P) and fix c > Ilyoll, We have shown
in the proof of Theorem 3.2 that there exists / =/3(to, 00 such that for to,
V(t, y(t)) + y(t) </. Therefore, for any such that (t, y(t)) I x H, we have

Vip)(t, y(t)) < f(t, y(t)) + grad V(t, y(t)) g(t, y(t))

<= f(t, y(t)) + kV(t, y(t))2(t)

<= f(t, y(t)) + kfl2(t).

Therefore, by Theorem 1.2, we have that y(t) approaches H as approaches
infinity.

COROLLARY 3.1. If, under the hypotheses of Theorem 3.3, H {0} and

f(t, O)= 0 for all I, then the zero solution of (P)is asymptotically stable in the
large.

Proof Let y(t)= y(t, o, Yo) be any solution of (P). For all >= to, we have
that (as in the proof of Theorem 3.2)

y(t)ll <- [V(to, yo) + yo exp k 2(0 dr.

Stability of the zero solution of (P) follows from this expression as in the proof
of Theorem 3.1. By Theorem 3.3, y(t)]l 0 as , proving the corollary.

4. Perturbations dependent on./(t, x).
THEOREM 4.1. Let H be a compact set of R". Assume there exists a Lyapunov

function V’I x H --, R such that"
(i) V(t, x) is bounded for all (t, x) e I x AH;
(ii) ]V(t, xl) V(t, x2)] <= L xl x 2 forsomeL > O, andallteI, Xl,XzeH;

(iii) Vir)(t, x) <= -l] f(t, x) for all (t, x) I x H.
Assume thatfsatis.[ies Hypothesis Afor all x Hq Then,/f IIg(t, x)ll _-< (l/L)If(t, x)ll
jbr all (t, x) I x SC(rl) for some rl > O, the solutions of (P) are equibounded.

Proof There exists > 0 such that H S(0. Let ?, max {, r/}. Hypotheses
(ii) and (iii)imply that for (t, y)in I x S’(7), Vip)(t, y) <= f(t, Y)II / LIIg(, Y) _-< 0.
Now let > 7 and to e I be given and define the following constants"

K" Let K K(to, ) be such that V(to, y) <= K for all y e S(00.
E" Hypothesis (i) implies that there exists E > 0 such that V(t, y) < f, for

(t,y)l x AH.
M" Set M max {K,E},
/" By Theorem 2.1 thereexists ]3 ]3(to, cz) > 0 such that ]IY >/ implies

that V(t, y) > M for all >= to.
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Assume there exists a solution y(t) y(t, to, Yo) of (P) with Yo e S(e) such that
for some t* > to, y(t*) >= . Either"

(a) y(t) e H for e [to, t*]; or
(b) there exists >= to such that y(t) e AH and y(t) e H for e [, t*].
If (a) holds, integrate Vip)(t, y(t)) <= 0 from to to t*, obtaining

K <= M < V(t*, y(t*))< V(to, Yo) <= K,

a contradiction.
Assuming (b) holds, integrate the same expression from to t*, obtaining

L __< M < V(t*, y(t*)) <__ V([, y([)) _<_ L, again a contradiction. Therefore, y(t)e S()
for all >__ to.

For 0<(, let fl(to,e)=fl(to,)so that IlyoJ[ <0implies yo < and so
ly(t, to, Yo)[[ < fl(to, 00 for all >= to, proving the theorem.

THEOREM 4.2. Assume there exists a Lyapunov function V’I x S(B) I,
B > O, such that"

(i) V(t, O) O for all e I;
(ii) [V(t, Xl)-V(t, x2)[-< L Xl- x2 for some L >0, and all tel,

X 1, X2 e S(B);
(iii) Vi(t, x) <= [If(t, x) for all (t, x) e I S(B).

Assume that f(t, 0)= 0 .for all tel and that f satisfies Hypothesis A .for all
x e S(B) {0}. Then, if there exist T > 0 and e > 0 such that for some c > 0 and
all (t,x) in IT, ) S(e), g(t,x)l < [(I/L)- c][[f(t,x)[[, the zero solution of(P)
is asymptotically stablefor all o >= T.

Proof For (t, x)e IT, ) S(e), we have

Vi)(t, x) f(t, x)ll + Lllg(t, x)l[

By Theorem 2.2, V is positive definite for (t, x) in IT, ) S(/2). Therefore,
the zero solution of (P) is stable for to => T.

For to e IT, or), let the 6 6(e/2) of stability be found. Let y(t) y(t, to, Yo)
be a solution of (P) with Yo e S(6). Since Vip)(t,y(t)) <__ -Lc]]f(t, y(t)) for
(t, y(t)) e IT, ) S(e/2), we have, as in the proof of Theorem 1.2, that

Ily(t, to, Yo)[I - 0

as tends to infinity, proving the theorem.
Example 4.1. Consider the scalar differential equation"

x’= -w(x)/(t + a), a > 0,

where w:R -- R is continuous and xw(x) > 0 for x > 0. Also, -w(x)/(t + a)
satisfies Hypothesis A for all x in R1- {0}, since for ff -0 we can choose
r/= 11/2. Letting

k inf {Iw(x)l :x S(, rt)} > 0,

we have

and
Iw(x)/(t + a)l k/(t + a)

k

t+a
dt= +o for all o__>0.
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For the Lyapunov function V(x) Ix[, the hypotheses of Theorem 4.2 are satisfied
with L 1. Therefore, by Theorem 4.2, x’= -w(x)/(t + a)+ g(t, x), a > 0 is
asymptotically stable for any g(t, x) satisfying the condition stated in Theorem 4.2.

In particular, the zero solution of each of the following equations is
asymptotically stable for all to _-> 0:

(a) x’= -x/3/(t -F a)+ x/(t + b), for a, b > 0 and r > 1/3;
(b) x’ x exp (- x2)/(t + a) + x/(t + b), for a, b > 0 and r > 1.
THEOREM 4.3. Assume there exists a Lyapunov function V :I x R" --, R such

that:
(i) [V(t, Xl) g(t, x2) <_ (t)[[x x2[[forallteI, x,x2eR",where7:I I

is continuous;
(ii) VIN)(t,x <= --][f(t,x)[[/(1 + Ilxll)for all (t,x)eI x R".

Assume that fsatisfies Hypothesis A for all x R" {0}. Then if
IIg(t, x)[[ =< 2(t)llf(t, x)l[/(1 +

where 2"1 I is bounded and continuous and there exists T I and a constant c,
0 < c < 1, such that 2(t)7(t) < cfor all >= T, thenfor all o IT, o), every solution
y(t) y(t, to, Yo) of(P) is bounded and satisfies I[y(t)]] 0 as tends to infinity.

Proof Let y(t) y(t, to, Yo) be a solution of (P) with to _-> T. Hypotheses (i)
and (ii) imply that for _>_ T,

Vi)(t, y(t)) <= -[if(t, y(t))[[/(1 + y(t)l[) + y(t)l[g(t, y(t))ll

< k f(t, y(t))[[/(1 +
where k c > 0. From equation (P) we see that

[y’(t) =< f(t, y(t))l + [g(t, y(t))ll -<_ f(t, y(t))[[[1 + M/(1 +
where M is such that 2(t) __< M for all __< 0. Therefore,

IIf(t, y(t)) ->1/(011(1 + [[y(t)[[)/(1 + M -+-[[y(t) ).

From the above, therefore, we have

(4.1) Vlp)(t, y(t))<= -k[Jy’(t)l]/(1 + M ’+ Ily(t) ).

Using the fact that [dlly(t)ll/dt[ <= [[y’(t)[[, we obtain by integration

V(t, y(t)) V(to, Yo) <= -k]In [(1 + M + Ily(t)ll)/(1 + M + [[Yo )][,

which approaches -o as y(t) --* . Since V(t,x)is bounded from below, we
have that y(t) is bounded.

Now, for to >-_ T, y(t, to, Yo)[[ is bounded, so there exists K > 0 such that
+ [y(t, to, Yo)[[ _-< K for all __> o. Therefore, for all _>_ to,

(4.2) Vim(t, y(t, to, Yo)) -< -(k/K)[[ f(t, y(t, to, Yo))l[

As in the proof of Theorem 1.2, Ily(t, to, yo) 0 as - o, using (4.1) and (4.2),
proving the theorem.

COROLLARY 4.1. If, in Theorem 4.3, hypothesis (ii) is replaced by

(ii)’ VIN)(t X) f(t, X)[[ for all (t, x) I x R",
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then the conclusion of the theorem holds for any g(t,x) such that g(t,x)ll
_-< 2(01 f(t, x)ll, where 2(t) is as in Theorem 4.3.

Proof The proof of the corollary follows exactly the same as the proof of the
theorem.

COROILAR 4.2. If, in addition to the hypotheses of Theorem 4.3 or Corollary 4.1,
V(t, O) 0 f(t, O)Jbr all I and V(t, x) >= 0 for all (t, x) I R", then the zero
solution of (P) is asymptotically stable for o >_ T in the large; that is, the zero
solution of (P) is stable for to > T, andfor all (to, Yo)

Ily(t, to, yo)ll 0 as approaches infinity.

Proof The conditions on g assure us that g(t, 0) 0 for all e I, so that (P)
has the zero solution.

By Theorem 2.2, V is positive definite and the condition 2(t)7(t) < c < for
=< T implies, as in Theorem 4.3, that Vp)(t,y(t))< 0 for all __< T, where

y(t) y(t, to, Yo) is any solution of (P) with o > T. Therefore, the zero solution of
(P) is stable for all to _>- T.

By Theorem 4.3 we have that y(t, o,yo) 0 as approaches infinity,
proving the corollary.

Under the hypotheses of Theorem 4.3 or Corollary 4.1, it is possible that
there exist solutions of the perturbed equation that have finite escape time.

Example 4.2. Consider the scalar differential equation

(4.3) x’ --X

and its perturbed equation

(4.4) y, y3 + g(t, y),

where

[or0 < _< 10,
g(t,y)

200y3/t2 for => 10.

For __< 10, solutions of (4.4) are of the form y(t, to, Yo) 2(to t) + y2-1/2
which increases without bound as (to + y2/2)+. Note that the Lyapunov
function V(x) Ixl satisfies the conditions of Corollary 4.1 for this example.

Under the conditions of the following theorem solutions of the perturbed
equation cannot have finite escape time.

THEOREM 4.4. Assume there exists a Lyapunov function V’I R" R such
that"

(i) ]V(t, x1)- V(t, x2) <= (t)llx x2 forallteI, Xl,XzeR",where7"I I
is continuous;

(ii) VN)(t,x) <= If(t,)]/(1 + Ixl )for all (t,x)e I x
Assume thatf satisfies Hypothesis Afor all x R" {0}. Then if

IIg(t,x)[[ 2(0 f(t,x)[/(1 + [[XII l+e)

for (t, x)e I x R", where > 0, 2"1 I is bounded and continuous and there exist
T I and a constant c, 0 < c < 1, such that 2(07(0 < cfor all > T, every solution
y(t) y(t, o, Yo) of(P) is bounded and satisfies y(t)l[ 0 as tends to infinity.
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Proof The theorem follows from the previous theorem if we show that no
solution of (P) can have finite escape time.

Assume there exists a solution y(t) y(t, o, Yo) of (P) with finite escape time.

Sincefand g are continuous, limit,_ Ily(t)ll + o for some > to, < o. Let

M max {2(t)?(t)}.
re[to,i]

Hypotheses (i) and (ii) imply that

Vle)(t, y(t)) < f(t, y(t)) I/(1 / Ily(t) 4- T(t) g(t, y(t))

so, for to_<-t=<,

Vie)(t, y(t)) <= [If(t, y(t))ll[-- 1/(1 + y(t)ll) + M/(1 + Ily(t) +)].
Let K > be such that Y{I >= K implies lyll > 4M. Since Ily(t) --, 4- as --,

from the left, there exists t* _>_ to such that y(t)ll >- K for t*, ). Therefore,
for t*, ),

Ily(t) + Ily(t) Ily(t) /2 4- y(t) 1+/2
> Ily(t) 2M / (2M- 1)

2M(1 + y(t) )- 1,

which implies that (1 + I[y(t) +)/M > 2(1 + y(t)ll). Therefore, for e It*, ),

VIp(t, y(t)) <= -IIf(t, y(t))ll/2(1 / ly(t) ).

Now, from the differential equation (P), we have

y’(t) <= f(t, y(t))ll / IIg(t, y(t))

=< f(t, y(t))ll(1 + k + Ily(t) )/(1 + y(t)ll),

where k is the bound on 2(0 for e to, ?]. So we have

f(t, y(t)) >= IlY’(t)(1 / y(t) )/(1 + k +
Therefore, for e t*, ),

Vie)(t,y(t)) <= y’(t) /(1 + k + Ily(t))2.

Integrating from t* to e t*, ), we obtain

V(t, y(t)) V(t*, y(t*)) =< -1/2l In (1 4- k 4- y(t)[[)/(1 4- k 4- y(t*) )l,

which approaches - as Ily(t) ---’ 4-, contradicting the fact that V(t,x) is
bounded from below for all (t, x) I x R".

Therefore, no solution of (P) can have finite escape time, proving the theorem.
We state the following without proof.

COROLLARY 4.3. ( in Theorem 4.4, the hypothesis (ii) is replaced by
(ii)’ Vi)(t, x) < -Ill(t, x)ll for all (t, x) I x R",

then the conclusion of Theorem 4.4 holds for any g(t, x) such that

]lg(t, x) < 2(t)ll.)c(t,x)[[/(1 + tx )

for e > 0 and 2(t) as in the hypotheses of Theorem 4.4.
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SOME q-ANALOGUES OF CERTAIN COMBINATORIAL NUMBERS*

L. CARLITZ"

Abstract. Stanton and Cowan have discussed the recurrence

g(n + 1,r + 1)=g(n,r + 1) +g(n + 1,r) +g(n,r)

subject to the initial conditions

g(n,O) g(O,r)= 1, n_>_ O, >= O.

The present paper is concerned with two generalizations of this recurrence. In particular the recurrence

A(n,r) A(n 1,r- 1) +q"A(n,r- 1) + qrA(n 1,r)

is treated. The more general recurrence

A(n, r) A(n 1,r- 1) +p"A(n,r- 1) + qrA(n 1,r)

is also discussed’the special case p leads to simpler results.

1. Stanton and Cowan 3] have discussed the recurrence

g(n+ 1,r+ 1)=g(n,r+ 1)+g(n+ 1, r) + g(n, r)

subject to the initial conditions

(1.2) g(n, O) g(O, r) 1, n>=O, r>O.

They show for example that

and
min(n,r)

(1.4) g(n,r)= 2
k=0

r+k

Since, by (1.4),

g(n, r)x"y
.,r=0 -x-y- xy

it follows also that

g(n, r)
k !(n k) !(r k)k=O k=O

n+ r-k)n
n+r-k n +
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Moreover

n+r-j n + 2n-J

See also [1].
The referee (of the present paper) has pointed out that the g(n, r) have the

following combinatorial meaning arising in Kaplansky’s lemma [2]:
The number of ways of selecting r of the 2n- letters A1, A2,’", An-1;

B1, B2, B such that no selection contains A and Bj with j 1, i, + is

equal to g(n r, r) (g(n, 0) 1, by convention).
The recurrence (1.1) suggests various generalizations. We consider first the

numbers A(n, r) A(n, r q) defined by

A(n, r) A(n 1, r 1) + q"A(n, r 1) + qrA(n 1, r)

and

(1.6) A(n, O) A(O, r) 1, n>=O, r>=O.

Clearly

A(n, r; 1) g(n, r).

Put

F(x, y) F(x, y q) A(n, r)x"y.
tl,r 0

Then, by (1.5) and (1.6),

F(x, y)= + + +
-x -y

{A(n- 1,r- 1)+q"A(n,r- 1)
n,r

+ qA(n 1, r)}

+=1+
1-x -y

+ xyF(x,y)+ y A(n,r)(qx)"y
0

+ x Z A(n,r)x"(qY)
n=O

+ xyF(x,y)+ y A(n, r)(qx)"y + x A(n, r)x"(qy).
n,r 0 n,r 0

Thus

(1.7) F(x, y)
xy

X
+ Y F(qx, y) + F(x, qy).

xy xy
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F(x, y)

where

Iteration of (1.7) gives

y { y
2X qx }+ F(q y) + F(qx, qy)

xy
+

xy -qxy qxy qxy

x { + qyF(qx, qy)+XF(x,q2y)}+
1-xy 1-qxy -qxy 1-qxy

x+y
+

xy (1 xy)(1 qxy)

(1 xy)(1 qxy)
y2F(q2x, xy) nt- 2qxyF(qx, qy) + x2F(x, q2y)}.

This suggests the possibility of an expansion of the form

P.(x, y),y) .=2
(XY)n+ (l xy)(1 qxy)... (1 q"xy).

Substituting from (1.8) in (1.7) we are led to

(1.9) P,+ l(X, y) yP,,(qx, y) + xP,,(x, qy),

with

(1.10) Po(x, y)-- 1, el(x, y)-- x + y.

More precisely, if P,,(x, y) satisfies (1.9) and (1.10), then F(x, y) as defined by (1.8)
will satisfy (1.7).

It is convenient to write

(1.11) P, +1(x, y) (yg -.t- xgy)en(x y),

where

Exf(X, y) f(qx, y), E,f(x, y) f(x, qy)

andf(x, y) is an arbitrary function of x and y. Clearly (1.11) implies

P,(x, y)= (yE + xEr)". 1.(1.12)
We have

y xLy
k=O

Indeed, assuming that (1.13) holds up to n, then

(yEx + xEy)"+
k=0 kl q(k + )(n k)xn kyk + ly’k + Ern

)qk(n-k+l)xn-k+l"krTkrn-k+ly
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(1.14)

It follows from (1.12) and (1.13) that

P,(x, y)
k=O )

Since (1.11) implies

Pm+.(x, y) (ye + xV,)"P(x, y),

we have the more general result

In the next place, since

(z).+ k z’

where

n + k (1 q"+k)(1 q,-k-1)...(1 q"+ 1)
k J (1 q)(1 ’i" :" (1

it follows from (1.8) and (1.14) that

F(x, y) o Pk(x’ y)

kO 0 @k-J)xJyk-j xSy
j= s=O S

x"Y
k+s

qj(_j)
n,r= 0 S

Therefore,

j+s=n
k-j+s=r

min(n,r)

n,r=O s=O

min(n,r)

(1.16) A(n, r)
s=O

n+r-2s + r S1 s)(r s)q(n
S

It is clear from (1.16) that A(n, r) is a polynomial in q with nonnegative coeffi-
cients. Moreover

(1.17) deg A(n, r) hr.

If we put

then (1.5)implies

(1.18)

A(n, r) a(n, r, k)q
k=O

a(n,r,k) a(n 1,r 1,k) + a(n,r- 1,k n) + a(n 1,r,k r).
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Corresponding to (1.6) we have the conditions

a(n,O, k) a(O, r, k) 6k,O,(1.19)

If we put

p(n, k,j)qJ,

n>__0, r=>0.

where p(n, k,j) is the number of partitions of n with at most k parts and no part
greater than j, then (1.19) implies

n+ r-2S) p(n+ r-s,s,k-(n-s)(r-s)).
min(n,r)

(1.20) a(n, r, k)
s=O

If we define

A*(n, r) q"rA(n, r, q- 1),

where A(n, r, q- 1) is the result of replacing q by q- in A(n, r), then (1.16) becomes

min(n,r)

(1.21) A*(n, r)
s=O

It follows that

qs2

VI S S

F*(x,y)= A*(n,r)x"y
n,r 0

Therefore,

2 (xy)qs
0 n,r= 0

Z (xy)Sq
s=O k=O S n=0

xnyk

(xy)q k+s
(x+y)k.

s=O k=O S

(xy)qS
\(1.22) F*(x, y)

(x + y)+

The numbers A*(n, r) satisfy the recurrence

(1.23) A*(n, r) q"+- 1A*(n 1, r 1) + A*(n, r 1) + A*(n 1, r).

Alternatively, we could have taken (1.23) as definition and derived all the above
results.

We remark that, when q 1, the right member of (1.16) reduces to

in agreement with (1.3).
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2. We consider next the more general recurrence,

(2.1) A(n, r) A(n 1, r 1) + p"A(n, r 1) + qrA(n 1, r),

subject to the conditions

(2.2) A(n,O)= A(O,r)= 1, n >= O, r > O.

To avoid confusion, we shall occasionally employ the fuller notation A(n, r;p, q).
If again we put

(2.3) F(x, y) F(x, y; p, q) A(n, r; p, q)x"y,
n,r 0

it follows that

(2.4) F(x, y) +
xy

This may be written in the form

(2.5) V(x, y)

where now

XY F(px, y) + F(x, qy).
xy xy

xy xy(yE,, + xEy)F(x, y),

Exf(X, y) f(px, y),

It can be verified that

Eyf(x, y) f(x, qy).

(2.6)

where

E Ey,
k=O p,q

Note that

qk(n-k)

so that (2.5) reduces to (1.13). However (2.6) does not seem to be of much use in
evaluating F(x, y).

Iteration of (2.6) gives

1 1 1
F(x Y)

xy
+

xy
(yEx + xEy;l xy

+
xy
(yE + xEy)I xy

(yEx + xEy)F(x, y).

The general formula is

(2.7) F(x,y)=,,=o 1- xy
(yE, + xEy)

xy
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To evaluate F,, consider the sequence

(2.8) a (2122". 2,),

where each 2j is either a p or a q. Then

p"qx"- kyk
(2.9) F. (1 xy)(1 21xy)(1 2122xy)...(1 21..-2,xy)’

where k is the number of p’s in a and the summation is over all sequences (2.8).
To evaluate u, v we use (2.5). This implies the recurrences

(2.10)
u(ap) u(a) + n k + 1, v(aq) v(a),

u(aq) u(a), v(aq) v(a) + k,

where

If we put

(rp) (21"" 2,p), (aq) (21"" 2,q).

r (p. p q q p. p. q. q),
S S2 S 3 S2t

where

(2.11) 81 0, S2 " 0,

it follows from (2.10) that

(2.12) u(a) 82i82+1,
i<_j

Note that

(2.13) k 81 + 83 + s +...,

and

(2.14)

"’’’ S2t-1 > O, S2t O,

l)(O’) Z S2i-1S2j"
i<=j

n- k s2 + s4 -Jl- s6 --
u(a) + v(a)= k(n- k).

Therefore, for p q, (2.9) reduces to _, q(n- )X(2.15) F,
(xy), +1

where the summation is over all si satisfying (2.11) and (2.13). This amounts to

choosing k positions out of n in all possible ways, namely (). Thus (2.15) is in

agreement with (1.15).
It is evident from (2.1) that A(n,r; p, q) is a polynomial in p, q with nonnega-

rive integral coefficients. It is of degree nr in each of p, q separately and also of
total degree nr. It is also clear that

(2.16) A(n, r p, q) A(r n q, p).
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The first few values are easily computed by means of (2.1).

1

1 1 + p + q -+- p "k- p2 + pq + q.2 + p + p2 _+_ p3

1 + q + q2 + pq + p2 + pZq _+_ pq2 _+_ q3

A(2, 2) 1 + p + q + p2 _+_ q2 -k- pq(p + q) + (p2 -k- qZ)(p2 + pq + q2).

(3.1)

with

3. If p 0, (2.1) reduces to

Ao(n,r) Ao(n 1,r 1) + qrA(n 1,r),

(3.2)

where for brevity we put

Put

Ao(n, O) Ao(O, r) 1,

Ao(n, r) A(n, r; O, q).

n>0, r>0

Fo(x, y) Ao(n, r)x"y.
l,r 0

Then we have

Fo(x, y) + x
1-y

{Ao(n, r 1) + qAo(n, r)}x"y
tl,r 0

+ xyFo(x, y) + xFo(x, q, y),

so that

x
(3.3) Fo(x, y) +(1 y)(1 xy) xy

Fo(x, qy).

Iteration of (3.3) leads to

(3.4)
x

F(x’ Y)
k=O (1 qky)(xY)k+

It follows that

Thus

Z Ao(n, r)Y
r--O k=O

yn
qky"
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Since

it follows from (3.5) that

y,-
yk qj(,- k)yj

qky k=O j=O

y,
r=O k=O

(3.6) Ao(n, r) qt,-k)t-k)
k=O

For example,

Ao(1,r) + q,

Ao(2, r)= + (1 + q)q-1,

A o(3, r) + (1 + q + q2)qr-2
__

(1 + q + q2)q2r-2 + q

Note also that

Ao(n,r;O, 1) 2",

Returning to the general case of (2.1), it is easily verified that

p" p,.+ q,.+
A(1, r) +

-p p-q

It follows that

(3.7)
y

A(1,r)Y= +
=o (1 y)(1 py) (1 py)(1 qy)

Put

Then by (2.1),

In particular, since

it follows from (3.8) that

F,(y) A(n, r)y.
r=O

(1 p" +1Y)L + I(Y) YL(Y) ’Jr- F.(qy)

(y +

Fo(y) (1 y)-’

(1 py)FI(y) Y +
1-y 1-qy’

in agreement with (3.8). Next, for n 1, (3.8) becomes

(1 pZy)F2(y) yFI(y) + Fl(qy),

r>_l,

r>_2

r>_3.

r>n.

r>0.
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which yields

(3.9)

F2(y) +
(1 p2y)(1 py)(1 y)

qY

(1 p2y)(1 pqy)(1 qy)

(1 py)(1 pZy)(1 qy)

y2
+

(1 y)(1 py)(1 pZy).

4. We shall now examine the case p of (2.1) in more detail. For brevity
we put

A (n, r) A(n, r; 1, q), Fl,,(y A l(n, r)y.
r=0

Then (3.8) becomes

(4.1) (1 y)FI,, +1 (Y) yF1 ,,,(y) + Fl,,,(qy).

We may write this in the form

FI,, +I(Y) y(Y + Ey)FI,,,(y).

Thus it is clear that

(4.2) (y + Ey)
1

FI’n(Y)
y y"

It is therefore necessary to expand the operator

We may put

(4.3)

Then

[ I(y + Ey)
1-y

k=0

so that

+ e,)
1-y

1 n+l

Z {yC,,,,(y)+ C,,,,_ l(qy)}E’y,
1-y=o

(4.4)

We have

C,+ 1,u(Y)-
y
{YCn,k(y) nt- Cn,k_ l(qy)}.

Co,o(Y) 1, Y C,(y)C,o(Y) 1 y’
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Also it follows from (4.4) that

(4.5)

and

(4.6) C,(y)
(y)

C ,o(y)
(1 y)"

(1 y)(1 qy)... (1 q"-

Using the recurrence (4.4), we get

C2,1(y

C3,1(y

C3,2(y

C4,1(y

C4,2(y

1-y

1-y

1

Y + qY.
-y -qy

y2
(1 y)2

(1 y)(1 qy)

1 y
1-y (l--y)

1

(1 y)(1 qy)

qy2
(1 y)(l qy)

Y +
qY

1-y 1-qy

qy3
(1 y)2(1 qy)

y2
+

(1 y)e

q2y3
(1 y)(1 qy)2

qy2 q2y2
+

(1- y)(1- qy) (1- qy)2

q2y2
+ +(1-y)(1-q2y)

q4y2
(1 qZy)2

q3y2
(1 qy)(1 q2y)

y
q

qy q2y
+

q3y
C4’3(Y) (1 y)(1 qy)(1 q2y) y qy 1 q2y 1 q3y

These formulas suggest the general result:

(4.7) C,,k(y) S,_ k,(y),

where S,,(y) denotes the complete symmetric function of degree n in the k + 1
quantities

Y qY q’y
1- y’ l qy’ 1- qy"

It is evident from the definition of S,,k that

YS,+ x,(Y) 1 y
Sn,k(y .ql_ Sn + 1,k- l(qY)"

Hence, by comparison with (4.4), it is evident that (4.7) holds.
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We recall that if

[(1 CroX)(1 or ix)... (1 uX)]-I Z
n=0

then h, is the complete symmetric function of degree n of the k + quantities

We have therefore

j=O

or, what is the same thing,

(4.9)

Since

it follows that

Therefore, by (4.7),

(4.10)

(Xn 1 (Xk"

qJY
xqJy n=0

((1 + x).V)u + o S,,(y)x".
(Y)k +

((1 x)Y)k + j= J
(1 4- x)Jy

]+ k
yj xn,

j:o J ,,:o

1
S.,k(Y)--(Y) + :

+ klyj

C,+k,k(Y)-- ,qky J= n
+ k]yj

Returning to (4.2) and (4.3), it is clear that

1 1
F’n(Y) o Cnk(Y)-- 0k= 1-- qky k: (Y)k +

It follows that

S,_,(y).

Fl(x y)
,:o

F,,,(y)x" k=OE (Y)k + n:O Sn’k(y)xn"

Therefore, by (4.9) we have

X

L(4.11) F(x,y)
((1 4- x)Y)k+

By means of (4.11) we can obtain an explicit formula for A(n,r), namely,

k=O n-k k
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For q 1, (4.12) reduces to

A(n,r;1,1)= =o n-

r + k

in agreement with (1.3).

5. Another generalization of (1.5) that may be mentioned is

(5.1) Ax(n, r) 2Az(n 1, r 1) + qAx(n, r 1) + qAz(n 1, r)

together with

A(n, O)= A(O,r)= 1, n >= O,

Exactly as in we find that

Fz(x, y) Az(n, r)x"y

satisfies

1
(5.2) Fa(x, y)=

2xy + ’(yExl + xEy)Fx(x, y).

This implies

Fx(x, y) E (xy)-,-+i’n----O

where P,(x, y) has the same meaning as in (1.8). Therefore, finally,

min(n,r)

(5.4) Ax(n, r)
s--O

qtn
gl S S

In particular, for 2 0, (5.4) reduces to

(5.5) Ao(n,r

It is of course easy to verify (5.5) directly.

The more general recurrence

(5.6)

where now

(5.7) B(n, O) p(1/z)n(n+ 1)

can be reduced to (5.1).

Put

Then (5.6) becomes

B(n, r) 2B(n 1, r 1) + prq,B(n, r 1) + p"qrB(n 1, r),

B(0, r) p(1/2)r(r+ 1),

B(n, r) p(l/Z)n(n+ 1)+(1/2)r(r+ 1)-nrc(H, r).

C(n, r) 2p- C(n 1, r 1) + (pq)"C(n, r 1) + (pq)C(n 1, r),
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where

C(n, O) C(O, r) 1.

Comparison of (5.8) with (5.1) leads to an explicit formula for C(n, r), and there-
fore for B(n, r). The final result is, by (5.4),

(5.9)

B(n, r) p(1/2)n(n+ 1)+(1/2)r(r+ l)-nr

(pq)(,- s)(r- s)2p- ,
()Elmin(n,r)
/7 + r 2s n + r s

s=% El S S pq

where

(1 p"q")(1 p"-’q"-’)... (1 p,-k+ lq,-k+l)
(1 pq)(1 p2q2)... (1 pkqk)

In particular, when p q-1, (5.9) reduces to

min(n,r)

(5.10) B(n, r) q-(1/2)n(n+ 1)-(1/2)r(r+ 1)+nr 2
s=0 n+r-2s)1/l-- S

n+r-s
S
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IMPROVABLE ESTIMATES IN SOME NON-WELL-POSED
PROBLEMS FOR A SYSTEM OF ELLIPTIC EQUATIONS*

PHILIP W. SCHAEFER’f

Abstract. By means of the logarithmic convexity of a suitable functional, an a priori inequality is
developed which, when used with a previously derived pointwise inequality, provides new bounds for
the solution functions for the Cauchy problem for the elliptic systems considered by Conlan and
Trytten. In these improperly posed problems, the solution functions are assumed to be uniformly
bounded. The new estimates may be improved by the Ritz method.

1. Introduction. It is well known that the Cauchy problem for elliptic equa-
tions is not well-posed in that a slight variation in the Cauchy data may result
in a large variation in the solution (see I3]). However, some physical problems do
give rise to Cauchy problems for elliptic equations (see 53 and I8]) and it has been
shown by John I4] and Pucci 9] that under suitable conditions such problems do
become stable. Consequently, assuming the solution to be uniformly bounded,
Payne 6] presented a method for computing error bounds in the Cauchy problem
for the Laplace equation in n dimensions.

In 2], Conlan and Trytten extended the results of Payne in obtaining point-
wise bounds for solutions to the Cauchy problem for elliptic partial differential
equations and elliptic systems. They treated systems of the form

1ul hx(x, u, u,i),

(1.1)

if’mum hm(x, u,

where x (x 1,’", x,,), u (u l, Urn), the comma notation indicates partial
differentiation with respect to xi, and the 5j are uniformly elliptic operators. An
example of such a system and its application is also given in [2]. The results con-
tained therein apply (when m 1) to the problem mentioned in [-103 but not
treated there (see p. 233 where, in fact, the right side of the single equation is void
of first order derivative terms). In both of these papers the pointwise estimates
cannot be improved by the Ritz method due to the definition of e3 (see [2] or [103
for a full explanation of the symbol) as the maximum of a set of surface integrals.

We shall determine an a priori inequality which can be used with the pre-
viously obtained pointwise inequalities of [2] to obtain new estimates on the
solution functions and on the square of their gradients. This will be accomplished
in a manner different from [23. Moreover, we introduce only square integrable
terms in our inequality so that under suitable conditions, such as the linearity of
the hi in (1.1) or the solution of the system of equations by the approximating
functions, we are able to improve the new estimates obtained by the Ritz method.
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In addition, one can also deduce the uniqueness and stability of the solution set
of (1.1) by means of this a priori inequality.

In [2] and [10], if the estimates were desired for points deep in the domain,
one might be required to repeat the process given there to extend the results to a
subdomain containing those points at which bounds were sought. This could
compound the error considerably. We shall follow Payne [7] and introduce a
family of level surfaces which may form subdomains that include those points at
which bounds are sought in the initial application of the technique.

Finally, for simplicity, we shall consider only two equations in our system;
the extension to rn equations is immediate.

2. Notation and problem. Let D be a domain in Euclidean n-space with
boundary B, a Lyapunov boundary, and let 2; be that portion ofB on which Cauchy
data is prescribed or, as presented below, measured within an allowable amount
of error. We assume , is a C surface.

Let

(2.1) f(x) o, 0 < o <_ 1,

where x (x,...., x,), be a family of (not necessarily closed) surfaces which
intersect D and form, for each , a closed region D whose boundary consists only
of points of Z, denoted Y., and points of the surfacef(x) , denoted S.

We assume that fis a C2 function in/ such that
(1) if0< 2< p__< 1, thenD D,,

(2.2) (ii) ]grad f] > 6 in Da,
(iii) f _< 0, 22f =< 0, [2’af[ __< cao(52, 152f1 __< cbo6a, in D a,

where c and are fixed positive constants. Here and 52 are uniformly elliptic
operators

(2.3) lU (aiju,i),j, -q2v (bijv,i),j,

where the repeated indices denote summation, the comma notation indicates
partial differentiation, and the coefficients are C functions which satisfy

(2.4)
au aJi’

bij bji

aOi = aijij <: alii,

boi <= biji = blii,

in D for positive constants ao, al, b0, and bl and all real vectors (1, "’", ,).
We shall assume that D,, 0 < __< 1, has nonzero volume and Do has zero volume.

The existence of such a family in the case 1 Ae2 and the usefulness in form-
ing regions D which may include points that are not close to E, but at which
bounds are sought, was noted by Payne in [7]. We shall elaborate further on the
situation 51 4:’P2 in 4.

Consider the system

(2.5)
OlU hl(X u, v, U,i

2v hz(x, u, v, u,i,
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where h and h 2 satisfy uniform Lipschitz conditions in all but the x variables.
Let u and v be C2 functions which satisfy (2.5) in D and

(2.6)

on Z, where the quantities Uo, ui, Vo, vi are the respective measured values of u,
u,i, v, v,i on Z and rt 1, rt2, rt3, and rt are given bounds for the error in the measure-
ment of the data. In addition we assume that u and v are uniformly bounded in D.

Let

(2.7) U=u- qS, V=v- ,
where 4) and g, are C2 approximating functions. Then by (2.5) we have

where

1U hl(X, bl, U, bl,i, U,i hl(X, (/), l, ,i, t,i .qt_ Al(b, t),

v h(x, u, v, u,,, v,) h(x, 4, , 4,,, ,) + A(4, ),

A A 1((/), ) hl(X ,dp, , (/),i, Ill,i) -1(]),

A 2 A2(4), 9) h2(x, (;b, , (),i, /,i) 2/"

In view of the Lipschitz assumption on h and h 2 it follows that

11 U[ __< L IIU / L2IV / L3IU,i / L4IV, + [A 11,
(2.8)

for constants L1, .-., Ls, where ]U,i] denotes the length of the gradient vector.
We now set

1= fy. U2 da, e,2 fy V2 da, g3 fy u,iu,i da,

(2.9)

e-- fv,,v,id, f fo A2 dx, f fo A2 dx,

where dx is the element of volume in D Here e and e6 play the role of e in [2].
Finally, since u and v are assumed to be uniformly bounded, we have that

(2.10) IUI =< M, IVl =< M,
for some prescribed constant M. We shall need these bounds in the final analysis.

We shall derive an a priori inequality of the form

(2.11) f I_ (U2 / V2) dx<= KM2(1-d)[kiei]a’

where K and ki are computable constants and d is a fixed constant between 0 and
1. Then using (2.11) with (4.3), (4.5), and (4.16) of [2], we arrive at the new point-
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wise estimates for U, V, U,iU,i and V, V, and ultimately for u, v, u,iu,i and u,iv,i
by means of (2.7).

3. Derivation of inequalities. Let us define the functional F by

(3.1)
F(oO-- ( rl) [aijU,iU,j + U1U + bijV,iV, + Vq2 V]

dx drl + ki8

where 0 =< e =< and the k are constants to be determined. First we show that F
satisfies the differential inequality

(3.2) FF" (F’)2 C 1FF’ C2F2

for computable constants C1 and C2, where the prime denotes differentiation with
respect to .

By differentiation,

(3.3)

(3.4)

F’ [aijU,iU,j --]-- UqO1U if- bijViV, + V,
2 V] dx drl,

,,,= fro EaijU,iU,j-t- U-qgl U --bijViVj nt- V2 V] dx.

Using the generalized Green’s identity in (3.3) and that ni ofi Igradfl-1 on S,,
we have

F’= [auUU, + buVV,i]f,jdx + U

where

-V a U n --V
Thus by the divergence theorem, we obtain

fs [ cgf) V2(Sf) ] fOf.I(cgU)F’= U2 dtr+ U v + V

(3.6)

2
[U2lf + V2f] dx.

Now since

F() F’(rl) dr q- ki8i,
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we get by (3.6) that

F() - (p + r V ax + - -v + N

+ V + V N dad;dq

2 lf + V22f] dx d, + kigi,

where p aijf,if, and r bijf,;f,J. Thus by (2.2) and the arithmetic mean-
geometric mean inequality (abbreviated A-G inequality),

Ixyl (1/27)x 2 + (7/2)Y2,

there are computable constants 0i such that

(3.7)
ff,, u )(k 0,) -3t- - (p + r V dx <= f(o0

c+l
2 f f) (pU2 -F "cV2) dx q- (k -t- Oi)F, i.

7>0,

We choose ki > 0i to ensure the nonnegativity of the lower side.
Using (2.8), the A-G inequality, and (2.4) we obtain

f fDn (U’91Uqt- V2V)dx] f f.. (PU2 +’cV2) dx

(3.8)

+ - (aU,U, + bV,,)dx + 1/2( +

for a computable constant c. The A-G inequality and (3.7) allow us to conclude
that there exists a determinable constant B for which

(3.9) U + V -v
From (3.3), (3.8), and (3.7) it follows that

f ffo(3.10) (ajU,U,j + bjV,V,j) dx drl <= 2F’ + 2B2F,

for a computable constant B. Then by (3.8) and (3.10) we see that

fo  fo(3.11) (UI U + Vq2V)dx <= F’ + 2B2F.

Thus we have, without recourse to an a priori inequality as was needed in [7],

(3.12) IF’] <= 3F’ -F 4B2F
by (3.!0) and (3.11).
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Furthermore, we have the inequality

(3.13)
f fD -1 U 2 -1 b[aijU,iU,j 2p (aijj ,i) -+- bijViV, 2z (ijfjVi)2] dx

<= BaF + BF’,

for computable constants B3 and B4. To establish (3.13), we utilize identities like
(2.20) and (2.21) of [7] and then apply the A-G inequality, (2.8), and (3.7)-(3.10).
We note that we shall need both an upper and lower estimate on the integral in
question, whereas Payne needed only a lower estimate in his situation. Moreover,
we again obtain this estimate without recourse to such an a priori inequality as
was done in [7].

Finally we shall need the inequality

(3.14)

(F’)a <= (aijUU, + bijVV,i)f, dx

+2F’ U -v + V v
which follows by means of (3.5).

We now form FF" (F’) 2 and find

FF" (f’)2 _>_ (/9 --]- 72V2) dx (aijU,iU,j -]- bijV,iVj dx

---FffD ,U91U3t- V2V)dx-ff
D

,DU2-+-TV2)dx

(3.15)

{ffD t 2

(ajUU, + bjVV,)f, dx

[ fi-2F’ u + v dad,+ (p +r dx

[p j, ,j, + r (bjZEj)23 &.

Here we find it expedient to add and subtract

(3.16) ffD ffD -ltaf U 2 -l(bijf,ir,j)2]dx,(P U2 + 72V2) dX [P ij..,,i ,j, -- 72

for reasons similar to those of Trytten in [10]. Basically, this is a consequence of
the appearance of derivative terms in (2.8) and that the region of integration in
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(3.4) is D. Consequently, we have

(3.17)

FF" (F’)2 >= (p + rV dx IaijU,iU,j --}- bijV, iV,

where

and

2,0- l(aijf,iU,j)2 2r.- (bijf, V,j)2] dx

(aijU V,i q-- bij V W,i)fj dx

which is nonnegative by Schwarz’s inequality.
We shall now show that J >__ -BsFa- B6FF’. By Schwarz’s inequality,

(2.8), and (2.4), we have

(U1U -1
t- V2 V) dx <= (pU2 -+- TV2) dx C2 (pU2 q- -el/2) dx

-[- C4g --1-- C5S6 }’
for constants ca, c3, c4, and cs. Moreover, by adding and subtracting a similar
expression in the braces and using (3.7), we can write

f fD, [aijU’iU’j + bijV’iV’j

Xgb t" V. ]2"]2p (aijf,iU,j)2 2"c ia,,i ,a, dx

+2C3 {I + If fD, (aijUU’i + bijl/l/’i)f’J dxl2}
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By means of (3.5) and (3.9),

fro (aijUU’i+ bijVV"i)f’jdx <=[F’I / B1F’

so that using (3.7), (3.13), and the A-G inequality we arrive at

(UU + V.V)dx <__ 2c3I + f + {cF + ca(Bf + B4F’)}

(3.19)
+ 2c3([F’I + B1F)2

for a positive constant c6. Consequently, combining (3.19) and (3.18) and using
the elementary inequality

(721 .qt_ 7 -[- 7 + 724) 1/2 I7,l / 121 / 17l + 171,
we arrive at

J >= I F{(2c3I) 1/2 + F + c6F + c3(B3F + B4F’ + (2c3)1i2([F’[ + B1F)}.
Now using

7-27172 >_- -722
on the first two terms, we conclude that by means of (3.12),

J >__ -(1 + (1/2)c3)F2
C6F2 c3F(B3F + BF’)

F(2Ca)l/2(3F + 4B2F + B1F),

that is, for computable constants B5 and B6,

F2 B6FF’(3.20) J > B5
Finally, using (3.13), (3.7), (3.12), (3.9), and (3.20) in (3.17) we see that (3.2) is

satisfied.
Having verified (3.2), we define

(fl) log F(a)fl -c/c, fl exp (-- C1(),(3.21)

and note that

d2 C2F2 + FF" + C1FF’ (F’)2

dfl2 (fl) FzCZfl2 >- O.

Consequently, () is a convex function so that by Jensen’s inequality [11,

(3.22) F(z)
_

KoF(O)d[F(1)] l-d,

where Ko is a computable constant and d is a fixed number between 0 and 1. Thus
by means of (3.7), (2.10), (2.2), and (3.1) we obtain the desired inequality (2.11).

4. Existence of level surfaces. We now consider the question of the existence
of a function f which satisfies the conditions (2.2) in the case where 1 and ’2 are
different elliptic operators. We shall answer this question by exhibiting a function
which meets the required conditions under certain assumptions on the coefficients
of the differential operators.
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We choose the origin O of a coordinate system in the exterior of D such that
there exists a ball K(a) of radius a and center O whose intersection with B is non-
empty and contains no points of B 2;. Let r0 > 0 denote the radius of the ball
K(ro) which is tangent to B at some point of Z and R0 denote the radius of the
largest ball satisfying the conditions set forth for K(a). Let r represent the distance
from O to a point P in D K(Ro) so that r0 =< r =< R0.

Now consider the function

(4.1) f(x) [rg’- r-]/[rg- R],

where 7 is an undetermined positive constant. It follows readily that f satisfies
the requirements of (2.1) and (2.2), provided we choose 7 sufficiently large.
Explicitly, if we choose 7 such that

(4.2)
]aij’ixj -+- aiil <= (7 + 2)ao,

Ibj,xj + b,I <= (y + 2)b0,

for x in D fq K(Ro), then we can determine 6 and c so that (2.2) is satisfied.
Obviously, the family of surfaces determined by (4.1) may not be the best (nor the
conditions (4.2) the weakest possible), but we have established that a family of
level surfaces, such as is required, does exist.
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A CORRECTION TO LEIBNIZ RULE FOR FRACTIONAL
DERIVATIVES*

THOMAS J. OSLER’

Abstract. This paper calls attention to an error in the proofs of various extensions of the "Leibniz
rule" for the fractional derivative of the product of two functions published previously by the author.
The error occurs at a step where integration and summation must be interchanged, and justified.
The justification requires that a new restriction be added to the functions involved. The new restriction,
however, is a natural one, and in no way affects applications of the Leibniz rule previously published.

1. Introduction. Previously the author published papers which contained
proofs and applications of generalized Leibniz rules for the fractional derivative
of the product of two functions, Du(z)v(z) (and more generally Df(z, z)),
[5]. While exploring further generalizations, the author discovered an error in
the proofs of Leibniz rule given in [1], [2], I5]. The error occurs at a stage where
summation and integration are interchanged Q" .). This interchange does
not seem to be valid unless an additional restriction is added to the hypotheses
under consideration. It is the purpose of this note to state this added restriction,
and to demonstrate that the interchange (j" f)is then valid. Fortunately
the new restriction does not affect any of the applications of Leibniz rule to
infinite series expansions given in [1], [2], [33, [5].

2. The new restriction. The new restriction is as follows.
Restriction. Let the singularity (if any) of f(z, w) at z w 0 be such that

If(z, w)] =< Mlz]Plwl for all z and w considered, where M is constant and p, q, and
p + q are in the interval (-1, ).
This Restriction should be added to the hypotheses of Theorems 4.1 and 5.1 of I1]
to the hypothesis of Theorem 1, p. 664 of I2] (in which f(z, w)is u(z)v(w));to the
hypothesis of Theorem 4.1 of [5]; and to Theorem l, p. 290 of[3] (in whichf(z, w)
is u(h- l(z))v(h- l(w)).

In [1], [2], [5] we required the behavior of f(z, w) near the origin to be such
that cf(z,z)dz, }cf(z, w)dz, and }cf(z, w)dw vanish over any closed path C
through the origin. Our new Restriction is stronger. Nevertheless, a function
f(z, w) having a singularity of the type zPw would still have the same restrictions
placed on p and q by the integralsjust mentioned as it would by our new Restriction.
This is the reason why the series expansions considered in our applications of
Leibniz rule are not affected by the new Restriction.

3. The corrected proof. The extended Leibniz rule given in 53 is more general
than that given in 1], [23. Thus we show where the error in reasoning occurs in
[5] and how our new Restriction corrects it. The correction needed in 1], 2] is
simply a special case of the one we are about to consider.
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Our restriction is needed to show that we can integrate the infinite series
(4.2) of [5] term by term over the contour C(z). The reason stated in 5] for this
term by term integration is incorrect, as this series is not a Fourier series as the
author previously assumed. According to [4, p. 44], the infinite series (4.2) of [5]
can be written as a finite sum with two remainder terms in the form

F(o + 1)/(, )
{same terms as in (4.2)of [5]} + R(N) + R_6(N),

2ni( z) +
N

where

aN"ar( + 1)O(;z)+ O(t;z) {O(;z)/O(t;z),. (g,t)Ot(t;z)dt
g(s) ( z)+ O(t" z) O(" z)

and

e aNF(Y

R_o(N)
ar( + 1)0( z)’+ O(t z)"- {O(t z)/O( z) t)Ot(t z)dt
-4( z) O(" zy- O(t" z)"

The contours of integration C (x e and -b) are shown in Fig. 1, and we note
that each consists of three parts" C C ;(x) + C2(x) + C(x), where

C(x) starts at 0 and continues to the point
where [O(t’z)[ ]0(0; z)] + x along the
curve defined by arg O(t;z) arg 0(0; z),

C2(x {t]]O(t;z) ]0(0;z)] +
C(x) C(x) traversed in the opposite direction.

Notice that in the notation of [5], C(z) C2(0).
To show that we can integrate (4.2) of [5] term by term over C(z) we must

show that both

approach zero as N approaches infinity. Both remainders are examined in the
same way; thus we shall only examine

(z) (z) ( 6) + C3( 6) (z) ( 5)

The last term above can be made arbitrarily small by taking N sufficiently large
for fixed 5 since

fC(z) fc2( 6)

ar(o + 1)M0(0; z)
472

"fC(z) fC2(-b)
Thus we must show that

I

max I( z)- l
eC(z)

Io(o; z)l 6

0(0; z)

10(t; z)"-- ’O,(t z)[ IlPltlldtl IdOl
-I(o(o z)- 6)/o(O;z)[

aN

fC(z) fC(-6)+C3(-6)
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2;7c2(o) C(z)

z

Re(t)

FIG. 1. Contours of integration

can be made arbitrarily small"

I<
2aMF( + 1)0(0; z)a+

max
t6cl(-6)
eC(z)

0(t; z)"-’- 10,(t; z)

"f Illtlldtlldd
c) c,-) 10(;z)" 0(t;z)"l

If this last integral exists, we can make I arbitrarily small by taking 6 sufficiently
small, that is, making the length of C1(-6) small. Note that N does not appear
in this integral.

0(; z) O(t;z) has a simple zero at 4: z by the argument presented
in [4, p. 43]. Thus, 0( z) O(t;z) G(, t)(t ), where G(, t)is not zero on
the contours of integration. Thus we must show that

exists. But
C(z) CI( c5)
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The second term on the right-hand side exists because It 1 does not approach
zero. Thus our attention focuses finally on the critical integral,

I"=f ft [[P[t[q[dt[]d[

c) c-6) It- l

which must be shown to exist. The contours C(z) and C1(-6) are smooth and
intersect at right angles at the origin. (This is because C1(-6) defines constant
argument and C(z) constant modulus of 0 at the origin.) Since the contours of
integration for I" are short and nearly straight line segments, we know that fl
exists such that 0 < fl =< ]arg (t) arg ()] _< fl + t/2. Then it is clear that

and we have

Let It] ull, We obtain

I"f IlPltlqldtlldl

c c-a lit]- Ileifl]

I"<f fuuq]]p+qdu]d]eC(z} =0 lU eifl[
11_<6

which exists. Thus we have shown that we can integrate (4.2) of I5] term by term
provided we add the new Restriction.
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SOME NONOSCILLATION THEOREMS FOR A SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATION*

STIG-OLOF LONDEN"

Abstract. We investigate the equation

Ip(t)x’(t)]’ + q(t)g(x(t))= f(t)

and give sufficient hypotheses for the approach to zero of all nonoscillatory solutions. The conditions
are related to earlier theorems of Bhatia and Hammett.

1. Introduction. In a recent paper, Hammett [2] considered the second order
nonlinear, nonhomogeneous differential equation

(1) [p(t)x’(t)]’ + q(t)g(x(t)) f(t), 0 __< <

where p(t), q(t)e C[0, oo), p(t) > 0, 0 < < , g(x)e C(-oo, oo), and proved the
following.

THEOREM 1. Let

(2) p- dz

(3) p(t) > k >0, q(t) > k > O, 0<= <

for some constant k,

(4) xg(x) > 0, x 4: 0,

(5) g’(x) o, Ixl < ,
(6) f(t)e C[O, oe) 0 LI[O,

If x(t) is a nonoscillatory solution of (1), then lim,_oo x(t) O.
The proof of Theorem makes use of a previous result of Bhatia [1] on the

homogeneous version of (1).
In the present note we give some extensions of Hammett’s result. In Theorem 2

we replace condition (3) by the weaker assumption (10). Also, g(x) is not required
to be monotonically nondecreasing.

Theorems 3 and 4 were motivated by the case when p(t), q(t)--+ O, --+

However, when allowing for this possibility we do instead have to require thatf(t)
be small also compared to p(t) and q(t), in a sense made precise in the theorems.
That f(t) be integrable is not enough. Observe that Theorem 4 covers an equation
mentioned by Hammett but not covered by his result, namely

It- IX’l’ -1
t- t-1x(t) -2 + 3t -4,

which has the nonoscillatory solution x(t) t-1.
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Note that (24) is trivially satisfied if q(t) is sufficiently smooth and monotonic-
ally nonincreasing. Condition (25) is needed only to insure one-sided boundedness
of x’(t) and may be replaced by any other assumption accomplishing the same
purpose.

2. Theorems and proofs.
THEOREM 2. Let (2), (4) and (6) hold. In addition let

(7)

(8)

(9)

q(t) >= O,

q(r) dr 0(3,

lim inf g(x) > 0, lim sup g(x) < O,

0__<t<,

and suppose that there exists > 0 such that if P {tl0 =< < c, p(t)q(t) < },
then

(lO) p-- q(r) dr < .
Finally let x(t) be a nonoscillatory solution of (1) on [0, o). Then limt_ x(t) O.

Proof of Theorem 2. Without loss of generality let x(t) > O, 0 <= < .
Suppose lim inft_ x(t)> 0. Then by (4) and the first part of (9), g(x(t))_> 6,
0 __< < o, for some positive 6. From (1) and (7) one therefore has

(11) p(t)x’(t) p(0)x’(0) =< 6 q(r) dr + f(r) dr,

which by (6) and (8) gives

(12) lim p(t)x’(t) .
Combining (2) and (12) yields lim,_ x(t) v. Hence,

(13) lim infx(t) 0.

t>O,

(14)

We assert that lim supt_ x(t) 0. Suppose not. Then

lim sup x(t) >= 61 > O.

By (13) and (14) there exists {f,}, lim,_o , o, such that x’(,) 0. Integrating
(1), using (6) and (7) together with some straightforward arguments therefore gives

(15)

and

lim q(r)g(x(r)) dr < o,

(16) lim p(t)x’(t) O.
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By (13)and (14)there exist {t,}, {t’,}, lim,_ t, lim,_oo t’, o, such that

(1
x(tPn)

(1 (1 < X(t) < <(17) x(t,) 2’ ----’ z(-- t’,

From (16) it follows that

’<t<oOs) x’(t) < ./p(), t.
where e, 0, n . Let G(x) g(u) du. After multiplying (18) by g(x(t)) and
integrating over It’,, t,] one has, by (4) and (17),

(19)
g(x())

0 < (52 G(x(t,))- G(x(t’,)) <= e, dr‘,

for some i2 Thus,

(20)
g(x())

lim dr, .
Invoking (15) and (20) gives

(21) lim g(x(r‘)) q(r‘) dr‘ o for any > 0.

But by (4), (10) and (17),

g(x(r‘)) q(r‘ dr <= g(x(r‘)) q(z dr‘

-q(r‘ dr < o,

which violates (21). Thus, lim supt_ x(t) O.
This completes the proof.
THEOREM 3. Let (2), (4), (6), (8) and (9) hold. In addition let

q(t) e C 0, oc), q(t) > 0,

f(t)[q(t)] -1 L[0, v).

(22)

(23)

Let Q r {tl0 -<_ < o, q’(t) > 0} and let

(24) q-
Also let

(25) lim sup f If(r‘)l dr‘

0t<,

Finally let x(t) be a nonoscillatory solution of(l) on [0, ). Then limt_.o x(t) O.
Proof of Theorem 3. Let x(t) > O, 0 <= <= o. Using the present hypothesis

and arguing as in the proof of Theorem 2, one again obtains (13) and (16).
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Suppose limsuPtoo x(t)>= 61 > 0 for some 61 Then there exists {t.},
lim._oo t. oo, such that x(t.) 61/2. Choose any such sequence and define

t. max {tl0 -< < oo,t < t.,x(t) >= 361/4,x’(t 0,

t. min {tl0 <= < oo, t. < t, x(t) <= 61/4, x’(t) 0},

The set S. may then be written as the union of disjoint open intervals,
S. IJ (t’i., t’i’.), where

(26) x (ti.) x (ti.) O, x’(t) < O, ti. < < ti..

Dividing (1) by q(t), integrating over t’., t’i’.], performing an integration by parts,
using (22) and the first part of (26) gives

f’" f,’’ f(r)f,’"’p(r)x’(r)q’(’c)(27) g(x(r)) dr dr dr.

Consider the integrand in the last term in (27). On {rlti, < z < tin q’(’C) <= 0}
the integrand is nonnegative. On {zlt’,, =< r _<_ t’’., q’(-r) > 0} we use (16) and (24).
Hence, by (23) and (27),

(28) lim sup | g(x(r)) dr 0,

which of course implies

(29) lim sup f7 g(x(’c)) dr 0,

where

T.= S. N {
Note that

(30) x’(r) dr <
2

Integrating (1) over It, .], where . again is such that x’(.) 0, gives

(31) x’(t) > If(r)[ d’c,
p(t)

for all sufficiently large t. From (25), (30) and (31) one concludes that m(T.) >= 6 2

(m is the Lebesgue measure) for some positive 62. This fact, combined with (4)
and the definition of T., yields a contradiction to (29).

This completes the proof.
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THEOREM 4. Let (2), (4), (6), (8), (9), (22), (24) and (25) hold. In addition let

(32) lim sup p(t)/q(t) < c,
t-+oO

(33) lim f(t)]/q(t) O.
t--

Finally let x(t) be a nonoscillatory solution of(l) on [0, ). Then limt_.oo x(t) O.
Proof of Theorem 4. Let x(t) > 0, 0 =< < . As in the proof of Theorem 2

one obtains (13) and (16). Suppose lira supt-.oo x(t) >= 61 > 0 for some 61 Then
it follows from (13) that there exists {t,}, lim,_+oo t, , such that

(34) x(t,) >= 31/2 X’(tn) < O.

Choose any such sequence and let

t’, max {tit < t,, x’(t) 0},

t min {tit > t,, x’(t) 0}.
X’I"Suppose that thereexist asubsequence {nk} of{n} and62 > 0such that ,,k) ->- 52"

Thenby(9)thereexists63 > 0suchthatg(x(t))_>_ 63, t,k <__ <= t,k.Afterintegrating
(1) over [t’,, t] one therefore has

di q(’c) dr _<_ f(’c) dr,

which violates (33) if nk is sufficiently large. Thus

(35) lim sup x(t) O.

Dividing (1) by q(t), integrating over [t’,,t],t’, <t<= t, and performing an
integration by parts gives

(36) g(x(z)) dz
f(z) p(t)x’(t) p(z)x’(z)q’(r.)

dr.
,’ -- d q(t) q2(.)

If t’,’ max {tit < t,x(t)= 1/2}, then (33), (36) and the fact that g(x(t))is
bounded away from zero on It’., t’, together imply

(37) g(x(z)) d: <
f() p(t)x’(t) p()x’(v)q’(z)

’ a, q{)
dz

q(t) q(z) d,

for all sufficiently large n. Suppose there exist T < m and a subsequence {n} of
{n} such that sup [t t’k] =< T. As (31) is still valid one has by (25),

(38) x’(t) >= -k, 0 <= <

and therefore the left side of (37), with t,k, is bounded away from zero. But
using (16), (24), (33) and the existence of T one has that the right side tends to zero
with increasing n. This provides a contradiction. Thus lim,_. [t t’] c.

By(16), (24), (32) and (37),

’ f,’ f()
t’"<t<=(39) g(x0:)) dz =< q- dz Kx’(t) + e,, t,,

;;’
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for some constant K, and some sequence {e.}, e,---, 0, n o. Integrating (39)
gives, for _,t’" + 1 _<_ =< t,",

(40)

K6
dr < e,[r t’"_,]dr +--

’+1 2

where we have assumed, without loss of generality, f(s) <= ,q(s), t’ =< s __< t,.
Choose t, such that t’+ <,=<t2, and such that if T.=,-t2’- 1,
rl, e.T., then

(41) lim T, oc, lim r/, 0.

By (38),
,,t;;’ +

(42) | g(x(s)) ds >= (54,
t’

for some 64, and thus by (40), (42),

64T. < r/.T. + K,
for some constant K1, which by (41) is impossible. Lim sup,_o x(t) 0 follows.

This completes the proof.
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ASYMPTOTIC BEHAVIOR OF A CLASS OF
INTEGRAL TRANSFORMS*

K. SONI AND R. P. SONI]"

Abstract. Let F(x)= k(xt)f(t)dt and let M(k,s)= t-lk(t)dt. The result, f(t) as

0 () implies F(x) M(k, )x as x (0), is proved under rather general conditions on
the transform kernel k(t) and under different sets of conditions on f(t). Some of the results obtained
extend those given by Titchmarsh for the Fourier sine and cosine transform. The case when f(t)

t-(log t) is also discussed. It is further proved that if M(k, ) does not exist but M(k*, )
does, where k*(t) is some regular mean of k(t), then f(t) implies F*(x) M(k*, )x 1, F*(x)
being the corresponding mean of F(x). This extends some known results for the Hankel transform.
Finally, the importance of the regular summability technique for obtaining the asymptotic behavior
is demonstrated by some examples.

1. Introduction. Let F be the integral transform of a function f with respect
to a kernel k and let F(x) be defined by

(1) F(x) k(xy)f(y) dy, 0 < x < o

or equivalently, by

(2) F(x) x -1 k(y)f(y/x) dy.

If tk(x) xf(x)is bounded and the integral

(3) A() x-c(x) dx

converges absolutely then, by the Lebesgue dominated convergence theorem,
4(x) ---, c as x 0 (x --, ) implies that

(4) F(x) cA(z)x 1, X C (X 0).

We note that the condition that qS(x) tend to a limit can be relaxed. In case
x ---, o, it can indeed be replaced by the condition that some Cesaro mean of
b(x) [13, p. 111 tends to a limit. The corresponding conclusion then follows from
a Tauberian theorem of Wiener [21, p. 213]. On the other hand, if the assumption
that the integral in (3) converges absolutely is replaced by the weaker condition
that A() exists, the asymptotic behavior of F(x) may no longer be given by (4).
For example, consider the Hankel transform of the function

f(x) xv+ lb(x), < v < 1/2, b(x) exp (ix2).
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By [5, p. 30, (12)],

F(x) Jv(xy)yv+ eiy2 dy

2-V-x exp [i(v + 1)rt/2- ix2/4].

Obviously qS(x)is bounded, qS(0 +) but F(x) does not satisfy (4) as x
An elementary result in the theory of the Fourier transform states that if

b(x) is of bounded variation in 0 <__ x <__ 6 for some 6 > 0, then

y-O(y) sin xy dy dt)(O +),

An extension of this result was given by Titchmarsh [20, p. 172]. For the
Fourier kernels cos x and sin x, he proved that if qS(x) is of bounded variation in
0 =< x < oe and 0 < < 1, then F(x) does satisfy (4). In these cases A(e) exists
but x-k(x) is not absolutely integrable in (0, oe). We obtain results which are
similar to those of Titchmarsh under different sets of conditions on qS(x). Our
results are applicable to the integral transforms whose kernel may satisfy rather
general conditions. In particular, they apply to the Hankel transform.

The techniques used to obtain the dominant behavior or an asymptotic
expansion of an integral transform differ widely depending upon the form of the
kernel k(x, y). Even when the transform is of the convolution type as in (1), the
usefulness of a technique depends to a large extent upon the specific kernel and
the singularities off. For a comparison of the techniques, see 3, p. 50], [4], [7]-[9],
[12], [17] and [19]. Doetsch [2, vol. 2, pp. 131-134] has shown that when f and k
have the Mellin transforms ///f(s) and ///k(s) which behave in a suitable manner
in the complex s-plane, Parseval’s felation for the Mellin transform provides a
fairly straightforward device for obtaining the asymptotic expansion of (2).
Recently, Handelsman and Lew [10], [11] and [12] have studied this technique
extensively.

However, we point out that in the case of oscillatory kernels like the Fourier
and the Hankel, the advantage is rather limited. The Mellin transform of these
kernels does not permit the shifting of the line of integration effectively unless
heavy restrictions are imposed on f [12, Ex. 3].

In the second half of this paper, we consider "regular summability" in
connection with the asymptotic behavior of a function. Let

(5) G(x) p(x, y)f(y) dy.

The kernel p(x, y) is a "regular" summability kernel if (5) defines a regular trans-
formation, that is, f(x) essentially bounded and f(x) M (x --. oe) implies
G(x) M (x - ). Iff(x) does not have a limit but G(x) does, that limit is regarded
as the limit of f in the extended sense. For a set of sufficient conditions that p be
regular, see [13, p. 50]. It is clear that if b(x) xf(x) is bounded and p(x, y)(x/y)
is regular, then G(x) 4)(oe)x -, (x o), provided that qb(o)exists.

In (1) if f is absolutely integrable and k is essentially bounded, F(x) certainly
exists for all x > 0; but if A(e) defined by (3) does not exist, (4) is meaningless.
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In fact, x -’F(x) need not have a limit as x 0 or v. In such a case, we may be
interested in finding the limit in some extended sense. This is highly desirable
when we consider the inversion of a transform. For instance, in the inversion of
the Fourier transform ofan absolutely integrable function f, we need the asymptotic
behavior of

F(u, x)= z [f(u + y)+ f(u y)]y- sin xy dy.

F(u,x) has the limit(1+ f(u-)], x --, , provided thatfis of bounded
variation at u; otherwise the limit may not exist. It is well known, however, that
the above integral is summable (C, 1) to f(u) as x - or, at all points u in the
Lebesgue set off [6, p. 14].

C. Nasim [16] has given the behavior of F(x) near infinity in the extended
sense, in terms of the behavior of f(x) near zero (f(x) cx-), when F is the
Hankel transform of f. His proofs are based on Parseval’s relation for the Hankel
transform and the corresponding regular summability kernels are related to
certain Riesz means. From his proofs, however, it is not clear whether there is
any definite relationship between the transform kernel and a "suitable" sum-
mability kernel. We prove a result which gives the behavior of the transform in the
extended sense under certain conditions on the summability kernel. These con-
ditions are directly related to the transform kernel. Nasim’s results follow as
special cases.

Finally, we work out a few examples where we obtain the dominant behavior
of a transform with the help of regular summability methods. The technique is
not new. Recently Shimshon Zimering [23] made a very effective use of it to
obtain the behavior of the Stieltjes transform of a function f when f cx -,
e =< 1, x --, or. Our object is to show that in many cases this technique provides
a simple alternative when the behavior of f is such that some other techniques,
namely those involving the Mellin or the Fourier transform, may not give the
best results.

2. Main results. Let f and k be measurable functions of the real variable t,
0 =< < ; and let F be defined by (1). We shall assume that f and k are real,
since otherwise we can replace (1) by four similar integrals and consider each one
of them separately.

THEOREM 2.1. If
(i) f(t) t-dp(t), where dp(t) is of bounded variation in 0 <__ < ,
(ii) t-’k(t) is absolutely integrable in everyfinite interval,

(iii) fo t-k(t) dt A()= A,

then F(x) is defined for every x > 0 and

A(I)(O .-[.- )x 1, x .-+ 00,
(6) F(x)

Ack()x 1, x 0+.
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Proof. Let h(t) be defined by

(7) h(t) u-k(u) du.

By the assumptions (ii) and (iii), h(t) is continuous and uniformly bounded in
0 <_ < ;h(0) 0 and h(v) A. Integrating (1) by parts,

a-’F(x) x(xt)-k(xt)ck(t) dt

Ack(v) h(xt) ddp(t).

By the dominated convergence theorem [22, p. 48] it follows that

lim x "F(x) Ack(),
x-O+

whereas

lim xa-’F(x)= Adp()- A ddp(t)

Adp(O+).

THEOREM 2.2. Let > 0 and let k(t) satisfy the assumptions (ii) and (iii) of
Theorem 2.1. If

(i) f(t) 0 as - , + af’(t) is bounded for > 0 and f’(t) is integrable in
everyfinite interval not ending at O,

then

(8)

and similarly,

(ii) u- lh l(U)l du < v., where

(9)

h a(t) u-k(u) du

f(t) ct -, O+ F(x) cAx-a, x ,

f(t) ct -, F(x) cAx-a, x O+.

Proof. Let (t) tf(t). By the assumption (i), (t) and t’(t) are bounded in
0 < < v. Define h(t) as in (7) so that ha(t) A h(t).

(lO)

1-aF(x) x(xt)-k(xt)c(t) dt

dp dh(t) + dp
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Integrating by parts,

q5 t-k(t) dt hl(A)O + x-lhx(t)O’ dt

O{h(A)} + O{f t-llh(t).

Hence, the second integral on the right in (10) can be made arbitrarily small
uniformly in x by taking A large enough. As for the first integral, for a fixed A,
h(t) is absolutely continuous in 0 N A and O(t) is bounded and continuous in
0 < < . By the dominated convergence theorem, if (0 +) exists,

lim dh(t) O(O+)h(A),
X-*

while if O(oc) exists,

lim cp dh(t) cp()h(A).
x-O+

This proves the theorem.
In the next theorem we consider functions which are absolutely integrable

except perhaps in some neighborhood of the origin. If F(x) is the Fourier sine or
cosine transform of an absolutely integrable function f, then by the Riemann-
Lebesgue theorem, F(x) 0 as x . For our purpose, we shall need the follow-
ing result which gives the behavior of the transform for large x when the kernel
is essentially bounded. This result can be obtained directly from Wiener’s theorem
[21, p. 213]. We give here an elementary proof of this result.

LEMMA. Let f(t)eL(O, ). If k(t) is essentially bounded and k(t)= o(t),, where

(11) k,(t) k(u) du,

then F(x) o(1), x - oo./f kl(t ct, --, oo, then

F(x) c f(t) dt, x -+

Proof. Given e > O, first choose X so large that

(12) If(t)l dt < -,
M being the essential upper bound of Ikl. Next, let 4(t) be an absolutely continuous
function defined in 0 _< _< X such that

(13) If(t)- dp(t)ldt < M"
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Since

(14)

IF(x)l f(t)k(xt) dt

-_< If(t) 4,(t)l Ik(xt)l dt / f(t)k(xt)l dt

+ dp(t)k(xt) dt

<= 2e + c/)(t)k(xt) dt

we have only to prove that if k1(0 o(t), then the last integral tends to zero.

dp(t)k(xt) dt x-lk,(xX)dp(X) (xt)- ’k,(xt)t ddp(t).

Obviously, the integrated part tends to zero as x --. oc. Next, let

(t) u dck(u).

Since t-k(t) is continuous and uniformly bounded in 0 < < and b(t) is
absolutely continuous in 0 =< _< X, by the dominated convergence theorem,

lim (xt)- lk(xt) d(t) O.

This proves the first part of the Lemma. If k(t) ct, - , consider the
kernel k*(t) k(t) c. It is essentially bounded and

Hence,

k(t) [k(t) c3 dt

o(t),

[k(xt) c]f(t) dt o(1).

THEOREM 2.3. Let f(t)e L(a, o) for every a > 0 and let k(t) be essentially
bounded and kl(t) o(t), -, . Further let k(t) satisfy the assumptions (ii) and (iii)
of Theorem 2.1. Iff(t) t-c/)(t), where dp(t) is of bounded variation in some neigh-
borhood of the origin, then

(15) F(X) [A(/)(0 nt-) nt- o(1)x-1 -- o(1), x
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Proof. Choose 6 > 0 so that b(t) is of bounded variation in (0, 6). Now define
f(t) and fz(t) as follows"

[.f(t), 0 <= <_ 6,

(0, c5 < t< oc,

f2(t) f(t)- fl(t), 0 __< < oo.

Since t’fl(t) has bounded variation in 0 =< < oo and fz(t) L(0, c), by Theorem
2.1 and the Lemma, it follows that

F(x) k(xt)fl(t) dt + k(xt)f2(t) dt

[A4)(O+)+ o(1)]x-1 + o(1),

This proves (15).
Remarks. We observe that each one of the three theorems has independent

domain of validity although these domains overlap. For example, for >__ 0, let

4)1(t) (1 + t2) -1 sgn (sin t),

2(t) t- sin t,

b3(t) t-2 sin 2, 0 0.

The function 4(t) 41(t) satisfies the assumptions of Theorem 2.1 but not those
of Theorem 2.2, whereas bz(t and q53(t do not satisfy the assumptions of Theorem
2.1 but bz(t satisfies those of Theorem 2.2 and q53(t), those of Theorem 2.3.

The asymptotic behavior of F(x) in (15) has two terms. These reflect the
behavior off(t) near the origin and away from the origin respectively. The first
term dominates if0 >= 1. If0 < 1, the assumption on 4) can obviously be weakened;
we need only assume that it is bounded near the origin. In that case, f(t) L(O, av)
and F(x) o(1), x oo by the Lemma. If the kernel is such that j-o t-k(t)dt
converges absolutely, then the assumption on b can again be replaced by the
weaker assumption that qS(t) -+ qS(0 +), --+ 0.

Finally, in each of the theorems if A 0, the results are valid when A is
replaced by o(1). The same is true when either b(0+ or qS(oe) happens to be zero.

Applications (a). The asymptotic behavior, as well as the asymptotic series
expansion for the Hankel transform, has been discussed in a large number of
papers. The leading term, however, can be given under much weaker hypotheses
[15]. For example, let k(t)= x J(t) and let f(t)= t-dp(t), where 05(0 is of
bounded variation in (0, oo). By Theorem 2.1, if 0 < 0 < v + 3/2,

2_,+l/2F(v/2- 0/2 + 3/4)x,_ [qS(0+), x--+ m,
(16) F(x)

F(v/2 + e/2 + 1/4) . 4)(m), x ---, 0 +.

For v 1/2, (16) gives the behavior of the sine transform when 0 < 0 < 2 and
for v 1/2 that of the cosine transform when 0 < 0 < [20, p. 172].
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(b) Erd61yi [3, p. 50] proved that if q(t) is N times continuously differentiable
for _<_ _<_ fland0 < 2 _<_ 1,0 </t __< 1, then

F(x) eX’(t )- (fl t)"- ’dp(t) dt

(17)
Bv(x)- Au(x)+ O(x-U), x

Au(x) and BN(X are given explicitly in terms of the decreasing exponents of x.

x- eix+i=/2F()(fl x)’- 1(0 +), , < /.t,

x-" eixl-i"/eF(la)(fl 0@- lb(fl-), # <
(18) F(x) r eix+ ’2,r/2{0..._) -]x-F(;)(fl )- , .L+ eixts- ia=/2 cb(fl )J
In a similar manner, we can obtain the behavior ofF(x)if q(t) satisfies the conditions
of Theorem 2.2.

(c) The asymptotic series expansion for the Bessel functions is usually given
by means of contour integration. The dominant behavior of J(x) can, however,
be obtained in an elementary manner by using (18). We consider the function

F(x) eX(1 ta)x+’-dt, n 0, O< X N 1.
-1

eiX=+,)ua- l(fl o u)’-1(/)(0{ + U)du

eix(E-’)(fl o u)a- u’- (fl u)du

eix eiX"u; dp(u) du

+ eiEx e-iXUu’-lflp2(u du,

where qS(u) and q52(u are of bounded variation in 0 =< u <
=(fl-)’-lb(+) and b2(0+)=(fl-)a-lb(fl-). By Theorem 2.1, for
0<2< 1,0<< 1,

Applying integration by parts n times, by [1, p. 21],

(19) F(x) i"x-" fl-1
where

dx,(1 t)a- 1(1 + t)a- q(t) dt,

4(t)
O<=p<_n F(n + 2-p) F(2+p)

(-1)P(1 t)"- P(1 + t)p.

Our interest is primarily in the case N 0. If 4(t) is bounded, we can apply the
Riemann-Lebesgue theorem to conclude that F(x) o(1). If, however, q(t) is of
bounded variation in 0 _<_ __< fl, we can do better. By a change of variable, (17)
can be written as follows"
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Obviously, the total variation of (t) is bounded in __< =<
b(- + (- 1)"b(1 2"F(n + 2)F(2)]- 1.

If0<2< 1,by(18),

F(x) x-"-aF(n + 2)2"+4 cos(x -(2 + n)Tr/2).

If 2 1, (19) integrated by parts gives the same results as above. The behavior of
Jr(x) is obtained by changing (n + 2) to v + 1/2 in the integral representation

Jv(x) 7-1/2[F(v + 1/2)]-1(x/2) eixt(1 t2)-1/2 dt, v > 1/2.
-1

3. Logarithmic behavior. The theorems of 2 can be extended in an obvious
manner to the functions which behave as x-(log x) near zero or infinity so long
as fl is a positive integer. Let

(20) f*(t) t-(log t)mdp(t),

F*(x) k(xt)f*(t) dt

(21)
(-log x)m-p kp(Xt)t-ck(t)

p=O

where

(22) kp(t) k(t)(log t)p.

If f(t) t-%(t) satisfies the assumptions on f given in any one of the theorems
in 2 and each kp(t) satisfies the assumptions on k(t) in the same theorem, then

F*(x) x 1C 2 (-log x)m-Pfllp,
p=0

C corresponds to b(0+ or b() as the case may be and

(23) Ap t-kp(t) dt t-(log t)Pk(t) dt.

In particular,

(24) F*(x) Cx 1(_ log x)mAo

The absolute convergence of the integrals in (23) is not required. The situation
is quite different iff*(t) ct-llog tl p and fl is an arbitrary real number. The Mellin
transform technique is very useful when fl has positive integral values, but the
nonintegral values of fl (fl > -1) correspond to branch points in the complex
plane of the Mellin transform, and so shifting of the line of integration in general
presents a problem. Using a very different device, Erd61yi [4] obtained asymptotic
series expansions for the integrals

t)zt c -pt dr, 0 < c < 1, --, ,P
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and

(log t)t e-Pt dr, < c < O.P

If the integral J’o k(t)t- dt converges absolutely in the interval c c5 < s < + 6
for some 6 > 0 and 4(x) 4(oe) as x oc then, for c > 1,

k(xt)t-(logt)dp(t)dt x- 1(-log x)4() k(t)t-dt, x --, 0+.

If no such interval of convergence exists, under certain conditions, we may still
be able to give some estimate of the behavior.

THEOREM 3.1. Let f(t) t-llog tlt4(t), fl n + 7, n being a positive integer
or zero, 0 < < 1. Define kp(t) by (22) for 0 <= p <= n + 1, and let each kp(t) satisfy
the assumptions on the kernel in Theorem 2.1./f b(t) is of bounded variation (b.v.) in
(c, o), c > 1, then

F(x) k(xt)f(t) dt

o(x 1(log l/x)"+ ), xO+;

and if dp(t) is of b.v. in (0, c), 0 < c < 1, then

F(x) k(xt)f(t)dt

o(x l(1og X)n+ 1), x o.

Proof We note that if(t) 4(t)Ilog tl t- is of bounded variation in (0, c), c < 1,
as well as in (c, ), c > 1. Also 4(0+) () 0. The conclusion now follows
from Theorem 2.1 and (24).

4. Summability and asymptotic behavior. If og(x) > 0 and og(x)dx 1, then
T- (x/T) is a totally regular summability kernel [13, p. 53]. We define the mean
or average of F(x) with respect to o(x) as

(25) (F(x), T) T F(x)o) dx

(whenever the integral exists) and consider the behavior of this mean when F(x)
itself is a transform defined by (1). If k(x) is essentially bounded and f(x) e L(O, c),

m(F(x), T) co(x)F(xT) dx

(26) f(y) dy o(x)k(x Ty)dx

f(y)K(Ty) dy,

where K(Ty) (k(x), Ty). Thus the mean of F(x) is the K-transform of f(x),
K(x) being the mean of k(x). In the following theorem, however, we do not assume
any conditions on og(x) except those explicitly stated.
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THEOREM 4.1. Let f(x) L(a, ) for every a > O. If
(i) for every T > O, co(x)f(y)k(xyT) is absolutely integrable in the domain

x>0, y>0;
(ii) f(x) xck(x), where (x) is of bounded variation in 0 <= x <= 6 for some

>O,c(O+):/:O, andfl+ >0;
(iii) f xK(x) dx converges, K(x) x -1 f k(u)co(u/x) du
(iv) x + 1K(x) is bounded; o u + 1.K(u) du o(x), x

then

(27) T- co F(x) dx gp(O + )T -Is xK(x) dx, T

If the integral in (iii) converges absolutely, it is sufficient to assume that
tp(x) qS(0+)in (ii).

Proof. First we note that by (i) and (ii), xK(x) is absolutely integrable in
every finite interval. By (i) again, the change in the order of integration is justified
so that

F(x) dx T + f+fff(y)K(Ty)dy) (0<6< )

=11 +I2"

11 c/)(O + yK(y) dy.

By Theorem 2.3,

while by assumptions (iv) and the Lemma of 2,

12 y-- lf(y)(Ty)+ IK(Ty)dy

=o(1) asT-.

This proves (27). The last assertion follows by applying the dominated convergence
theorem to I

We note that in the particular case when T- 1co(x/T) is a regular summability
kernel, (27) gives the behavior of the mean of F(x) in terms of an integrability
condition on the mean of k(x). In the above theorem, we assume that fl + __> 0.
If k(x) is bounded, the case fl < -1 is uninteresting because in that case, the
behavior of F(x)can be given directly.

5. Examples on summability and asymptotic behavior. First we give two
applications of Theorem 4.1.

Example 1. Let k(x) J(2x/-), v > 1, and

CXV/2(1 X)U-1, 0 < x < 1, / > O,
CO(X)

0, x>l,

-1 F(v/2 + 1)r(.u)
r(v/2 +/ + 1)
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By [5, p. 194, (63)],

and

(x)
F(v/2+# + 1)

F(v/2 + 1)x-"/zJu+v(2xf)
F(v/2 + # + 1)F(/ + v/2 + 1)

xtsK(x) dx
F(v/2 + 1)F(# + v/2 fl)

The above integral converges when -1 v/2 </ < #/2- 1/4. However,
this is no restriction because if f(x) xtdp(O+) as x O, F(x) is defined only
when -1 v/2 < ft. On the other hand, we can always take g so large that

fl < /2- 1/4. Finally xe+K(x) satisfies conditions (iv) of Theorem 4.1 if
-1 v/2 /2 3/4. Hence,

(28) (F(x), T) 4(0+)T -a-1F(v/2 + # + 1)F(fl + v/2 + 1)
F(v/2 + 1)F(# + v/2 fl)

Since

F(v/2 +/ + 1)T_V/2_ Xv/2(F(x), T)
r(v/2 + 1)v(#)

-1- v/2 < /__< //2- 3/4.

(28) can be restated as

lim T- v/2 +/ XV/2

_) F(x) dx,

,F(p)F(fl + v/2 + 1)
1- F(x) dx 4)(0 + - _

v/2 fl)

-1- v/2</=<//2-3/4, v> -1, />0.

If we take/? v/2, we extend the domain of v for the validity of Theorem in [16].
If we take/ 1/4 and p 1, we obtain the second theorem of 16].

Example 2. Consider the well-known integral [6, pp. 12-14],

fi(29) f(u, x) [f(u + y) + f(u y)]y-1 sin xy dy,

u fixed, f(u + y)e L(0, b), > 0. The (C, 2) limit of F(u, x) involves some tedious
calculations. Instead of that we consider

-x2)-1 0<x< 2.>0
co(x)

.0, x >= 1,

c -1 2-’,f&(X)EF(X + 1/2)]-1.
T- lco(x/T) is a regular summability kernel. By [14, p. 113],

K(y) c (1 x sin xy dx

F(2 + 1/2)2- /y-x + 1/Hz_ /(y).

H(x) is the Struve function of order v. In (29), fl 1. Considering the behavior
of Hx_ /(x) near zero and infinity [14, pp. 113-115], we conclude that y-lK(y)
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is absolutely integrable in (0, o) and K(y) satisfies the conditions (iv) of Theorem
4.1. Also, it is easy to show that

y XK(y) dy -.
Hence, by Theorem 4.1, iff(u + 0) and f(u 0) exist,

(30) (F(u, x), T)

If 2 1, (30) is a consequence of the (C, 1) limit of (29).
In the following examples, we make use of the regular summability method.

Even though in each case the integral converges absolutely, the Lebesgue
dominated convergence theorem or the Mellin convolution technique cannot be
used with advantage. We need the following result due to Erd61yi [4]. Let

(31) H(p, , fi, 2) x- exp [0tt pt] dt.

If either(i)>0,0<fl< 1,2>0andp0+ or(ii)<0, fi<0,2arbitrary
and p --, o, then

(32)

where

2re
(afi)(x- 1/2)/(1-11)p(ll/2-.)/(1-l:t) e-(--,)zH(p, , fi, 2)

fl

Example 3. Let f(t)= e-O/’"tx-dp(t). If 4(t) is essentially bounded and
4)(t) b(0 + as - 0 +, a > 0, b > 0, 2 real, then

fo(33) e-’f(t) dt H(s, -a, -b, 2)4(0+), s .
In particular,

e -s’ e-/ttx-14(t)dt al/2(2-1/2)s -1/2(2+1/2) e-24(0+), s .
Example 4. Let f(t) - et4(t). If 4(t) is essentially bounded and 4(t) c

ast,>0,0<< 1,2>0, then

(34) e-t/7"(t dt cH(s- fl, 2) s

In particular, for fl 1/2, 2,

fo(35) e -’/ e2t- 4(t) dt 2/27- /2s2X- /2 e, s .
Proof of (33)and (34). We note that by a change of variable,

e -’ e-"/’?- 4(t) dt e -/" e -""u-- 4 du.



CLASS OF INTEGRAL TRANSFORMS 479

Let

(36) kl(s, t) e -/’ e-O’"t -- l[H(s, -a, -b, 2)]-1,
and

(37) kz(s, t) e -t/ ettx- l[H(s-1, o, fl, 2)]- 1.

For 1,2, ki(s, t) >= 0 and fo ki(s, t) dt as s --+ oc. Furthermore, it is not
difficult to verify that

t)-- as sd 0

for every fixed T > 0. Therefore, k(s, t), 1, 2, are regular summability kernels
[13, p. 50]. Hence, (33) and (34) follow.

In (33), H(s,-a,-b, 2) has exponential decay. If we tried to obtain the
behavior in terms of negative powers of s, we shall only get j’ e-’(t) dt o(s -)
as s - . In (34), the function f(t) has exponential increase and so the Mellin or
the Fourier transform techniques cannot be used. In the next example, we estimate
the behavior of a function with the help of the summability kernel k(s, ).

Example 5. It was proved in [18] that

(38) g(x) xx Io[2v/k(x t)]f(t)dt

is an L2(0 oo) solution of the integral equation

(39) f(x) -dxx Jo[2v/k(x t)]g(t) dt

if and only if f(x) is in L2(0 ct)) and the Hankel transform of f(x) vanishes in
(0, k). Here we investigate the behavior of g(x) under the assumption that the
Laplace transform of Ifl exists for s > 0. Let

(401 f(sl e-7(O dr, s > O.

It is easy to show that the Laplace transform of g(x) exists and that

(41)

Let

G(s) e-’g(t) dt

ek/F(s), s > O.

h(x) e- 2/7g(x).
Since k2(s t) (defined by (37)) is a totally regular summability kernel, using the
continuous analogue of [13, Thm. 9], we obtain

lim h(x) <__ li__m_ k(s, Oh(t)dt <= lim h(x).
X--- S--+ X--+
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In the particular case when 2x,/ 1/2, 2 1, by (41),

ka(S, Oh(t) dt [H(s- 1, 2 ,1/2, 1)]- e-t/sg(t) dt

[2x7sa/2 e,.] --1 ek,F(1/S).
Hence,

lim e-Z4’g(x) =< lim 2- 1(roy)-1/2S-3/2 e(k-:’)SF(1/s)
X-*OO

(42)
lim e-2g(x).

In [18], it was pointed out that if the Hankel transform of f) does not
2kx)vanish in (0, k), it is possible for the solution g(x) to be O(x e for some

> 0 as x , whereas (42) shows that so long as F(s) has a zero of only finite
order at the origin s 0, e- 2’iXg(x) is unbounded as x for every 7, 0 < 7 < k.
The connection between these two results is apparent if we note that under certain
conditidns,

fo foe dx Jo(2 y) dy s- F

Acknowledgment. We wish to thank Dr. John S. Lew for his many valuable
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tions were the use of Stieltjes integrals and the present form of the proofs of
Theorems 2.1-2.3.
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UNIFORM ASYMPTOTIC EXPANSIONS OF CERTAIN CLASSES
OF MEIJER G-FUNCTIONS FOR A LARGE PARAMETER*

JERRY L. FIELDSt

Abstract. Asymptotic estimates of certain Meijer G-functions are derived using contour integration
techniques. Making use of these results, a basis of solutions is found for a particular difference equation
satisfied by certain hypergeometric functions, known as extended Jacobi functions. Asymptotic
expansions for these functions are then derived.

Introduction. In Theorems and 2 of this paper, uniform asymptotic expan-
sions for two classes of Meijer G-functions

g,(w)
F(n + 2)

Gp + 2,q W
b 1, bq

(A)

F(n + 1) q,2l.j(w) F(n + 2) G.+ 2,q w
n 2,aj, al, ..., aj_l,aj+l, ..., ap,rl -+-

bl, ..., bq

=q-p>=3, j= 1,...,p,

are derived for n large, essentially positive, and w suitably restricted. In particular,
if w is nonzero and independent of n, the expansion for g,(w) is derived when
larg [wn(n + 2)]1 < n[fl + 1].

While studying the asymptotic behavior of the coefficients of the expansion
of a Meijer G-function in a series of Jacobi polynomials of inverted argument,
Wimp [16] determined the asymptotic representation for the special case

r(n)
F(n + 2)

+g, x(w) (- 1)"G+ ,1,q+
1,al,...,ap, n + 2,1 n

1,bl, ..’, bq
fl=q-p>=3, n =0,1,2,...

when n or, w is independent of n, and larg wl < nil/2. In the same context,
Miller 14] and N6meth [15] investigated special fl 3 cases. Miller’s results
were derived for n2w , w O(n), n v and larg wl < nil/2.

Alternately, in a series of papers 17], 7], [8], Wimp, Luke and Fields showed
that the functions (A) satisfied a certain explicit linear difference equation,

(B) .(w) y,,(w)} O,

Received by the editors February 10, 1972.
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which is also satisfied by the extended Jacobi functions,

p+ 3Fq
-n,n + 2,1 al,... -ap,
1-bl,..., 1-b w), n arbitrary,

whose asymptotic properties with respect to n were discussed in [4], [5]. As a
basis of solutions for (B) can be constructed from the g,(w) and l,,j(w), these
asymptotic properties can be deduced from Theorems and 2 (see 3).

The results of Theorems and 2 have already been used in [9 to derive
rational approximations to certain Meijer G-functions.

1. Asymptotic expansions for g.(w) and l.,j(w). In this section, we will princi-
pally be interested in using the method of steepest descent [23 to find the asymptotic
expansion of contour integrals of the form

J(, w) f exp {--(t + p-lt-P)}G(t,, w)dt,

where 7, P( > 0) are constants, the complex parameter fl is large, and C is a suitable
contour in the t-plane containing 1. To this end, we describe the steepest
descent curves through 1,

r,.Im {ei4x//t- + p-a(t-- 1)} 0,

where Fo is the nonnegative real axis with positive orientation, and F+ is required
to vary continuously with 24(4: + r) for p fixed, 4: 0, . Then for 21bl < , F
starts at 0.exp {i2dpp-ll., passes through at angle (-b) with Fo and
ends at v. exp {-i2q}. Alternatively, in polar coordinates, r ei, these
contours are among the solutions of

r sin (2b + 0) + p-lr-P sin (2 pO) (1 + p-1) sin (2b).

The contours F+, 2b _+ =, are singular (see Figs. 1-4).
Much of what follows is just a uniform treatment of Wright [18].
PROPOSITION (Wright). Let

f(t) t-- + p-(t-p- 1), p>0,

/( 2f(t)
g(t)

p / 1)(t-- 1)2,
g(1) 1,

x(t) x//((p + 1)/2)(t- 1)g(t)= fx/,
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l+p-I

FIG. 1. t-plane, < p

and

qb* --rain(1 p) <-+ 2 + 2p ="
Then jbr Il <-_ eft* e, s, > O,

(i) x(t) is an analytic function of for F’4,, # O,
(ii) x(t) maps the contour I’, onto the x contour

V4,’x Re-J4,, -c <R< c,

(iii)

x(ei2/o + )) /2(P + 1)sin( Prr
p l+p

exp {
x(e- i2 rt/(p + 1)) /2(p + 1)

sin

P

re
exp -i + 2+2p

(iv) t(x) is an analytic function of x for x
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i2tr

el+P

+p-1

FIG. 2. t-plane, 0 < p <

x P + 2 2 +
(P + 2)(2p + 1) 3(v) t= + +

3(0+ 1)x 18(p+ 1)v/Z(p+l)
x +O(x4)’

X -- 0,
(vi) dt/dx 2x/(1 t- o- 1) O((1 + Ixl)), uniformly for x e F’,
(vii) O((1 + JxJ)’), 7o max (2 Re 7, 2p- Re 7) >_- 0, uniformly for

xF.
Proof. Clearly x(t) is analytic at 1. As the zeros of f’(t)= --all lie on the unit t-circle and simple computations show that f’(t) :/: 0, : 1,

F, Ibl -<_ b* , an application of Rolle’s theorem to the real-valued function
ei2f(t) on F implies that f(t) :/: 0, - 1, F, ]bl =< b* . Properties (i)-(vi)
then follow by explicit computation. For (vii), we note that

Itl - <= plxl 2 + 2p + p(Ixl + x//(2p + 1)/p)2,

Itl Ixl 2 / / 2p -1 <= (Ixl + /(p / 2)/p)2,

Itl 1,

JtJ 1.
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FIG. 3. t-plane, 0 < p < 1,---, < p

PROPOSITION 2. Let t, x, Fo, qS* have the same significance as in Proposition 1,
and let

(1.1)
J(2, w) fr Fexp {-f(t + p-lt-o)}H(t,f), w)dt,

larg f- 241 =< r/2- e, 141 _-< 4*-- , ;>0,

where f is a large parameter, 7 is a complex constant and H(t, , w) is an analytic
junction of except, perhaps, at 0 and v. Assume that jbr all m sufficiently
large, dp fixed, Idp <= dp* e. and y xx/,

m-1

H(t,f, w)= + Qj(y, w)f -/2 + O(-m/2(1 -t-IWl)m(1 / lY )m elCy2]
(1.2) - , uniformly for x F,, Icl < sin e,

where c, A are constants, and QJ(Y, w) is a polynomial in y, w whose degrees in y
and w, crQj(y, w) and ?wQj(y, w), are <_ j and jA, respectively. Then there exists a

sequence of polynomials Qj(y, w) satisfying the same degree estimates as the Qj(y, w)
such that

/
J(, w) ./;

p+ 1)f
e_(1 +p-

+ Z f-j/2 e-rOj(y,w) dy+ 0
j=-

(1 + Iwl)2]/2o
f ,-rc/2 + 2b + e __< argf2 =< re/2 + 2b
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FIG. 4. c-plane, p

In particular, if (1.2) is valid for 4) 0, __+(4)* e), (1.3) is valid uniformly for
larg fl < rt[1 + (min (1, p))/(1 + p)] 3e.

Proof. The saddle points of exp {-f(t + p- 1t-p)} occur at
exp {i2ztq(1 + p)- }, q an integer. In the range off under consideration, only

the saddle point at is pertinent. From Proposition with t(x), it follows
that there exist numbers dj such that for m __> + 70,

m-1

x//2-1(p + 1)t,_dt + djx+ O(Xm),
dx j=l

(1.4) uniformly for x e F, I1 * ,
2(p + 37 + 2) fp + (p + 2)(2p + 1)+ 127(7 +p + 1)

3(p + 1) Xj---’ d2 12(p + 1)

Then for m sufficiently large, (1.2) and (1.4) can be multiplied together to yield,
y xx/

(1.5)

X/P_ + lt,dt
2 -d-x H(t, f, w)

=1+ F(1/2)0j(y, W)’ -j/2 -- O(-]-m/2(1 nt- Iwl)mA(1 nt- lY[) elcy21),
j=l

f --, , uniformly for x e F,

F(1/2)Oj(y, w) dkykQ_k(y, w), do Qo(Y, w) 1,
k=O
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where Oy(j(y,w)__<j and C?wj(y,w <=jA. Substituting (1.5)into (1.1) with
20) arg f 2b, one obtains

p + 1))e
(l+p 1)n + ) /2 e-Y2Qj(y w) dy+

(1.6)
eit

R -m/2(1 + IWI)mA exp [--y2(1 --Icl e-i2m)](1 + lyl)mO(1)dy,

which clearly reduces to (1.3) for m sufficiently large. But, as the jth term in (1.6)
can be estimated explicitly by O(-J/2(1-k-]wl)Ja), 2-- o3, (1.3) is valid for
arbitrary m.

Remark 1. If 0j(-Y, w)= (-1)JOj(y, w), then all the odd terms in (1.3) are
zero, and it is more natural to replace m by 2m.

Remark 2. If H(t,),w) is identically 1, Proposition 2 with arg 0 is
related, under a change of variable, to a problem proposed in the SIAM Review
by McNeil [13] and solved by Lansing [11]. Also, in this special case,

F(- u)F(1 + 7 pu) du,J(n,w) 7i iv P

where the contour runs from -ira to im and lies to the left of the poles of
F(-u)F(1 + 7 pu). Thus J(fl, w) is then a Wright generalized hypergeometric
function and the results of Proposition 2 in this special case can be deduced from
Braaksma [1].

In what follows, n will always be taken as a large parameter such that
arg n 0 as n --, m. All unqualified order estimates are tacitly assumed to satisfy
the condition "as n m."

THEOREM 1. Let the parameters aj, ba, 2 be independent of the large parameter
n and satisfy the conditions

aj ak =/= an integer,

Then for fl q p >= 3, and

j,k= 1,...,p, j:/:k.

W o(N2U), (wN2) -1 o(1),

N2 n(n + 2), 2# max(,fl- 2)< /3- 2,



MEIJER G-FUNCTIONS 489

there exist polynomials Sj(w) such that jbr m arbitrary,

I-’(n + 1) q,1 (wg,,(w)
r(n + 2)Gp+ 2,q

n-2,ax,...,ap,n +
b ..., bq

m_i }Sj(w)K -j + O(K-m(1 + Iwl)2am)
j=l

ff2, largff2al <=rc[fl+ l-e, e>0,

f# wN2, 2fl7 fl + 2B1 2A1,

P(o)
2/(fl 2)1

(Vo)2 (fi + 3)(Vo)4

6 180(fl- 2)
+ O((vo)6), Uo

A min 2,)3’2fl- 5

S(w)
[-3(1 2) + 2(A B1)3w

nt- A2 B26F(4- fi)

(B A1) f12+
2fl

{fl(B + A)+ (A B1) + 24
p p

I] (x + a;)= A;x’-, 1-] (x + b;)= Bjxq-,
j=l j=O j=l j=O

where the degree ofSj(w) <= 2Aj, and if2, N are positive when w, n, and 2 are positive.

Proof From the fundamental Mellin-Barnes integral representation

-oo r(n + , + s)r(n + 1)Hjq.=l F(bj- s)
(1.7) g,(w) j__ )S ds, W O,

r(n + x)r(n + s)f=l r(aj- s)

the contour running from -joe to joe, separating the poles of F(n + 2 + s) from
the poles of the F(bj s), and the beta integral

(1.8) e-"(2x+y-1)(sinh u)y-1 du 2 -yF(x)F(y) Re x, Re y > 0
r(x + y)’
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it follows that

gn(W) 2F(1/2)[’(ni_,(n+ 2)
+ e-(2n+ 4) [sinh v]- Go(X(v, w)) dr,

(1.9) w > O, X(v, w) w(sinh v)-2,

Go{X) 6";+,
1-22-2

,ap, 2 2
,bq

As

(.o) Go(X) E XUx),
j=l

where the Fj(X) are entire functions of X, and

Go(X X exp {- vX ’/} + KjX -j/v -}- x-m/vEto(X)

IXl 1, larg xI =< [v + min (1, v/2)- ], rl > O,

v=fi-2>= 1, 2vz =2fi7+22- v+2B

(B,
K1 A2 B2 +

2v

2A1,

--V
2

24v

x+ x+
2

tx aji ..j-xp + 2

2 j=l j=0

where the remaining Kj are polynomials in j, Bj independent of X, and Em(X
is analytic and bounded in the above sector [12], the contour in (1.9) can be
deformed to represent g,(w) for different ranges of arg w. In particular, if we set
/)

V0 N//W (wN-V) 1/fl fN-1 o(1),
(1.12)

N -2 Wf2 -fl, 2n + 2 v/4N2 + /2, fl 2V-1

and

v NX-l[’(n + 1)
H(t, , w) 2rc-_ r(n + 2)

IX(v, w)]-[Y(v)]--2

(1.13)
exp {v(2N 2n 2) + 2p- 2P(vo)}Go(X(v, w)),

X(v, w) wv- 2[ Y(v) 2 Y(v) V- sinh v
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equation (1.9) can be rewritten in the form

g,(w) x/(ZTr)l/"f:’+ 1/2 eZnmvo) t-:-2 exp {-2n(t + p-lt-")}H(t,f, w)dt,

(1.14)

larg f- 2q51 =< rr/2 e, [qS[ < r/2,

which can be identified with J(2f2, w) in Proposition 2. To complete the identifica-
tion with Proposition 2, it would only be necessary to show that H(t, f, w) can
be expanded in a series of the form (1.2) for e Fe, 0, +_(* ). The analysis
associated with Fo is relatively straightforward, but technical problems arise in
connection with the other contours. To simplify these technical problems, we
introduce the modified contour P as is indicated in Fig. 5.

FIG. 5. t-plane

Then+ varies from F only in the path taken from the points ~t 3 From
to t2, 14 is a straight line with arg arg 2, and from 2 to t3, I4, is an arc

of the circle C:ltl Ifl, 8 min (2, v). The point t is independent of thelarge
parameter, and taken sufficiently close to to satisfy certain conditions that
occur in the body of the proof. Clearly, the proof of Proposition 2 remains valid
for these modified contours, provided the expansions (1.2) are valid uniformly for

+. A simple computation shows that C is always interior to Co "ltVol Ivl =< 1.
The following lemma collects various estimates pertinent to C and Co.

LEMMA 1. With the above notation, 80 min (2, v), larg f- 241 =< r/2- e,
and larg wl < rc[ + 1], the following estimates are easily proved.
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v tvo o(1), v -1 sinh v + o(1),

X gyt-2{1 + o(1)},
arg 2q + o(1), X o(yZv),

4 =< 5Iv- sinh vl 6, 16 larg (v- sinh v)l <

2 ]arg vl < r e, le-" e -sine < 1,

2-1(1 e -e/2 eelvl/4 <= Isinh vl =< eI1,

larg (v- sinh v)l < z +
O(1)+ o(72), larg XI < r[fl + 3] + 2]vl,

Itl I1 < Ivol -.
Itl I1 < Ivo1-1.
Itlll, t

Itol -I1 _-< 1.

Itol-Il>_-l, tF.
Itol-Il>_-l, tF.
Itol-Il_>-l, tF.

uniformly for .
X O(eCly21), b a constant, 6c sin e, Itl I1=, uniformly for P4,"

Thus X is large for interior to Ca, and small for exterior to Co near . For
X e -i2)’

(1.15) v tvo log {W + x//1 + W2}, W= eix/
so that the points at which IXI are exterior to Ca. Since

/3 arg tl arg w + 2 arg N arg w + o(1),

it is sufficient to establish the theorem for larg gll =< rl + fl- 13 . As the product
of two series of the form (1.2) is again a series of the same form, provided the sum
of the corresponding Icl’s is less than sin e, it is sufficient to show that each factor of
H{t, ’1, w) H--1 Hj,

N-IF(n + 1)
F(n + 2)

H2 exp {v(wv- 2)1/v vXl/v 2flP(vo)},
Ha exp {v(2N 2n 2)},

H4 (v- sinh v)- x- 2,

H w/v(2)l-X exp {vX1/}Go(X),

can be written in the form

(1.16)

2m--1

+ QJ(Y, w)J + 0(2( + Iwl)2( + lyl)2
j=l

t= t(x), x y, x 1, v tvo, 6c sin e,

cqyQj(y, w) <= j, CqwQj(y w) <= jA,
uniformly for

Moreover, the Hj expansions are invariant under (y, ) (-y, -0, so that

(1.17) Qj(y, w) (- 1)JQj(-y, w),
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and this property is preserved under multiplication of series (1.16). In what
follows, Qj(y, w) will be used generically to denote a polynomial in y, w satisfying
the restrictions in (1.16) and (1.17). Also, qk,j(Vo) and qj(Vo) will be used to denote
analytic functions of v at vo 0. The following relations are basic:

(1.18)

N -2 2//2//w, (Vo)2 2vZvw,

(wA o(1), w2A o(f), w(2// o(1),

2 o(N(2u+ 2)///) o(N), 2flAp + #.

As t(x) is analytic at x 0, t(0) 1, there exists a positive number xo inde-
pendent of w and N such that in Ix[ _<_ 2xo, It(x) 11 =< 2-1 and X-l/v, Hj, j

2, 3, 4, are analytic functions of x. Since at 1, larg XI =< rcv + vfl- + o(!)]
< rcv + min (1, v/2) 2r/, for r/ sufficiently small, xo can also be chosen suffi-
ciently small such that larg XI _-< rclv+ min (1, v/2)- rl] for all t(x), Ix < Xo.
Finally, e F is chosen interior to the image of 0 < Ix[ =< xo.

In [6], it is shown that there exist constants el, ..., %_ such that

m-1

H1 NX_ 1F(n + 1)_ + ejN -2J + O(N-zm),
F(n + 2) j=

which is clearly a series of the form (1.16), with Qj(y, w)= 0, 1 < j =< 2//- 1.
The analysis of H2 is much more typical, and we proceed in some detail. Rewrite
Hz as

H2 exp {2[P(t, Vo) P(1, Vo)]}, P(1, Vo) P(vo),

P(t, Vo) p- it-P[1 (v-1 sinh v) -’]

(35p2 + 42p + 16)(Vo)6t6_(t0)2t2_ p (5/9 + 2)(Vo)4t4_ + + "",6 360 45360

where the series converges for ItVo] < 7t, which includes It 2-1. Then for
Ixl _-< Xo,

H2 + x ()V2oU,)kqk.j(Vo) .ql_ 0 2m max IH21,
j= Ixl 2xo

max (1,3 v).

Expanding the qk,j(Vo) in powers of (/)0)2, one obtains

2m-

U2 + Qj(y, w)J+ O(2m(1 h-Iwl)Z"a(1 / lyl)2m)
j=3

(1.19)
+ 0(1) max IH2I.

2It- ll_-

Since

2vu,(wa)-,+ 2vul N(UO)2ul
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and

max
21t-11=<1

cP(u, Vo)Ilog H21--0 (t- 1) max
21u- 1t__<1 c3u

o(x/x o(y) __< + clyl 2,

whereas

and

and that

2m-1

H2 1 + Qj(y, w)( + Rm,2,
j=3

era,2 O((2m(1 + [WI)2mA(1 + [yl)Zmecly21), Ixl =< Xo,

where the Qj(y, w) satisfy the required degree estimates. To estimate Rm, 2 for
Ixl _-> Xo > 0, , we note that

Qj(y, w)(J= o((1 + Iwl)J(ll + Ixl)J)

o(x2(1 + Iwl)=A),

2m-1

IRm,21 IH21 + IOj(y,w)(J[
j=O

<= IHzl / O((2m(1 at-Iwl)Zma(1 / lyl)Zm),

so that it is sufficient to estimate H2 for Ixl >_- Xo, . First, choose M such that
[uPP(u, vo)l =< M for lul _-< Ivol- , and then i such that M < 2- C(Xo)2(D. Thus,

[log H2l 0(’-(Uo)2X2x 2)
o(y2) -< clyl 2, Ixl >- Xo, Itl -< ,

O<=j<=2m,

Ilog H21 12fft-MI + O((Vo)2) 2-1cl2x21 + o(x2)

<=clyl z < Itl < Ivo1-1 Ixl Xo,

Ilog H2I-- O(t-) / O(ff(Vo)2)
o(Y2) <=clyl 2 Ivol - < Itl, Ixl > Xo

Combining these estimates, it is clear that (1.20) is actually valid uniformly for
t Pe, 4 0, + (qS* e), larg f 2051 =< r/2 e.

Next, consider

H3 etA

A 2f2{1 x//1 + 22(2N) -2}
_22wZV-12v+2{1 + O(wZe)} 0(N-X).

(1.20)

equation (1.19) can be written in the form
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For Ixl < Xo,
2m-1

H eA + xAp(A)eA + 0 X2m max IHal
Ixl 2xo

where the pj(A) are polynomials in A of degree j 1. Expanding these quantities
in terms of (, we can write H3 in the form

2m-1

H3 + Z Qi(Y, w) + Rm,3,
j=4

Rm,3
Just as for H2 the expansion for Ixl _-> Xo depends basically on establishing proper
estimates for H3, that is,

Ilog H31 O(ftN- 2)

O(N-1)< / clyl 2 (It[ <- 1)

O(N-1)+ O(fxZN-2)= + clyl 2 (Itl->_ 1),

which implies the expansion for H3.

Penultimately, for Ix[ < Xo,
;t-2: 2m-

Ha=
sinhvo + qflvo)X + 0 x2 max IHI

Vo j= Ixl=2xo

where qflvo) (vo)2tJ+ 1)/2O(1). Expanding in powers of , one obtains

(2 + 2"c)2
w(2 + Qj(Y, w)( + Rm,4,Ha 1 + 3 j= 2v+

Rm,4 O([2m( + IWI)2mA( + lY])2m ecly21), Ixl =< Xo.
For Ixl >_- Xo, Itol =< 1, we note that H

log IH,[ 0(1) + O(v)

O(1) + o(x2) 0(1)+ clyl 2,

which implies an expansion (1.16).
Finally, consider H For , between 0.exp {i2cp-1} and 2,

S So {Sl ISl _-> 1, larg ISl _-< ztUv / min (1, v/2)- r/]},
so that H is described adequately by (1.11), that is,

m-1

H + KX-/ + X-re
(1.21)

X- 1/ 22tp(v- sinh v)p,

and Era(X) is bounded in So. Under the restriction Ixl =< Xo,

2m-1

X -/ (2{2) Xkqk,flVo) + 0 X2’’ max IX-a/
0 Ixl 2xo
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and (1.21) becomes

(1.22)

2m--

H + 2K,(2 + y’ Qj(y, w)( + Rm,s,
j=3

Clearly, H

R,,,5 O((2m(1 + Iwl)Zm( + lyl)2 ely21), Ixl Xo.

O(1) for X SO and if we can obtain proper estimates for H when
is between 2 and oe .exp {_i2q} on C0, it follows as before that (1.22) is

actually valid uniformly for C0. As arg X changes rapidly on ,, [tl >= If[, it
is necessary to describe the asymptotic behavior of Go(X in an arbitrarily wide
sector (see [10]).

LEMMA 2. Assume the aj, bj parameter conditions of Theorem 1. Let ko be the
largest integer <= (v + 2)/4, r/> 0, and

Sk, {X] IX[ _>_ 1,

v>2, ko>= 1,

Sk, {X{ [XI _-> 1,rcZk 3/2 + r/] =< argX =< rIZk + 1/2 r/I},
v= 1, ko=0,

S +
k,1 {XI ]XI >= 1,r[Zk 1/2 + r/] =< argX =< r[Zk + 3/2 r/I},

v=l, ko=0.
Then for X Skv ors +

k,l

p+2

Go(X
j=l h=l

s k + ko if XeSkv" s k + if XeS+
k,l

G(W) W exp {- vW’Iv} {1 + O(W- )}, W--. o,

[arg WI =< rc[v+ min (1, v/2)- rl],

Lj(W) W

larg W[ __< [v/2 +
1 -2 2-2

z as in (1.11), ap+ 2 ap+2 2

where the connecting constants Cj(k, s), Dh(k, s) satisfy the conditions

ICj(k, s)l <= m eIkla, [Dh(k, s)[ <= m eIkla,

s=k+ko, or s=k+ 1,

the positive numbers M, Ao depending only on a, b, 2 and v.
From Lemma and (1.15)it follows that ]argXI =< 0 0(1) + O(log(1 + ]w])),

for e Po. Hence, Go(X) must be described in a sector S of central angle 0 which
requires at most [0/r] expansions of the form given in Lemma 2. Moreover, the
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pertinent connecting constants Cj(k, s), Da(k, s) are uniformly bounded by num-
bers of the form

O(exp [O(Ao log (1 + Iwl)3) o((1 + Iwl)2’)
for m sufficiently large, that is, m => m0. Combining these estimates, for e P,
IXl => 1, Itl _-> I1,
(1.23) Hs 0((1 -I- [wl)2mAx evx’/’) + 0((1 + Iwl)2,’a exp {caX’/"}),

h=l

where the c are bounded real numbers dependent only on the aj, bj and 2. In view
of Lemma 1, (1.23) implies the desired estimate for H in IX[ >_- 1, e Po. In the
final range, IXI < 1, e P, (1.10) implies

H5 o(xb),
b being a constant, which again implies a proper estimate for H. Thus, the expan-
sion for H is established, and Proposition 2 is applicable to establish the theorem.

Remark 3. Theorem remains true even if a a is an integer, as this situa-
tion merely introduces terms of the form (log Xy, r a positive integer, into (1.23).

THEOREM 2. Let the parameters ak, bk, 2 be independent of the large parameter
n and satisfy the conditions

aj a an integer, k 1,..., p, k =/: j,

forj an integer, <_ j <= p. Thenfor fl q p > 2, (wN2) o(1), N2 n(n + 2)
and m arbitrary,

F(n + 1) q,2

F(n + 2)
Gp + 2,q

n 2, aj, a 1, ..., aj_l,aj+l, ..., ap,n + 1
b ..., bq

F(n + 1)ml(
F(n +,)k=o Ck’j

F(-k+ n+2- + aj)
F(k + n+ 2-aj)

CojF(n+2- +aj)F(n+
F(n + 2)F(n + 2- aj)

q+ 1fp+ 2

wN2 ct3

w-k-1+, + O([wN2]-m 1-,)

l+bl-aj,...,l+bq-aj, ),+a1-aJ,..., +ap-aj, n+2-aj,-n-2+2-aj

larg (wN2)l < [fl + 2] e Ck
l-[q=

_
F(k + + br aj)

17= F(k + 1 + a aj)"

F(1/2)F(n + 1)
F(n + 2)

e-v(zn+ Z) (sinh v)- ZG I(X) dr,

(1.24) Re (2 + 2a.i < 3,
/

(x) 6,+ ,(x aj, al,

0 < w, X(v, w)= w (sinh v)-2,
1-22-2

..,aj_l,aj+ 1,...,ap, 2 2
,bq

l.,j(w) 2

Proof It follows from (1.8), and the Mellin-Barnes integral representation
for l,,j(w), that for n sufficiently large,
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Since

(1.25)

m-1

k-O

Ck,jX-k- + aj

F(k aj + (3 2)/2)F(k aj + (4 2)/2)

+ 6,(x),

1,1 (X 1-22-2
2 2

q

FO,m(x)x-m+aj + E xbkFk,m(x)’
k=l

where the Fk,m(X are entire functions of X, and

(1.26)
al,m(X O(X-m-1

X e To {Xl IXl 1, ]arg Xl =< Oz/2)fl e, e > 0},
equation (1.24)can be rewritten in the form

r(n + 1) ml(_l)kCk’JF( _k+n + 2-- 1 + aj)l"d(w) r(n + 2)k=o F(k + n + 2- aj)

(1.27)

w -’- +" + R.,(N, w),

Rm(N w) 2
F(1/2)F(n + 1) fcF(n + 2) ,

e-V(2n+ 2) (sinh v)- 2G ,m(X) dr,

Re (2 + 2aj) < 2m + 3, larg w 2q] < nfl 2a
2

C4)’v log(t + w/1 + t2), or sinh v uei4,

0 u < o, 21bl < r,

and Co [0, ).
As ve Co IXI >_- 1, implies xe To, the estimates for IxI < 1, and IxI _->

in (1.25) and (1.26) can be combined and written as

Gl,m(X O(X-m-l+aj), m mo >= max {Ibu aj[},
uniformly for v e C, ]b] =< re/2 e.

Breaking C into

c; {v e Cl Ivl <_- 1}, C; {v e C,I Ivl -> 1},

it is easily seen that

Rm(n w) O(N 2 fc le- 2Nvl)2m + 2 2- 2aJW- + aJl Idvl)

+o Nl-X fc, [e-2nv+bvw-m- +aj’ [dv,)
O([NZw]-m- +a,) + O(W-m-1 +,,
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where b, c are positive constants. As each of the m terms in (1.27) can be estimated
explicitly, the tentative assumption m _>_ mo can be dropped.

Remark 4. If a bg is a positive integer, some of the initial Cg,a vanish.
Remark 5. With minor modifications in the proof, Theorem 2 is valid with

The analytic continuations of g,(w) and l,,a(w) are related as follows.
THEOREM 3. Under the restrictions of Theorem on the parameters a

l,,a(w einZaJln,j(W e -it2) / (-2rci)eirajgn(W e-in),
and there exist constants Ca(k and Dh(k such that

p

gn(w) E Cj(k)ln,j(w eit(1- 2k)) / E Oh(k)g.(w e-iZh),
j=l

Ca(k (_ 1)+ 1(2ri)

FI {r(a aIr( a + aft} {r(g aIr( b + aa)},

O(k) (-

where A 1, B are defined in Theorem 1.
Proof. From the partial fraction decomposition

Ca’gY d
H=l(y-a) =a=ly-oa+h=o h,gy d,g 1, dog (_ 1) l’= ! fla

ejg=er, j=/=r, O<k<fl=q-p,

with y e -i=zs, fla e-i=2b and ea e-i=2a’ it follows that there exist Ca(k), Dh(k
such that

e_i,H]= {r{aj s)r{ aj + s)}
(- 1)e + (27r. i)B ei*t(Bl A l)

H=, {r(b- s)r(1 bj + s)}

Ca(k)ei=(1-2g)F(aa- s)F(1 -aa+s)- 1 + Dh(k)e
j=l h=l

ir2hs

Multiplying this identity by

WsHq=l_ r(b- s) r(n + , + s)
[If= r(a- s) F(n + s)

and integrating along the contour C+ which separates the poles of F(br- s)
from those of F(1 -a + s), one obtains an expansion of --pt’’’P+l/+2,q,W e-irtfl) O,
which reduces to the expansion ofg,(w)in Theorem 3. The l,o(w expansion similarly
follows from the reflection formula for the gamma function.

To show how this extends Theorem 1, we proceed as follows. Denote by
G(f),La(f), the formal series in Theorems 1, 2, representing g,(w),l,o(w),
respectively. We have shown that

g,(w e -itzh) G(f e-iZ=h/#), Ifl arg f- 2rthl __< r[fl / 1] e,
(1.28)

l,,a(w ei{1 2k}) La(D ei(1 2k}/), Ifl arg + (1 2k)l _-< (/2)Eft + 2] e.
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Although the g,(w) expansion in Theorem 3 is valid for all w, we can use it
to estimate g,(w) asymptotically only when the inequalities in (1.28) are satisfied
for h 1, ..., fl, for example, as they are when

k-- I(fl+ 1)/2], nfl- 1] +e=<flarg=<n[fl+ 3J-e, >0.

Then

p t
g.(w) Cj(k)Lj(92 ei’(’ 2)/e) + Dh(k)G(Y e-i2/),

j:1 h:l

for this range. From Theorem 2, the= series contributes only terms ofalgebraic
(or logarithmic) growth as n oe, and as such, are subdominant to the exponential
growth terms of __= r Moreover, as

f e-in2} cos {arg 92 2nhfl-’ cos {arg f}
2 sin {arg 92 nhfl- 1} sin {nhfl- ’} > O,

h: 1, ..., fl 1, n[fl 1] <flargf<n[fl+

it is clear that D(k)G(e-i2) is dominant in Iflargf- nfll < n, but for
argf n[fl + 1], the h fl and h terms are comparable, while the h
term is dominant for fl arg 92 n[fl + 1] + , > 0. Systematic use of the results
in Theorem 3 permit an asymptotic description of g,(w) and l,,j(w) in an arbitrarily
wide sector [10].

Finally, we state the following, simple comparison result.
THEOREM 4. Let

g(w) :o w
al, ap
by,...,bq

aj, al aj- aj+ a

by, ..., bq
Then under the conditions of Theorem 1,

g,(w) g(fle)exp {2fP(vo)}{1 + 92-1[$1(w $1(0)] + O(f-2(1 + ]wl)4a)},
foe, ]argfal__<n[fl+ 1J-e, e>0,

l.,j(w) -/j(n){ / o(n-(1 /

fo, largfal =< n[fl+2]/2- e, e >0, 92a wn(n +2).

2. A difference equation for g,,(w) and l,,,j(w). We begin with the elementary
operators

U,(2 #) =(n +2- 1)(n-/)0_n(n +2- +1)_
2n +2- 2n +2-

(n + 2- 1)o +(2)=
2n +2- 2n+2_1

-,
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where -J is the shift operator on n, that is, -Jy, y,_j. These operators satisfy
the functional equations

+
//,(2,/) .(+ 1)_sJ (n + 1)_

(s-),

) +)_j= n+)_

F( + )
(e.) ()

F()

while
q

/,(w) I-I /,(2 + 1-j, bj)
j=l

fl-2 p

wn(n +2-q)-1 l-I //,(2+ 1-p-j) I-[ (2+ l-j,-1 +aj),
j=l j=l

fi Pj= PP,_I P1, fl q p >= 3,
j=l

satisfies the equation

{ (n+2)s } (n+2-q)s -I(s_bj//,(w) (+ 1)_s (n + 1)_s j=l

p(n + 2- q)+l
1-[ (s + -aj).-w

(n+ 1)_s_ =1

Note that if s is equal to an integer r, (-1)r(-n)r(n + 1)_r 1. The notation in
(2.1) will be used extensively.

Clearly, ///,(w)is a difference operator oforder q, and can be written in the form
q

’.(w) {Cj(n, 2) + wDj(n, 2)} -.
j=O

Using the above functional equation for ,(w), it is easy to see that the constants
Cj(n, 2), D(n, 2) satisfy the relations,

q (s n))(s + n + 2 q)q_jl-I (s bj) Cj(n, 2)
j= j= 0 n)j(n + 2 q)q

p

(s n)(s + n + 2 q) l-[(s+ aj) Dj(n,2)
j=l j=0

(s n)j(s + n + 2- q)q_j
n)j(n + )c q)q_

Explicit expressions for the Cj(n, 2), Dj(n, 2) can then be deduced from [7, Lemma
2.1].

THEOREM 5. Under the conditions of Theorem the functions g,(w e
l,,j(w ei(- 1+ 2m)), m an integer, j 1,..., p, satisfy the linear difference equation

.(w){y.(w)} o.
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Moreover, if the integers r, s are chosen such that

I[arg w + rc[fl- 2r]l < rc[/ + 2]/2,

]argw + rc[fl- 2s- 2h]] < r[fl + 13, h= l,...,fl,

then the functions l,,j(w ein(- 2r)), j 1, p, g,(w ein(#- 2s- 2h)), h 1,
form a basis, r,s, of the difference equation in the sector

T,s:n max (2r- 3/3/2, 2s 1) < arg w < n min (2r + 2 fl/2, 2s + 3).

Proof. From the Mellin-Barnes integral representation for g,(w ein(#+2m)),
one obtains

/,(w) g,(w ei=(e + 2,,))}

(-- 1)
2ri +L

H= r(1 + bj- s)(n + Z- q)s(w ei=(# + 2m))s ds,I-[= r(aj s)(n + 1)

where L is chosen to separate the poles of the F(bj s),j 1, ..., q, from those
of F(n + 2 + s). By inspection, the integrand of this integral has no poles between
L and + L, and hence the resulting integral is zero. The computation for
l,,j(w ei(a- 1+2,,)) is similar. The last part of the theorem then follows from the
fact that Theorems 1, 2 are applicable, and that the asymptotic behavior of the
various functions in Mr,s clearly indicates that they are linearly independent as
functions of n.

THEOREM 6. Under the conditions of Theorem and the restriction

bh bk =/!: a negative integer; h, k 1,..., q, h 4= k,

the functions Fh(W ei), h 1, q,

p+ 3Fq

(n + 2)b, wb.
(n+ 1)_bh
1,b n,b + n + 2, b + al,

b + b 1,..., b + bq

b + ap

also form a basis of
.(w){y.(w)} 0.

Proof. As

F,(w) 1-I--_, F(b + b)) F(n + 1)

l.=, F(b + aj)F(n -+- ,)

Glp ’p+ 2 w
n ), al

+3,q+l bh, bl, ..., bq
ap, bh,n h- 1
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it follows as in Theorem 5, that #,(w){Fh(w ei=)} --0. Then from the explicit
formulas

g.(w) K e-irr(fl 1)bhFh(W ei,(
h=l

In,j(W) 2 KhF(1 + bh a)F(aj- bh)e-in’Fh(W
h=l

K r(b- b) l-I F(ak- bh),
k= k=
k:C:h

it follows that the q functions Fh(w ei) span the q-dimensional space spanned by
Nr,s, and are linearly independent as functions of n.

3. The etended Jaeobi fimetions. The extended Jacobi functions are defined
by

w fl=q-p>2,J,(w) P + 2Fq-1
"’’, flq-1

which can be identified with the Fq(w)in 2, with

(3.1)
aj= a, j= 1,...,p,

flj bj, j 1,..., q, b O.

Under this identification, g,(w), l,,(w), will be denoted by g, (w), la(w),
As we are interested in linear combinations of the g,(w), the following char-

acterization is convenient.
PROPOSITION 3. With the hypothesis and notation of Theorem 1, let

S(U,w)- + Sj(w)-J + 0
j=l

r(f, w) 2fP(vo) + log S(f, w).

Then there exist polynomials T(w) such that

log S(f, w) T(w)f- + O
j=X

Moreover, as

T(w) S (w)

c3wT(w <= 2Aj.

T(w) S:(w)- [S(w)]/2,

3-1W"3-aQ(wfZ-a), Q(0) 1,

2f2P(vo)
3 wf3 a + o(1), :l > 3,

W W2 2w3

15f2 1892 t-0(1), fl 3,
3
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aw
7"o(W)

3’
a2w3

189

a--
r(4-/)’

where Q(W) is analytic at W O, there exist polynomials (w) such that

fa’ exp -/?f + r(f, w)},

f--,, largfl <[fl+ 1J-e, e>0,

Z(f,w)- j(w)f-J/ O (1 +lwl)2A
+ O

=o F(
aw2 bw

r(w) + + S(w),

cw ES(w)]
T:(w)

3 2 + S(w),

b fl-3 (fl-3)(fl-4)
C

r(5 -/)’ 2r(6-/)

2 m)flt- 3

THEOREM 7. Let the parameters , fit, 2 be independent of the large parameter
n, arg n - 0 as n -- o, and satisfy the conditions

k z a nonpositive integer, k 1, ..., q 1,

(Z Oj an integer, j, k 1,..., p, j v k.

Then for fl q-p>__ 3, and

p+2Fq

N2= n(n + 2),

-n,n + /, (X1,

1, "’’, q-1

w o(N2U), (wN2) -1 o(1), n o,

2 max(,fl 2)< fl 2,

(n+,l)_ -,
J=

Kj
(n + 1)/w

q+ 1fp + 2

o o -- 1, "’’, o .ql_ q 1,

ej.+n+ 1,e+l-n-2, ej+l-e,

-1 F(flk-- 2 H
/fl(2)-1 H=

aw cos (/)V(w) ((1 + Iwl)4
exp /3 cos (rr/fl)f2 + 3

cos {/ sin(Tr/fl)V(w) {1 + Iw])A’ w }tsin (Tr/fl)f + 7 +
f

+ O
"2

-{- O
F(fl- 4)-3/)’

fl,, largal N2n-e, e>0,

2Oa wN2 wn(n +2), A=min
3’2fl- 5
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(B A)[fl(B + A) + A B 2] -f12 12fl + ll

2 24fl
p p q-1 q-1

1-[ x -t-j)-- Z A xp j, 1-] x -t- fl Z B x l-j,
j=l j--O j=l j=O

where the parameters a, b are the same as in Proposition 3, and fL N are positive
when w, n and 2 are positive.

Proof. Using a partial fraction decomposition as in Theorem 3, it can be
shown that there exist constants Cj, D such that

p

Cj eis(2-#)F(s + xj)I-’(-s + oj) + y’ D eis(# + 1-2h),
j=l h=l

where co the greatest integer =< ill2. In particular,

Cj=
eit2-#)J h F( j)F(1 + aj

r(flg- aj)r(1 + j- fig)’

p q-1

D [-[ F(ag)= e-i"’(2)1- I-I r(flg) D
k=l k=l

Substituting this expansion in the Mellin-Barnes integral representation for Jn(w),
it follows that

p t
(3.2) J.(w) E Cjl#n,J(w ei(2-/)) q- 5 Dag.(w ei(+ 1-2)).

1=1 h=l

For -rc min (2, fl/2) < arg [wn(n + 2)] < 2re, the # and g, can be replaced byn,j

their asymptotic expansions as given in Theorems 2, or Proposition 3. Clearly,
the Z=I sum in (3.2)reduces to the =1 sum in the Theorem for rc[2 + 4co fi]
< 2 arg (wN2) < u[2 4co + 3fl]. Since

{arg (wN2) re} farg(wNZ)+rc(1-2h)}cos cos

2sin {z(h- 1)}sin{hrc-arg(wN2).} >0
h= 2, 3,...,fl- 2, fl> 3, -2n<arg(wN2)<2zr,
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the g.(w e i’(- 1)) and g. (w e-in(fl- 1)) terms in (3.2) dominate. A straightforward
computation shows that

Dg. (w ei"(’-)) 1-I- _1’ r(fl) gl’

{ aW e-i/’f((--1)-lw) ({1 + ,w.)46
exp fle"/+T + i7- + O

Remember that for w e( -w, fl is replaced by e -/fl. As Dg(w e-(-)
is essentially the complex conjugate of Dg(w e(-), equation (3.2) reduces to
the statement of the theorem for

min (2, B/2) < arg (wN) < 2.

It then follows from Theorem 3 and the parameter identifications (3.1) that

l,j(W) i2,,, el,2) ei,g ein),,,jW +( 2i) (W

so that (3.2) can be rewritten as

p
2aj # +J,(w) E cj e’" 1,.( e’’( )) + E b,g(w e’’(a +

j=l

P

b On, h # fl w" ba_ Oa +(-2xi) j.
j=l

Just as above, this expansion implies the theorem for

2u < arg (wN2) < u min (2, fl/2).

Combination of these results yields the theorem.
Remark 6. The asymptotic behavior of J,(w) outside of ]arg(wn(n + 2))]

2u e, e > 0, can be found using Theorem 3 in a systematic manner..
Remark 7. With the parameter identifications (3.1), J,(w) satisfies the linear

difference equation {y,(w)} 0, which is described in more detail in [7].
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ON TWO CONJECTURES OF ASKEY CONCERNING NORMALIZED
HANKEL DETERMINANTS FOR THE CLASSICAL POLYNOMIALS*

GEORGE GASPER?

Abstract. It is shown that the Jacobi polynomials p.(x) Pt.’)(x) satisfy

p.(x) p’.(x)
p.(1)

p’,(x)

p’#(1) p(1)

<0, -1 <x < 1,

when => 13 > -1 and n 2, 3,..." thus proving a conjecture of Askey. Another conjecture of
Askey concerning Laguerre polynomials is proved and direct proofs are given for some inequalities
involving normalized Wronskian-type determinants.

1. Introduction. A few years ago Askey Ill posed the problem of determining
the values of cz, fl for which the Jacobi polynomials p,,(x) P’)(x) satisfy

(1) An(X

p.(x)

fin(l) p’(1)

<0,

for n 2, 3,.... Equation (l) fails when fl > cz > -1, since then An(-1) > 0.
Askey conjectured that (1) holds for z >= fl > -1; but this turned out to be
unexpectedly hard to prove, even for the Chebyshev polynomials

cos nO Tn(cos 0) P(,- 1/2,-1/2)(cos O)/P-1/2,-1/2) (1).

For a while even doubted (1), and it was not until Askey communicated to me
a proof of(l) for the Chebyshev polynomials that again attempted to prove this
inequality. Askey’s proof could not be extended to yield the complete conjecture
since it depended on special properties of trigonometric functions. However, it
did supply the motivation which eventually led to the proof given here. Another
conjecture in concerning Laguerre polynomials will also be proven and simpler
proofs of two theorems in [1] will be given.

The main tools used in proving (1) for e >_ fl > are an identity (equation
(4) below) and the simple observation (previously used in [2]) that if q,,(x) is a
polynomial of degree n with zeros x x2, ..., xn, then

qn
(x Xk)-qn k=

(X Xk)- 2.
q.! =1

In fact, it is found that these tools yield the following generalization of Askey’s
conjecture.
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2. Main result.
THEOREM 1. Let pn(x) P=")(x), An(x be defined as in (1) and n 2, 3,....

If_>_fl> -1, then

<0, -l<x<l,

B,(x) A,(x) / an(1 xZ)(pn(x))2 0, x 1,

>0, x>l,

where

4F( + 1)1-’( + 2)F(n- 1)l-’(n)
(n+ + fl+ 1)2(n++/3+ 2)(1-’(n+ + 1))2"

/ (1 xZ)p’’2 / ( / 1)(1 xZ)p’’2

so that, by (3),

(4)

Since

" ( fl)(x Xk) ( / 1)(1 / X)
( fl)(p"/p’) + ( + 1)(1 + x)(p"/p’)’

= (x x)

rill ( () (1 / Xk) ( / 1)(1 / X)

k=l (X Xk)2

p’p"’];

Bn(x An(x + an(1 xZ)p’’2

an( fl)(1 x)p’p" + an(e + 1)(1 xZ)’p’’’- if, z]

an(1 x)[( -/3) (p"/p’) + (o + 1)(1 / x)(p,,/p,),]p,2.

(3) An(x)= an[(e + 2)n(n + e + fl + 1)pp"-(o + 1)(n 1)(n + e + fl + 2)(p’)2],

where a is as defined above. Equation (2) and the differential equation for p yield

( + 2)[ fl + ( + fl + 2)x]p’p"-( + 1)[ -//+ (e + fl + 4)x]p’p"

(e + 2)n(n + e + fl + 1)pp"- ( + 1)(n 1)(n + + fl + 2)p’2

and

If e > -1, then Bn(-1) O and Bn(x) > O for x < -1.

Proof. From [3, Chap. IV] we have

Pn’ (I)-

6t
p(n,)(x) IP(+ ’ + 1)(x)ax 5(n+++ ._

(1-x)2p’’+ [ e (e + + 2)x]p’ + n(n + + + 1)p=0,

where p p,(x)= P’)(x). Thus

(2) (1 x2)p + Eft -( + fl + 4)x]p" + (n 1)(n + + fl + 2)p’= 0
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where x x2, X are the zeros of p’, then to complete the proof it suffices
to observe [3, 3.3] that these zeros are real and simple and are located in the
open interval (-1, 1).

3. Laguerre polynomials. For Laguerre polynomials 2,(x)= L,](x), the
natural analogue of (1) would be

2.(x) 2’.(x)

’.(o) (o)

<0, x>0.

However, this fails for large values of x, and so Askey conjectured in [1] that if
one used the normalizations

then

Xl,(x) (- 1)"n.L,(x) + ...,
l’,(x)/n (- 1)"-l(n 1)IL+ (x) x"-1 +

l,(x)/n(n 1) 1)"- 2(n 2) + 2.L,_zZ(x) x" +-..,

(5)
1,,(x) l’,,(x)/n

l’,,(x)/n l’(x)/n(n- 1)
<0, x>0.

This inequality actually holds for -oo < x < c. In fact, it was a surprise to find
that (5) is a special case of a general result which have known for some time but
never realized that it had this interpretation.

THEOREM 2. Let q,,(x) be a polynomial of degree n which has only real zeros.
Then

(6)
q,,(x) q’,,(x)/n

q’,,(x)/n q’(x)/n(n 1)
<0 - <x< oo, n>2,

and equality holds if and only if either all zeros ofq,(x) are equal or the point x is a
zero ofq,(x) of at least order two.

Proof Let C,(x) denote the determinant in (6). If x 1, x2,..., x, are the
zeros of q q,(x), then

nZ(n 1)C,(x) nqq" (n 1)q ’2]
2I(q’/q)2 + n(q/q) ]q

(x x)-k=l /’/k=l (X--Xk)-21q2’
so the result follows from Schwarz’s inequality.
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4. Normalized Wronksian-type determinants. Recall that if orthonormal
polynomials q,,(x) are normalized by q,,(x) k,,x" + with k, > 0, then it follows
from the Christoffel-Darboux formula [3, p. 43] that

(7)
q,,(x) q,,+ I(X)

q’,,(x) q’,, +I(X)

kn+ [q)(x)+ q(x)+... + q2.(x) > O, --o0 <X<

For p,(x) P’a)(x), Askey [1] observed that if the normalization is changed to

Pn(X) Pn+ 1(X)
Pn(1) Pn+ l(l)

Pn(X) Pn + (X)
P’n(1) P’n+ 1(

then the sign of A,(x" , fl) is sensitive to the spectral interval, i.e.,

-1 <x< 1,

A.(x" o, fi) 0, x2 1,

0, x2> 1,

provided that e, fl > -1 and n _>_ 1. For Laguerre polynomials 2,(x) L(x), he
found that if > 1, n _>_ 1, and

&(x" )

,L(x) ,L +(x)
/]’n(0) /n +1 (0)

);(X) ; +1(X)
);(0) /n +1 (0)

then

(9)

0, x>O,

A,(x’ ) O, x O,

O, x<O.

His proof of (8) depended on the identity

(10)
I1 xl =+ 111 + xl/+ 1An(X; 0, fl)

h, 11 y[+ 111 + y]+ 1pt+n_ll,+ 1)(y)p(,,+ 1,fl+ 1)(y)dy, h,>O,
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which he used to analyze the relative extrema of the left-hand side of (10). For
Laguerre polynomials one can obtain (9) directly from (use the formulas in

where

An(X" 0) bnE(Vl -}- 1),,n+ l(X),tn(X) nR.(x)2’.+ x(x)]

b.x,. (x)(,.(x)/,.(x))

bnX2n(X) (X- Xk) -2
k=l

r( + 1)r( + 2)r(n)r(n + 1)
F(n+ + 1)F(n+ e+ 2)

and x x2, X are the (real) zeros of 2,(x) L(x). There did not seem to be
a direct proof for the Jacobi case (8) until, while reading an old paper of Szeg6 [4],
noticed that after a change in notation, equation (1") on page 89 of Szeg6’s

paper yields the identity

(11) An(X" (X, ) Cn( X2) [Un_ I(X)u(X) Utn_ I(X)Un(X)],

where u,,(x) P+ 1, + 1)(x and

r( + 1)F( + 2)F(n)F(n + 1)
2F(n + x + 1)F(n + o + 2)

Thus (8) follows from (7) and (11). Equation (11) can easily be proved by using

2n(1 x)(1 + x)eP’e)(x) [(1 x)+ 1(1 q- X)B+ 1lO(a+__n_ll,//+ 1)(X)],

(see [3, (4.10.1)]) and this formula with n replaced by n + 1.
Similarly, for Laguerre polynomials the formula

n e-XxL(x) [e-Xx+ 1L+ l(x)]’
can be used to show that

(12) A,(x;

where v,(x) L+ l(x) and c, is as defined above. In deriving (9) from (12) and (7)
one needs to use the fact that L +l(x) k,(-x)"+.., with k, > 0. Another
interesting identity which should be pointed out is

L_(x)
0 + L_ 1(0)

A.(x; )
x L(x)

L.(O)

L(x)
L(O)

L+ l(X)
L+ 1(0)

This shows the connection between A,(x; ) and a determinant of Turfin type.
The connection between (5) and an inequality of Tur/tn type for Charlier poly-
nomials [3, p. 34] and also analogous results for orthogonal polynomials of a
discrete variable will be considered elsewhere.
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AN INNER PRODUCT INEQUALITY*

MICHAEL H. MOORE?

Abstract. A fundamental inequality which provides lower bounds for real-valued inner products
is stated and proved.

1. Introduction. Let V be an inner product space. We denote the inner
product of two vectors x and y of V by "(xly)".

An upper bound on the absolute value of an inner product (x[y) is, of course,
immediately available from the famous Schwarz inequality;we have, for all x
and y in V,

This inequality expresses the intuitively clear fact that the length of a projection
is less than or equal to that of the vector projected. Thus, the Schwarz inequality
is a statement about the lengths of vectors and has nothing to do with the angle
between them.

Our purpose here is to obtain, by reversing the emphasis on lengths vis-/-vis

angles, a companion inequality which gives a lower bound on the absolute value
of real-valued inner products. Thus, our inequality will express an equally obvious
geometric fact in which the angle between the two vectors in an inner product is
the prominent feature, the lengths playing no role whatever.

The main result-expressed in the following theorem--would seem to be
fundamental in character and therefore interesting. Another form of this result
which may be more useful for various purposes is given in Theorem 2.

2. Main Theorem. Let V be a real inner product space, and let x, y, z V be
nonzero vectors such that

I(xlz)l > (1 )llxll" Iz
where r, is a positive real number (presumably small). Then

(ylz)l >= ’/()ly Ilz
where 7(:)=

The statement of the theorem is the formalization of the following intuitively
plausible fact" if the direction of the vector y is close to that of x, and if the direc-
tion of the vector z is close to that of x, then the direction of y is close to that of z.

This idea is certainly intuitively correct and, indeed, scarcely needs proof. It is
therefore remarkable that the result seems to have gone unnoticed.

Proof. It suffices to consider the case where x, y, z are unit vectors. Further,
we may assume without loss that (xly) => 0 (for if not replace x by -x). Then

I(ylz)l I(y x + xlz)l I(y xlz) + (xlz)l

>_-I(x z)l- I(y xlz)l > , -I(y xlz)l.

Received by the editors February 3, 1972, and in revised form June 22, 1972.- Department of Mathematics, University of Florida, Gainesville, Florida 32601.
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But, using the Schwarz inequality, we have

I(y-xlz)l=< y-xll.llzl=lly-x[I,

and

(y- xly- X)-- X[ 2 _]_ IlY 2

-IlXt 2 _.1_ y 12__ 2I(xIY)I

__< + 1-2(1-e)=2e.

2(xly)

This gives

Hence we obtain

and the proof is complete.
For small e, a somewhat better result can be obtained from another (slightly

longer) proof based on the triangle inequality; one finds that the inequality of the
theorem still holds when ), has the value 4e. Thus we may sharpen the conclu-
sion of the theorem by taking

y(e,) max(1 e- x/, -4e,, 0).

The inequality is, of course, trivial when ,(e,) 0, and this is annoying since the
other two terms in the formula for become negative for e > 2 v/3 - 0.268.

3. A more useful form. The fame of the Schwarz inequality rests not only
on its elegance and simplicity but also on its extraordinary utility everywhere in
analysis. One is frequently required to estimate inner products of various sorts
(as, for example, when V L2 with the usual integral inner product), and for this
an upper bound seems usually to be sufficient. Occasionally one may wish to
obtain a lower bound, and for this the inequality just developed may be useful.
However, the statement of the main theorem concerns not just two vectors but
rather refers to the interplay of three. This deficiency may be repaired somewhat
as in the following theorem, which is really just a rephrasing of the previous one.

THEOREM 2. Let V be a real inner product space, and let y, z V be any nonzero
vectors. Then for any nonzero vector x V,

I(ylz)l . Ily lzll,

where

I(xly)] I(xlz)l
,,=max 4.min

Ilx[]" y l’llx z]

Remark. The value of 7x could be sharpened, as will be clear from the proof;
we avoid this for the sake of simplicity.
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Proof. Choose any nonzero x e V. The main theorem then holds for x, y, z
with 7(s) 4e, (for simplicity), where

,(xly)l ,(xlz)l
s= 1-min 1])Tii iiv]l’ xll i)]]

Hence, max (1 4e, 0) 2x, and the proof is complete.
An example. Let us conclude with an example ofhow one might use Theorem 2.
Suppose that 1/= L2(0 oo) with the usual integral inner product. Consider

the two vectors y and z of 1/given by

y(t) exp [-(1/2)t 2] cos [(1 + 0{)1],

z(t) exp [-(1/2)t 2] cos [(1 0{)t],

where 0{ is a parameter, small in absolute value. Suppose that we are interested in
the inner product

I(0{) (ylz) y(t)z(t) dt

exp [--/[2 COS [(1 + 0{)t] COS [(1 0{)t] dr,

which we imagine to be difficult to evaluate exactly (this is, of course, not really
the case) because of the presence of the two cosine terms in the integrand, and
that we therefore desire a lower bound L(0{) for 11(0{)1 in addition to the usual upper
bound provided by the Schwarz inequality.

Choose

We find that

x(t) exp [--(1/2)t2].

11yl]2 x//- exp [-1/2(1 + 0{)] cosh [1 + 0{)2=-
zll 2

x/ exp [-1/2(1 0{)2] cosh [1/2(1 0{)2]=---
V/7 exp [-1/4(1 + 0{)2](xly) -(xlz) v/- exp [-1/4(1 0{) 2]5-

(xly)
{cosh [1/2(1 + 0{)2]} -1/2

(xlz)
x ]z

{cosh [1/2(1 0{)2]}-12
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Thus we get

and so

I(xl)l I(xlz)l
min

Ix]" lY x z

I(xly)l
if0 > 0,

ifz < 0

{cosh [1/2(1 + 11)23} 1/2

7x-- y(o)= 4. {cosh [1/2(1 + Io[)2} 1/2 3.

0.6

0.5

II()1 I()

0.4

0.3

0.2

0.1

L()

0.1 0.2 0.3 0.4 0.5

FIG. 1. Plot of II()] and L(ot) versus
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The quantity () above is positive for Iel < 0.536. From Theorem 2, therefore, a
lower bound L(e) for II()l is given by

L(z) 7()" IlYll" IIzll
x/re exp I-1/2(1 / 2)3(4-{cosh (1 11)2} /2
2

3. {cosh [-}(1 + e)23 cosh [2!(1 z)23} 1/2).
On the other hand, the integral for I() is well known (see, for example, [1, p. 21,
#201);it is

I(a) exp [-t23 cos [(1 + )t] cos [(1 z)t] dt

exp [-1/2(1 + 2)3 cosh [1/2(1 2)3.
2

Curves for comparison of I(e) and L(e) as functions of are shown in Fig. 1.
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ASYMPTOTIC EXPANSIONS OF INTEGRAL TRANSFORMS
WITH OSCILLATORY KERNELS" A GENERALIZATION

OF THE METHOD OF STATIONARY PHASE*

R. A. HANDELSMAN’ AND N. BLEISTEIN:]:

Abstract. Integrals with integrands of the form H(2dp(t))f(O are considered for 2 and H(t)
oscillatory for large argument. It is shown that the set of critical points for such integrals includes zeros
of the phase function b as well as all of those that arise in the analysis of the standard integrals of
Fourier type, that is, for the special case where H(t) exp{it}. The contribution to the asymptotic
expansion from each type of critical point is derived. In particular, a formula is obtained which gener-
alizes the stationary phase formula associated with Fourier-type integrals.

1. Introduction. In the method of stationary phase, one is concerned with
the asymptotic expansion, as 2 , of functions defined by integrals of the form

(1.1) I(2) exp {i2q(t)}g(t) dr.

We shall assume that the details of this method are familiar to the reader and
need not be discussed.

Our concern here shall be with the asymptotic expansion of integrals of the
form

(1.2) 1(2) H(2rp(t))g(t) dt

in the case where the kernel function H(t) is oscillatory for both large positive and
large negative arguments. More precisely, we assume that, as + ,
(1.3) H(t) exp bt- c,,,,t-’(log t).

/=0 m=0

Here each b is real, N(m) is finite for all m, both v and are positive, and {Re (rm)
is a strictly increasing sequence with limit + oe. In the limit --, -, we assume
that an expansion of the form (1.3) holds with replaced by Itl and with, in general,
different constants.

Clearly the Fourier kernel exp {it} is a special case of the general kernel we
propose to study. Thus we should expect to recover from our asymptotic analysis
of (1.2) the stationary phase results valid for (1.1).

We should point out that there are functions, such as the Airy function Ai(t),
which are oscillatory in one of the limits +_ and exponential in the other. It
will be apparent that integrals (1.2) with such functions as kernels can also be
treated by the methods to be developed below.
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The method itself involves applications and generalizations of an asymptotic
technique recently developed by Handelsman and Lew Ill, [2], [3]. This technique
makes heavy use of the Mellin transform whose relevant properties are discussed
below. In references 1], I2] and I3] only the case q(t) is treated. Here, however,
we shall consider more general o and, in particular, shall allow o to be nonmono-
tonic.

As is well known, to derive the asymptotic expansion of (1.1) one must first
identify its set of critical points. These include endpoints of integration, stationary
points of o and points where either q or g fails to be infinitely differentiable. We
shall show that, in addition to all of the above, the set of critical points for (1.2)
also includes the zeros of q. Indeed, this is one of the main results of this paper.

To gain some insight into the critical nature of the zeros of q, suppose that
(1.3) is only an asymptotic result and, in particular, is not valid near 0. Then,
no matter how large 2 is, there always exists a neighborhood of each zero of q
throughout which H(2q) is not asymptotically described by our assumed asymp-
totic forms. In other words, the asymptotic expansion of H(2q), as 2 , under-
goes a drastic change as passes through any of these neighborhoods. For this
reason we can think of these neighborhoods as "boundary layer regions". It is
certainly reasonable that the rapid change in the asymptotic behavior of H(20)
as passes through a boundary layer region will affect the asymptotic expansion
of I.

In the light of the above argument we can understand why the zeros of q
are not critical points for (1.1). Indeed, the Fourier kernel H(t) exp (it) has an
asymptotic expansion as + of the form (1.3). This expansion, however,
holds for all so that there are no boundary layer regions of the type just described.

In the following section we reduce our problem to the study of certain integrals
of canonical type. In 3, we consider some results concerning Mellin transforms
that are needed to implement our methods. Finally the desired asymptotic expan-
sion of I is obtained in 4 and 5.

2. Reduction to canonical integrals. Because there are many possible critical
points for integrals of the form (1.2) with H an oscillatory kernel, it is convenient
to have a means for isolating them so that their contributions to the asymptotic
expansion of I can be studied separately. This can be accomplished by using
neutralizer functions. These were first introduced by van der Corput [4], and we
shall assume that their basic properties are familiar to the reader. The net effect
of the neutralization process is to reduce the asymptotic analysis of (1.3) to the
study of a sum of integrals each having exactly one critical point either as an upper
or as a lower endpoint of integration.

Suppose first that to is a critical point at which o is nonzero. After
neutralization, o will appear as either an upper or lower endpoint of integra-
tion in at most two of the integrals to be asymptotically evaluated. To obtain the
corresponding contributions to the asymptotic expansion of I, one need only
replace H(2q) by the appropriate asymptotic expansion and integrate the result-
ing series term by term. Thus, finding these contributions is reduced to the
asymptotic evaluation of many integrals of the form (1.1). We have, therefore,
that the only critical points which require nonstandard methods of analysis are
the zeros of q.
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As a result of the above discussion, we shall focus our attention on obtaining
the contribution to the asymptotic expansion of (1.2) corresponding to a given
zero of qg. If we denote this zero by c and the contribution by Ic(2), then after
neutralization we find that

where

Ic(2) I+(2)+ I_(2),

(2.2) I_(2) H(2qg)g_(t) dt

and

(2.3) Ic+ (2) H(2q0)gc (t) dr.

Heregc_(t) vanishes for < < c with chosen so that neither 0nor o’ vanishes in
[, c). Furthermore, gc_(t) g in some small negative half neighborhood of c.

Similarly, gc (t) vanishes for c < fl < with fl chosen so that neither q) nor
vanishes in (c, fl]. Finally, g+ g in some small positive half neighborhood to

c. Of course if c coincides with one of the endpoints of integration in (1.2),
then only one of the integrals I_, I/ is nonzero.

Suppose now that as . c 0, q) has an asymptotic expansion whose lead-
ing term is given by

(2.4) q 7o(C t)TM Vo > 0.

If in (2.2) we introduce the new variable of integration

(2.5)

then we can write

(2.6) I_(2) H(2p_s)G_(s) ds.

Here,

(2.7)

p_ sgn 7o,

and set

(2.9) s p + q), p + sgn r/o,

then Ic_ can be written

(2.10) Ic+(2) H(2p+s)G +(s) ds.

g_(t(s))(dt/ds), 0 <= s <= p_q(fl),
6 s)

o, o() < s

Similarly, if we assume that as c + O,

(2.8) qg(t) q0(t c)p, Po > 0,
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Here

g+(t(s))(dt/ds), 0 <= s <= p+q)(e),
(2.11) G+(s)

O, IJ+qo(cz) < s.

Thus we have reduced our problem to the study of the two canonical integrals

;0(2.12) I +_ (2) H( -t- 2s)a(s) ds,

where the kernel H(t) is oscillatory in each of the limits _+ and G(s) vanishes
for s outside of some finite interval.

3. Results on Mellin transforms. As we shall see, Mellin transforms play an
important role in our asymptotic development. Indeed, one might anticipate this
upon observing that each of the canonical integrals (2.12) can be expressed as a
Mellin convolution [3].

The Mellin transform of a function f(s) is defined by

(3.1) M[f z] f(s)s-1 ds,

when this integral exists. Furthermore, iff is such that

s0+,
(3.2) f(s)

O(s-r), s

then M[f; z] converges and is holomorphic in the strip

(3.3) -p < Re(z)= x < r.

Also, within this strip limlyl_o IM[f; x + iyll O.
From our point of view, there are two results concerning Mellin transforms

that are of special significance. The first is the simple relation

z=x +iy,

(3.4) M[f(2s); z] 2 f(s)s ds 2-ZM[f; z].

The second involves integrals of the form

(3.5) J f(s)h(s) ds.

Indeed, suppose that M[f; z] and M[h;z] exist and are holomorphic in over-
lapping vertical strips. (This will always be the case if J is absolutely convergent.)
If Re (z) c lies in the common strip of analyticity, then we have

(3.6) fo fc
+

M[h;z]M[f; z] dzf(s)h(s) ds

which is Parseval’s theorem for Mellin transforms.
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Upon combining these last two results, we find that our canonical integrals
(2.12) have the representations

c +i

2-MIH(+_ s); z]MIG(s); z dz.(3.7) 1+(2) -i ,c+ _io

Here Re (z) c_+ lies in the strip of analyticity of the integrand. We note that the
total dependence of the integrand on 2 is contained in the factor 2 -z.

Our plan, which is standard, is to displace the contour of integration in (3.7)
to the right, apply Cauchy’s integral theorem, and derive thereby an asymptotic
expansion of I-+(2) as a residue series. In order to accomplish this we must obtain
certain information about the analytic continuations of the functions MH( +__ s); z]
and M[G(s); -z] into the right half-plane. Specifically, we must locate and
classify the singularities of these continuations, and we must estimate their
behavior as z --+ o along vertical lines.

For oscillatory functions, the required information is contained in the
following.

LEMMA 1. Suppose that H(s) is locally integrable on (0, o), O(sP), as s --+ 0+,
and O(s-r), as s + , with -p < r. Suppose further that, as s + , H(s) has
an asymptotic expansion of the form (1.3) in which event -r >__ ro. Then M[H z]
can be continued into the right half-plane Re (z) > -p as a holomorphic function.
Furthermore, in this right half-plane,

(3.8) Im[-H; z]l O(lyl(x-Re(r))/v- 1/2 +), lyl -+ 0+,

jbr any e > 0.1
,Proof The proof of this lemma is given in the Appendix.
As an example, and to illustrate the sharpness of the estimate (3.8), let us

consider the function H exp {is} whose Mellin transform is given by [5]

(3.9) M [exp (is); z] exp v,F 0 < x < 1.

In this case r0 0, and the analytic continuation into Re (z) > is explicit. We
note that F(z/v) is analytic in Re(z)> 0. The estimate (3.8) follows from the
known asymptotic expansion of the gamma function

(3.10) U(z) [y[X-1/2 exp [-rt[y[/2], [y[ .
As we have indicated above, our plan is to displace the contour of integra-

tion in (3.7) to the right. In order to accomplish this we must of course determine
the analytic continuation of M[G; z] into the right half-plane. Let us assume
for the present that this has been done and M[G; z] is a meromorphic func-
tion. Then to justify the displacement of the contour to the line Re (z) k > c+,
one must still show that

(3.11) lim MH(+_s);z]M[G(s); z] O, c+ <__ x <= k.

Note that here and in what follows the statement If(z)l O(lyl-r), lyl o implies Ill < KIyl
oe. K can depend on x but is independent of y.
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The estimate (3.8) implies an algebraic growth of M[H(+_ s);z] in this limit
which worsens with increasing x. This growth must therefore be compensated
by a commensurate decay of the analytic continuation of M[G(s); z]. In the
following sequence of lemmas, we shall establish sufficient conditions for such
decay.

LEMMA 2. Let G(s) be q times continuously differentiable on (0, or). Let G(q + 1)(s)
be piecewise continuous on [0, k] and continuousfor s >= k. Finally suppose that there
exists a real number Xo such thatfor all x > Xo, (s(d/ds))p(sXG(s)) vanishes, as s 0 +,
for p O, 1,2,..., q and, as s oe, for p O, 1, 2,..., q + 1. Then, as [Yl --* o,

(3.12)

for all x > Xo.
Proof The proof of this lemma is given in the Appendix.
Remarks. The hypotheses of Lemma 2 Simply provide sufficient information

to allow for the estimation of MG;z] via integration by parts. Furthermore, the
assumptions on G imply that M[G;z] is holomorphic in -Xo < Re (z).

The next two lemmas follow from analogous results for Fourier transforms.
Their proofs will be omitted here, but can be constructed from the corresponding
proofs in Titchmarsh [6].

LFMMA 3. Let G(s) satisfy the conditions of Lemma 2, except now replace the
condition on G(q+ 1)(s) by the assumption that (s(d/ds))q(s’G(s)) is of bounded total
variation. Then

(3.13) M[G z] O(]yl -q 1)

as [y[ o, for all x > Xo.
LEMMA 4. Let G(s) satisfy the conditions of Lemma 2, except now replace the

condition on G(q+ )(s) by the assumption that (s(d/ds))q(sXG(s)) is H6lder continuous

of order ?, on [0, k] and of bounded total variation for s > k. Then

(3.14) M[6; z] O(lyl--’)

as [y[- , for all x > Xo.
Lemmas 2-4 yield estimates on the decay of M[G; z] in its region of absolute

convergence or equivalently in its region of analyticity. We now wish to obtain
analogous information outside of this region. As we shall soon see, the analytic
continuation of M[G;z] to the left (and hence of M[G; 1- z] to the right)
depends to a large extent on the nature of G(s) near s 0 +. Indeed we have the
following result due to Handelsman and Lew [3].

LEMMA 5. Suppose that M[G z is holomorphic in the region -e < Re (z) </,
and that, as s 0 +,

N(m)

(3.15) G(s) 2 2 dmnsa"(lg s)n,
m=0n=0

with Re(am)T oe and N(m) finite .for each m. Then, z Re(ao) and M[G; z]
can be continued into Re (z) =< -Re (ao) as a meromorphic function with poles at
the points z -%. Moreover, about these points, MG z] has a Laurent expansion
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with singular part
Nm) F(n + 1)
n=0 (-- Z am)n+ l"

Remark. We note that when N(m) 0 for each m, i.e., when no logarithms
appear in the expansion (3.15), all of the poles in the analytic continuation of
MIG;z] to the left are simple.

If we combine the results of Lemmas and 5, then we can conclude that when
G(s) has an expansion, as s 0+, of the form (3.15), all of the singularities of the
analytic continuation of M[H(+_ s); z], MG;1 z] into the right half-plane are
determined by the exponents am. Moreover, these singularities are poles so that
our proposed deformation of contour will indeed yield a residue series for 1---(2).
We must still estimate MIG; z] as lYl - v in order to justify the deformation.
For this purpose we now state the following.

LEMMA 6. Let G(s) satisfy the smoothness conditions of Lemma 2. Also, let
(s(d/ds))P(sXG) vanish, as s + , jbr p 0, 1,..., q + and x > 1- Re(ao)

xo. Finally, suppose that (3.15) holds and that the asymptotic expansion of
Gt’)(s), m 0,-.., q + 1, as s 0+, is obtained by successively differentiating
(3.15) term by term. Then

(3.16) M[G; z] O(lyl -- ), lYl ---’ ,
jbr all x. Here by M[G z] we mean the analytic continuation of this Mellin trans-

jbrm into the entire z-plane.
Proof The proof of this lemma is given in the Appendix.
COROLLARY. If, in Lemma 6, the stated conditions hold for all q, then M[G ;zl

O([y[ -r) for all r and all x.
We remark that, if in Lemma 6, the smoothness conditions of Lemma 2 are

replaced by those of either Lemma 3 or Lemma 4, then the corresponding changes
must be made in the estimate (3.16). Nevertheless, one still finds that the results
obtained are valid for the analytic continuation of the Mellin transform into the
entire complex plane.

To illustrate some of the results obtained above let us consider an explicit
example. Indeed, suppose that

(3.17) G(s) s e

which satisfies the conditions of Lemma 6 with a0 a and q m. Then the corol-
lary predicts that, as [Yl- m, M[G;z] decays faster than any power of lYl. For
this example we have the explicit result,

which agrees with this prediction. Furthermore, we have from known properties
of the gamma function that the analytic continuation of F(a + z) into Re (z) < a
has simple poles at the points z -(a + m), m 0, 1, 2, ..., with corresponding
singular pats

(3.18) (--1)m/m!(z + a + m).

As is readily seen, this last result is in agreement with that predicted by Lemma 5.
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4. Asymptotic expansion of 1-+(2). By using the theory of Mellin transforms
developed in the previous section, we shall now derive asymptotic expansions for
the two canonical integrals (2.11). We first note that if H(+ s) has the asymptotic
expansion (1.3) as s ---, oe, and G(s) has the asymptotic expansion (3.15) as s ---, 0+,
then in (3.7)

(4.1) c_+ < min (Re (r0), Re (1 + a0)

since this is the right limit of the common strip of analyticity of the integrand in
that equation.

We state the main result concerning the asymptotic behavior of I-+(2) in the
following.

THEOREM 1. Let G(s) satisfy the conditions of Lemma 6 and H( +_ s) satisfy the
conditions of Lemma 1. Then

N(m)

I+-(}L) E E dmn-(a’’+ 1)

Re(am+l)<k n=0
(4.2)

Here,

(4.3)

and

(4.4)

(-log 2)JM J)[H( +__ s) + am] + do(2; k).

fk+ioo(; k) -o(-),

2-M[H( +_ s); z]M[G(s) z dz

k < v(q + 1/2) + Re (ro),

(4.5) M[H( +_ s); x + iy]M[G(s); x iy] O(lYI-")), lyl .
Here,

(4.6) e(x) q + 3/2- (x- Re (ro))/v.

Thus we can displace the contour to the line Re (z) k so long as e(k) > 0, i.e.,
so long as

(4.7) k < v(q + 3/2)+ Re (to).

With (4.7) satisfied we have that d(2; k) exists. The estimate (4.3) need not
hold, however. We note that f(2; k) can be viewed as a Fourier transform with

where k 4= Re (am) + for any m.

Proof In the exact representation (3.7) we displace the vertical contour of
integration to the line Re (z) k > c-+. We note that by Lemmas and 5 the
analytic continuation of the integrand in (3.7) into the right half-plane is a mero-
morphic function with poles at the points z am + 1, m 0, 1, .... Indeed, we
find, upon formally applying Cauchy’s integral theorem, that (4.2) is valid. Thus
to complete the proof of the theorem we need only justify the displacement itself
and establish the error estimate given by (4.3) and (4.4).

It follows from (3.8) and (3.16) that
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respect to log 2. Indeed, we have

,?(; k)
(4.8)

2rti
exp iy log 2}M[H(-+_ s); k + iylM[6(s); k iy] dy.

Suppose now that (4.4) is satisfied which, in turn, implies that e(k) > 1. Then by
applying the Riemann-Lebesgue lemma, we find that, as 2 oe, the right side of
(4.8) is o(1), and the estimate (4.3) follows.

COROLLARY. Let H( +_ s) satisfy the hypotheses of Lemma and let G(s) satisfy
the hypotheses of Lemma 6 wi’th q . Then the infinite expansion

(4.9) I---(2),- din,2 -(a’-+l) (-log2)JM{"-J)[H(+_s);1 +%]
m=On=0 j=0

holds as 2 .
Proof. It follows from the corollary to Lemma 6 that, in this case,

(4.10) M[H( +__ s); x + iy]M[G(s); x iy] o(lYl-), lyl ,
for all r and all x. Hence, we can let k go to + oc in (4.2) and (4.3) to obtain the
desired result.

We note that when, in (3.15), din, 0 for n __> and all m, i.e., when no
logarithms appear in the asymptotic expansion of G(s), as s --, 0 +, the asymptotic
expansion (4.9) reduces to

(4.11) I(2) d.o2-(am * 1)MEH( s); -t- am].
m=0

In the proof of Theorem 1, the Riemann-Lebesgue lemma was applied to
estimate 2kg(2; k) as 2 -, oe. Recently, Bleistein, Handelsman and Lew [7] have
obtained a generalization of this lemma which, under slightly more restrictive
assumptions, can be used to improve the error estimate found in Theorem 1.
Indeed, we have the following.

THEOREN 2. Let the hypotheses of Theorem 1 be satisfied so that (4.5) holds with
(x) defined by (4.6). Suppose further that

(4.12) M[H(+_ s)’x + iy]M[G(s);1 x iy] co exp {iayU}lyl -a’),

as lYl o, where o and # are any real numbers. Then (4.2) and (4.3) hold with

(4.13) k < v(q + 1) + Re (ro), k - Re (a nt- 1), m 0, 1,2,....

Proof It follows from Theorem that all we need show is that (4.3) holds for
all k satisfying (4.13). Thus consider 2kd(2; k) as given by (4.8). The results of
reference [7] show that whenever e(k) > 0,

(4.14) lim 2kg(2; k) 0,

except possibly when </ < 2 in (4.12). It is further shown that (4.14) still holds
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with < p < 2, so long as

(4.15) 0< e(k)- =q + 1
(k- Re(r0) +

Since < g, it is clear (4.15) is satisfied whenever (4.13) holds. This completes the
proof.

We wish to emphasize that the hypotheses of Theorem 2 differ from those of
Theorem only in that the former includes an additional assumption concerning
the oscillatory behavior of M[H(+_ s);z]M[G(s); z in the limit y . It is
this more specific information that allows us to apply the results of reference [7
and thereby establish the validity of (4.3) with k restricted by (4.13).

Our concern, of course, is ultimately with the integrals I(2) from which the
canonical integrals I e(2) were directly derived. We recall that s 0 in I(2)
corresponds to c in I (2), where c is a point in the original domain of integra-
tion at which the phase function O vanishes. If we assume that the conditions of
the corollary to Theorem hold, then we find that s 0 is the only critical point
for I(2). Thus the infinite expansion (4.9) can be used to obtain the contribution
to the asymptotic expansion of (1.2) corresponding to a zero of .

We must point out, however, that we have not, as yet, established the critical
nature of c. This can be done by explicitly obtaining the expansions of
I(2) and adding them. Only if the resulting sum is nontrivial can we conclude
that c is a critical point for I(2). We shall investigate this point further in the
following section along with some illustrative examples.

5. Explicit results and examples. We wish now to determine the contribution
to the asymptotic expansion of (1.2) corresponding to an interior zero of . More-
over, we want to express this result explicitly in terms of the original functions
and g. In principle, we could, by using the results of the previous section, find as
many terms of this contribution as desired. The computations, however, become
exceedingly awkward as the number of terms increases and hence, for the most
part, we shall be content here with obtaining expansions to leading order only.
We shall assume throughout this section that the functions and g are such that
either Theorem or 2 can be applied to obtain the expansions below to the orders
stated.

Let us suppose that in (1.2) (c) 0 with a < c < b. If, as in 2, we denote
the contribution corresponding to c by Ic(2), then we have

(5.1) I I+()+ I_()

with I(2) defined by (2.10) and (2.6) respectively.
We now assume that, as c + O,

(.2)
g() g+( c)+- ’ ,(t) o(t- c),

’(t) Poqo(t c)- 1, Po > O.

In this event, the change of variable (2.9) is easily inverted to leading order. Indeed,
we find that

(5.3) 6 +(s) (g +/po)lnol-O+/os(+/- 1),
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as s --, 0+. Hence it follows from (4.11) that, in this case,

M H(/ + s)
co + //,o)+ 0(2

as 2 .2 Here/+ sgn r/o.
Similarly, if as ---, c 0,

(5.5) g(t) g_(c- t) 1, q 7o(C- t)v,
(5.6) q’ VoTo(C t)v- 1,

then we find

Vo>0,

(5.7) It_()0
g- ’-/ [-o-ol] M H(/ s)--0-o]co- + o(;.-’-/vo).

Here p_ sgn 7o.
Upon adding (5.4) and (5.7) we obtain the desired contribution from c to

leading order. In most instances the constants in the assumed expansions (5.2) are
closely related to the corresponding constants in (5.5) and (5.6). Two cases are
worthy of special consideration. Suppose first that g is continuous and nonzero at

c so that

(5.8) g+ g_ g(c), o+ o_ 1.

Suppose further that 99 is differentiable at c with p’(c) - 0. Then

(5.9) r/o -7o q’(c), Po Vo 1.

It follows from (5.5)-(5.9) that

g(c)
{MH(s). 1] + M[H(- s)"(5.10) Ic(2)

iqg,(c)l/

Let us now suppose that relations (5.8) hold, but that q has a simple stationary
point at c. Then

(5.11) r/o 70 o"(c)/2, Po Vo 1,

so that, in this case, we have

(5.12) I(,t) g(c) 21o"(c)1 M[H(sgn q)"(c)s);1/2.

This last formula is a generalization of the standard stationary phase formula
corresponding to H(s) exp (_+ is). (See Example below.)

To illustrate what happens when logarithms appear in the expansion of
G(s), as s - 0+, let us suppose that c a in (1.2), q is as in (5.2), and

(5.13) g(t) go l(t c)’-1 log (t c) + goo(t c) 1, c + 0.

Note that if (5.4) is derived by applying Theorem 2, then G+(s) must have q continuous deriva-
tives on (0, ), where q > (1/v)[o+/po Re(ro) 1.
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After some calculation we find that, in (3.15), N(0) and

(5.14)

60 g01
ao 1, do --5-101 og/po,

Po P

[r/o -o/po [ gOl logoo );- goo
po

Thus, it follows from (4.2) and (5.14) that, in this case,

Po I. Po
(.)

Po Po dzM[H( +
/0o

As a final general result, let us obtain an infinite asymptotic expansion of
I(2) in the case where

(5.16) (t) c

and g(t) is infinitely differentiable at c. Then

g(m)(c)(t c) c + 0,g(t) m=0
(5.7)

g() (-)g()(C)(c )m c 0
m=o m

Now applying (4.11) we obtain

Ic(2)
2-("+ 1)g(")(c

"=o m! {M[H(s); m + 1] + (- 1)"M[H(-s); m + 1]}.

If any terms in this sum (5.18) are nonzero, then we must conclude that c
is a critical point for 1(2). Alternatively, if the right-hand side of(5.18) is identically
zero, then c is not critical. The issue depends solely on the kernel and at that
only through the quantities

(5.19) M[H(s);m + 1] + (-1)mM[H(-s);m + 1], m 0,1,2,

Thus, in general, c is critical whenever H is such that at least one of the quanti-
ties (5.19) is nonzero. Furthermore, it is readily seen that the same conclusion holds
when q0 is any C function that vanishes at c.

We shall now consider two illustrative examples.
Example 1. Suppose H(s) is the complex Fourier kernel exp (is). We have, by

direct computation,

(5.20) M[exp (is); z] F(z) exp (rtiz/2)

and

(5.21) M[exp (is); z] e-’iM[exp (- is); z].
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From this last relation we find

(5.22) M[exp(is);m+ 1] +(-1)mM[exp(-is);m+ 1 =0,

m =0,1,2,...,

and hence, as anticipated in the Introduction, the interior zeros of q are not
critical points for Fourier-type integrals.

Suppose now that g is continuous at c and q) has a simple stationary
point there. Then it follows from (5.12) and (5.20) that

(5.23) Ic(2) g(c)N/Al2,,(c)l exp{ sgn qg"(c)-}.
This will be recognized as the standard stationary phase formula in the case where
q0(c) 0. This last restriction is of course unnecessary and can be avoided quite
simply. Indeed, suppose that at c, q has a simple stationary point, but o(c)
4: 0. Then we write

(5.24) I(2) exp (i2o(c)) Ja exp [i2(o(t) qg(c))]g(t)dt.

Since

(5.25) O qo(t)- o(c)

has a simple stationary point at c and O(c) 0, we find that we need only
multiply (5.23) by exp {i2q(c)} to obtain the valid result in this case. Furthermore,
the contribution from any critical point at which q - 0 can be recovered in an
analogous manner from the corresponding contribution in the case where 09
vanishes at the critical point.

Finally, suppose that c a and (5.13) holds. Suppose further that q(t) q(c)
satisfies the relations satisfied by qg(t)in (5.2). Then from (5.15), (5.20) and the
remarks of the preceding paragraph, we find that now

(5.26)
(,gol log 2 + g--A1 log [r/o goo

go

/. Po Po Po

Here O(z) is the logarithmic derivative of the gamma function F(z). We might
point out that the last case was considered in detail by Erd61yi [8] and by
McKenna [9].

Example 2. Let us now suppose that in (1.2)

(5.27) H(s) J,(s), n O, 1,2,....

Here Jn is the Bessel function of the first kind of order n. We have [5

(5.28) M[J,(s) z] 2
F((1/2)z + (1/2)n)

F((1/2)n -(1/2)z + 1)
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Since J,(s) is even about zero when n is even and odd about zero when n is odd, we
have

(5.29) -MIJ,(- s); z],
MIJ,(s);

m[J.(- s); z],

From this it follows that

M[J,(s); m + 1] + (- 1)mMJ,(- s); m + 1]

2F((1/2) [m + n + 1])
r((1/2) In + m])

[1 + (- m =0,1,2,.-.

n odd,

n even.

and hence for any integer n one-half of the quantities (5.30) are not zero. Thus
c is a critical point in this case.

(A.1)

(A.2)

Here,

Appendix. In this Appendix, we shall prove Lemmas 1, 2 and 6 of the text.

Proof of Lemma 1. We introduce the functions
M N(m)

O’k(S exp {-S -k -- isVco(S)} Cm.S-r"(log S)n,
m=On=O

Hk(S H(s)-

(A.3) og(s) 2 blS-Ol
/=o

and for any positive k, we choose M M(k) to be the largest integer such that

(A.4) Re (rM ro) < k.

We observe that H(s) and ak have identical asymptotic expansions, as s - + ,
to order s-r’(log s)N(t). As a result, Hk(S O(s -k+Re()) from which it follows
that M[Hk(S); z] is analytic in a strip with right limit Re (z) < k + Re (ro). The real
exponential factor in ak assures us that M[ak(S);Z] is analytic in the left half-plane
Re (z) < Re (ro). Thus the left limit of the strip of analyticity of M[Hk;Z] is the
same as that of M[H;z]. Let us denote this limit by Re (z) -e.

Below, we list the relevant Mellin transforms along with their strips of
analyticity. We recall that in its strip of analyticity a Mellin transform decays to
zero as [Yl--’ c.

Mellin transform
M[H z]
M[crk z]
M[Hk z]

Strip of analyticity- < Re (z)< Re (ro)
< Re (z) < Re (ro)

-< Re(z)< Re(ro)+k

From the above list we see that in order to analytically continue MH;z]
into the region Re (z) < k + Re (ro) we need only determine the analytic con-
tinuation of M[ak; z] into the strip Re (ro) < Re (z) < Re (ro) + k. Furthermore,
since M[Hk; z] decays to zero as lYl--’ oo in -e < Re(z)< Re(ro)+ k, any
algebraic growth, in this limit, of M[H;z] must arise from M[Crk;Z].
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Since ak(s) is a finite sum, so is its Mellin transform. A typical term in M[ak; z]
is given by

(A.5) Iz;r] exp {-s -’ + iSCO(S)}(Iogs)nsz-r-1 ds, Re(z) < Re(r).

In (A.5) we rotate the path of integration onto the ray args 0, where
0 < 0 sgn (bo) < min (rt/(2k), rt/v). The effect of this rotation is to introduce suffi-
cient decay at so that the integral in (A.5) converges for all z. Hence, l[z;r]
can be continued into the entire z-plane as a holomorphic function. It remains
only to estimate the continuation as [y[

In (A.5) we stretch the integration variable s by the factor lyl 1/ to obtain

(A.6)

I[z; r3 lylx-r)/ exp {(-lyll/s) -} exp {ilylq4s; y)}

loglyl +logs x-r-ds.

Here,

(A.7) @(s; y)- sco(slYl 1/) + sgn (y)log s.

We note that when -sgn (y)/vbo < 0, no stationary points of (points at
which ffs 0) are near the positive real axis. When -sgn (y)/vbo > 0, however,
there are simple stationary points on or near the positive real axis. The results of
reference [7] which justify the formal application of the ordinary method of
stationary phase to (A.6) can be applied. Indeed, such a calculation yields

(A.8) l[z;r]

o(lyl -) for all R,
-sgn (y)

< 0,
vbo

O( yl-/- 1/2 +r,), g > 0,
-sgn (y)

> 0,
vbo

as lY[ m. This completes the proof.
Proof of Lemma 2. By hypothesis,

(A.9) M[G z] s’- l(sXG(s)) ds

is absolutely convergent for all Re (z) x > Xo .3 Upon integrating by parts q
times and using the stated properties of (s(d/ds))p(sXG), we obtain

(A.IO) M[G z] siY S (sXG(s)) ds.

We now break the interval of integration at the points of discontinuity of a(q + 1)(s)
and integrate by parts once more in the resulting finite sum of integrals. In this

Note that the assumptions made imply that G(s) o(s-r), as oc, for all and G(s) o(s-’),
ass-0+,foranyx > Xo.
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manner we obtain

(A.11) sit-1 s (sXG(s)) Ms O(lYl-X),

which, when combined with (A.10), completes the proof.
Proof of Lemma 6. If Re (z)= x > -Re(ao), then the result follows from

Lemma 2 when we note that the conditions (s(d/ds))p(sxG) O, p O, 1,..., q, as
s --, 0+ are implied by the assumed differentiability properties of the expansion
(3.15). Now suppose that p is any real number greater than Re (ao). Also let/(p)
be a positive integer satisfying

(A.12) Re (au_ 1) < /9 Re (au),
and let v(p) be any integer such that Re (ao) + v > Re (au).

We now consider the functions

(A.13) ao(s
U- N(m)

dms "(log s) e
m=On=O

(A.14) Gp(s) G(s) ap(S)
and note that v(p) has been chosen so that, as s - 0 +,

(A.15) Go O(sRe(a’)(log

We also note that Gp(s) has all of the properties attributed to G(s) in the statement
of the lemma. Hence, upon applying Lemma 2, we immediately find that, for
x > Re (au) and lYl - ,(A.16) M[GR(S); z] O(lyl-a- 1).

By direct calculation we have that

MFap z] d,,, so,., 1(log s)" e -sv ds
m=O

(A.17)

=2
O n= O V dz

in the region Re (z) > Re (ao) and by analytic continuation in the entire z-plane.
We know, moreover, that each term in (A.17) decays exponentially as lY] --’ for
all x. Finally, since

(A.18) M[G z] M[ap z] + M[Gp z],

we have that (3.16) holds for Re(z) > -Re(autp)). However, p is arbitrary and
limo_oo Re [auto) oe, so that upon letting p o we obtain the desired result.
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THE APPROXIMATE SOLUTION OF CONVOLUTION-TYPE
INTEGRAL EQUATIONS*

FRANK STENGER"

Abstract. A result on the convergence of an approximate factorization of expb, where
G L2( , o) ["] L( o, oo), is obtained and then used to get an explicit approximate solutionfIn)

of the problem f(x) j’ K(x t)f(t)dt + g(x),x > 0, where K and g are in L2(-, ). The
approximation fn depends on a parameter h and satisfies f fen)i[ 0 as h 0. A computationally
more accessible explicit approximation fn) is also obtained, which depends on a parameter k, and
satisfies ]./n(x) -fn(x)] 0 as k 0 for all x >= 0. Explicit bounds are obtained, for If(x)
and also for ].f(h)(x) --.fh)(x)].

1. Introduction. Let LP(- (, z) (1 < p < )(p ) denote the set of all
complex-valued Lebesgue measurable functions fdefined on (-, ) such that
_

If(t) p dt < (ess sup,t_,) f(t) < ). The set LP( , )is normed by

f v If(t)lvdt < p < ,
(1.1)

f esssup If(t)l, p .
Let p denote the set of all functions q, where q(t)=

_
aktk, such that

klak]v< ifl =<p< .
Let denote the family of all functions F given by

(1.2) F(x) eXf(t) dr,

wherefe L(- , oc). Let /(_) denote the subset of for which f(0 0 if
< 0 (t > 0). It is known that L(R). Given F e N, we can recoverfby means

of the formula

(1.3) f(t) -n e-i’F(x) dx.

Let lV+ denote the set of all functions q e v for which a 0 if k < 0, and let lV__

denote the set of all functions q p for which ak 0 if k > 0.
In the present paper we give a constructive proof of the result stated in the

abstract above. This proof enables us to obtain an explicit approximate solution
f) of the equation

(1.4) f(t) k(t- z)f(z) dr + g(t), > 0,

where k and g are functions in L( o, c) whose respective Fourier transforms
K e and G/ / can be explicitly expressed. The solution of (1.4) by the
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classical Wiener-Hopf technique depends upon finding the Fourier transform
F+ + of the function fin (1.4). The function F+ satisfies the equation

F+(1 K)= G+ + H_,

where under suitable conditions on k, H_ e _. The discrete Wiener-Hopf
problem related to (1.5) is to find a function p+ e 12+ which satisfies

(1.6) p+q r+ + s_,

where q 12, r+ e 12+, s_ 12_, and where q and r + are given. The equation (1.6)
may be obtained from (1.5) if we replace the independent variable x in (1.5) by
i(1 z)/(1 + z); this transformation is a conformal map of the interior of the unit
circle in the z-plane onto the upper half of the x-plane.

The use of the Whittaker cardinal function representation enables us to obtain
an approximate solution f(h) of (1.4) by first obtaining an approximate solution

F of (1.5), which has the property liE+ F(+h)]]2 -* 0 as the parameter h--, 0.
We assume that K e f3 L( o, oc), and that we can approximate log (1 K)
by log (1 K(h)) such that [[log (1 K) log (1 K())llq --, 0 as h --, 0, for q 2
and q c. We can thus explicitly construct factors + K and + K(h) such

K e N and such thatthat K)e+,

(1.7) (1 Kh)) -a (1 / K))(1 / K))

a.e. on (-, or). This leads to an explicit expression for F), and, a fortiori, an
explicit expression forf), by use of (1.3).

In the case when K is real on (- , or), and K(x + iy) is analytic in the region
{x + iy’[y[ <= d} of the complex x + iy plane, we obtain an explicit bound on

IIJ’-fh)llo this bound is O(e -"/) as h -, 0.
Obtaining f) from F is not a trivial problem, since it involves the evalua-

tion of a repeated integral. We overcome this difficulty by obtaining an explicit
Fourier series approximation ./’) to ./o). We obtain an explicit bound on

]fh)(t) f)(t)], which is valid when K is real on (-, oc), and K(x + iy) and
G+(x + iy) are analytic in the region {x + iy" [Yl <= d}. For fixed h and we find
in this case that [f)(t) fh)(t)l O(e -d/) as k 0.

The solution of (1.5) and (1.6) has been carried out by others. In 1] Noble,
and in 2], Carrier, Krook and Pearson solve special cases of (1.5) for which the
factorization

(.8) ( K)- ( + K+)(. + K_)

a.e. on (-o, o) can be explicitly expressed, where K+ + and K_ _. In
addition, approximate methods have been used on particular problems--see for
example Noble [1, Carrier, Krook and Pearson [2], Folias [3] and Carrier [23]

-although these authors gave no proofs of convergence. In [4] Dombrovskaia
obtains an approximate solution of (1.5) by approximating2 K by a ratio of

The method of the present paper is the only method known to the author, which establishes the
convergence of an approximate method based on the classical Wiener-Hopf method.

In [4] K is the Fourier transform of a function K
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two polynomials, and then finding the roots of these polynomials. In [5], Baxter,
and in [6], Orth obtain an approximate factorization of (1.6), where p +, q, r + and
s_ are respectively in l+, s, l+ and 1, by solving a system of linear equations. This
approximate factorization converges in to the exact factorization as the order
of the system of linear equations to be solved becomes infinite.

We believe that the approximate method given in this paper has several
advantages over methods given in [4], [53, [6] since, in obtaining an explicit
factorization, we require neither the solution of a system of linear equations, nor
the solution of a nonlinear problem that involves finding the roots of polynomials.
In addition, we have given an explicit approximate solution fh) of (1.4). Finally
we mention the paper [15] in which an approximate solution of (1.4)is obtained
under the assumption that k and gareinL(-, oc) fl L2(-oo, o). The assump-
tions of the present paper are more general and the approximation method
converges more rapidly than the corresponding ones in [15].

We also mention some results of a more abstract nature. In [7], Widon con-
siders the problem (1.6), where p +, q, r +, and s_ are in 12. He proves that condi-
tions similar (though somewhat less explicit and less general) to those of the
conditions (a), (b) and (c) in the abstract of this paper are necessary and sufficient
for the existence of a solution p + of (1.6). In [8] Wik proves that if the upper limit
oc in (1.4) is replaced by T, where k, g L(-o, ), then the solution of the
perturbed problem approaches the solution of (1.4)as T-, . Recently Douglas
and Taylor [9] found necessary and sufficient conditions such that the equation

(1.9) f(t) d#(x t)= g(x), x > 0,

has a solution f LP( oo, oo) given g LP(O, oo), where/ is an arbitrary Borel
measure defined on [- oc, ]. In a future paper we hope to study the applicability
of this result, using the results in [17].

From the point of view of the numerical solution of more general types of
equations we mention the work of Shinbrot [19], [20] who considers equations
of the form

(1.10) g(x) fe k(x t)f(t) dt, x e E,

where E is a subset of [- , , the papers of McNabb and Schumitzky [223, [243
who consider the transformation of Fredholm-type integral equations to Volterra-
type equations, and the paper of Atkinson [26], in which he derives a numerical
method for solving (1.4), but with k(t ) replaced by k(t, ). The papers [19],
[20], [223, [243, [263 describe direct methods which do not involve Fourier trans-
forms. The method of Shinbrot resembles the Galerkin approximation method;
the method of McNabb and Schumitzky extends the factorization method of
Krein [13] to integral equations that are more general than convolution type, while
Atkinson applies a quadrature scheme to reduce the integral equation to a system
of linear algebraic equations.
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2. Stability of factorizations
2.1. Results from Fourier transforms. Let us briefly state some facts relating

L2( v, ) and Fourier transforms (see, e.g., Ill], [12]). We start with a function
f L2(-, ), and its Fourier transform F , which are connected by the
formulas (1.2) and (1.3). By Parseval’s theorem, we have Ilfll2 (2n)- 1/2]lF]] 2 If
F, G are the Fourier transforms offand g respectively, and ifFG
then FG is the Fourier transform of h, where h s L2(- , ) is given by

(2.1) h(t) f(r)g(t r)dr.

Let N + and N_ be defined as in the introduction of this paper. Since

fo fo(2.2) F(x) eXf(t) ,it + etf(t) dr,

every F has a unique representation

(2.3) F F_ + F+,

where F+ +, F_ _. We may thus define a projection from to +,
i.e., for every F , F F+, where F and F+ are as in (2.3).

Let D denote the entire complex plane, and let

a+ {z x + iy’y > 0}, a_ {z x + iy’y < 0}.
Let F e N and z e +. The function F+(z) defined by

fo F(t)dt(2.4) F+(z)
z

has the property, that if we let y - 0 +, then F+(z) F+(x) a.e. on (--, ).
Similarly, for z e fl_, we have

( F(t)
dt,(2.5) F_(z)

2i z

where limy.o+)F_(x iy) F_(x) a.e. on (-, ).
If we now set z x + iy in (2.4), z x iy in (2.5), where y > 0, and con-

sider the limits limy.o +)F+(x + iy), lim(y, o +)F_(x iy), we find that

(2.6)
F+ (1/2)IF + F],
F_ (/2)[ f,

where F denotes the Hilbert transform

(2.7) (tF)(x) P.V.|_ __F(t) dt,
nl d- x

and where P.V. denotes the principal value.

3That is,, {F:F F+ + F_,F+ e+,F_ _}.
’ We have chosen not to distinguish between F/(z) and its restriction to the boundary, the line
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In [2, p. 23] it is shown that if p (1, c), and if F LP( oo, oo), then

<ApF

4At-lip
(2.9) Ap dt

x//A 2 + 2

and where A is a constant which is independent of F and p. Upon evaluating (2.9)
we find that

(2.1o) Ap p[.23 + l/pA1-1/pF(l + 1/(2p))F(1- 1/(2p))lF(2- 1/(2p))

We thus note that if p >= 2, then the quantity in square brackets is bounded by a
constant independent of p. Hence if p e [2, ] and if F LP( oo, oo), then

(2.11) [[Tllp =< pBIIFIIp,
where B is a constant independent of F and p. The minimum value of the constant
B such that (2.11) is true for all F LP( oo, oo), for 2 =< p =< , does not appear
to be known. However, by [2, p. 18] the constant A in (2.10) is bounded by 32/.
Also, if we take F to be the function which is on the interval (0, 1) and zero on
(-oc, oc) (0, 1), then

x
(2.12) (F)(x) -: log

tt x-

For this function we have F] p 1, and

2F(p + 1)
(2.13)

n=l

Hence, using Stirling’s formula, we get

(2.14) lim sup [F-p
p-,o p F p ce

Therefore,

2v/232 /2F(5/4)F(3/4) 256F(5/9)
(2.15) < B <

e ;c /2F(7/4) 3c 1/2

Let 4 L2( oo, oo) ("] L( o, oc). Then clearly 4 LP( oo, oG), p 2,
since

f_> }liP[l p [(t)[p dt

(2.16) ess sup [4(x)l-2 4(t)[ 2 dt
xe( ,)

Recently S. K. Pichorides [28] has shown that the minimum value of B is 2/r.
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If F, G e +(,_) then F _+ G e +(,_). Furthermore if F, G e +(_),
and if F G e L2( c, co), then F G e +(_). We also have the following.

T4EOREM 2.1. Let F e+(_). (a) /f exp(F)-lL2(-cc, c), then
exp (F) e+(_). (b) If F, Ge+(_) and if FexpGeL2(-o, c), then
F exp G e +(_).

Proof (a) By 16, p. 436], F is uniquely represented on f+ by its "Fourier
series,"

(z ia).-1
(2.17) F(z) F,

,--=1 (z + ia)"
a > O,

which converges absolutely on f+ and a.e. on the boundary of f+. The series
representation

(2.18) Gn(Z ia)n-1
G(z) exp (F(z))-

(z + ia)"n=l

is obtained by substituting the series in (2.17) into exp(F)- 1, and collecting
coefficients of equal powers of (z- ia)/(z + ia), noting that l/(z + ia)

(1- )/(2ia). If j’oo IG(x)] dx < c, then G also has a "Fourier series"
representation

(2.19) ,,(x ia)"-
G(x)= G

(x + ia)"

which converges a.e. on (-oo, oe). By the uniqueness of such a representation
(see [16]) it follows that we must have G’, 0 for n =< 0, and G’, G, for n > 0.
That is [16, p. 436], G ’+.

The proof for the case G

_
is similar, and is omitted. The proof of the

(b)-part of Theorem 2.1 is also similar to that of the (a)-part, and we omit it.

2.2. Stability of factorizations. Let 05 be a given function in L2(-oo, o(3)
f-I L( o, ), and let the following assumption be satisfied.

ASSUMPTION 2.2. For some a > 2 there exist uniquefunctions k and co such that
(a) Oe+ 0 L(-o,o),coeN_
(b) log (1 + 0) e N +, log (1 + co) e ’_
(c) exp b (1 + )(1 + co) a.e. on (- oc, c).
THEOREM 2.3. Let the Assumption 2.2 be satisfied, and let dp,} "= be a sequence

offunctions such that [[b qullp 0 as # --+ oc for p 2 and p c. Define
and cou by

(2.20) log (1 + ’u) ab, log (1 + cou) (1 a)q5u.

Ife > 0 and r [2, a) are given, then there exists an integer 1o > 0 such that when-
ever la > lao then , 1+ (’1U(-c, oo cou f’l U c c

(2.21) exp b, (1 + ,)(1 +
a.e. on (-o, ), and

for p 2 and p r.
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Proof. Let z e [2, a) be fixed, and let us consider the identity

(2.23) t Ou liE1 e -(1/2)(n+an)] + e

where r/= b- qS,. Letting p e [2, :], taking p norms of each side, and using
H61der’s inequality on the first term on the right of (2.23), we get

(2.24)
I/t I/tu p < e(x/2)(4,+af4,) lllp e -(1/2)("+") p

+ Ill

where e > is chosen so that 0p < a, and/3 e/(0 1).
Since by (2.6) e(1/2)(0+4q 1 @, the first term on the right of (2.24) is

clearly bounded. We use the well-known inequality ]e 1] =< Ix]e I’‘1, to find that
for any q > 2,

(2.25)

Since r/converges to zero in L2( av, oo) [q L( , ) as p -+ o0, the term
e11/2)"1 is clearly uniformly bounded. For the term 1/2acgr/e-(l/2)ae"l[q we have by
(2.11) that

(2.26)

Now using (2.16) we get

(2.27)

from which it follows that

q,,B,,+q(n + q),+qlllll,+q
n=0 n !2,,+q

+ n+q-2II ."+ _-< lift . rll>

(2.28) 11(1/2) el(1/2)*’lllqq

Now if

BUilt/ 2211r/ q-2 L B"q"(n + q)"+ll/ o
2q 2"nl0

(2.29) lim sup
q"(n + q)n+qB" o) 1/, qeB

2"n! IIll 2llll < 1,

then the series on the right of (2.28) converges. Since [[r/lloo --+ 0 as # c, the
series on the right of (2.28) converges and is uniformly bounded for all # suffi-
ciently large. Furthermore, since q => 2, the term multiplying the series in (2.28)
approaches zero as lit/lip --+ 0, p 2, oo. Hence, I1’ ,llp --+ 0 as/ c for all
p e [2, z], where z e [2, er) is arbitrary.

Since log(1 + ,)e+, and since ff,eL2(-oo, av) for all / sufficiently
large, it follows by Theorem 2.1 that g, e +.

The proof concerning the functions 09 and eou is similar, and we omit it. Since
qu log (1 + ,u) + log (1 + oou), the equation (2.21) follows.

This completes the proof of Theorem 2.3.
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3. Application to Wiener-Hopf equations.
3.1. The Wiener-Hopf technique. Consider the solution of the integral

equation

(3.1) f(x) k(x t)f(t)dt + g(x), x > O.

The procedure of solving (3.1) by the standard Wiener-Hopf technique (see
Noble [1], or Carrier [23]) is to add a function s(x), which is at this point unknown,
to the right of (3.1), so that (3.1) can be replaced by the equation

(3.2) f(x) k(x t)f(t)dt + g(x)= s(x), x e(-oo, o).

Here f(x) g(x) 0 if x < 0, s(x) 0 if x > 0. One then takes the Fourier
transform of each side of (3.2) to get

(3.3) F+( K) + + S_.

Let us now suppose that the following assumption is satisfied.
ASSUMPTION 3.1.
(a) Ke f-’l L(R)(-, ).
(b) G+ e+ (’1LP(-ov, o).
(c) Tkere exist unique functions K+

L( oo, oo), such that log (1 + K +) e +, log (1 + K_

_
and such that

(3.4) -log(l- K)=log(1 + K+)+log(1 +K_)

a.e. on(-oo,
(d) The numbers p and a satisfy

(3.5)
P >2’ a>4,

(p-2)(a-4)=> 8.

It is shown in [15] that if for fixed kLl(-oo, oo) ["l L2(- oo, oo) the equa-
tion (3.1) has a unique solutionf L2(0, o) for all g e LI(0, oc) f) L2(0, c), then
Assumption 3.1 is satisfied.

THEOREM 3.2. If Assumption 3.1 is satisfied, then (3.3) has a unique solution
F+ +, and (3.1) has a unique solutionfe L2(0, oo).

Proof. Let us seek a function F+ + f LP( o0, oo) which satisfies (3.3).
Since K e L(-oe, o), it follows by taking L2 and Lp norms of each side of
(3.3), that S_ e L2( oo, oo) ["] Lo( oo, oo), i.e., that S_ e

_
VI Lo( oo, o). By

(3.4) it follows that

(3.6) (1 + K+)(1 + K_)= (1-

a.e. on (-o, oo). Hence,

(3.7) F+/(1 + K+)= G+ + K_G+ + (1 + K_)S_.
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From (3.7) we obtain

[IF+/(1 + K+) 2 =< G+ 2 + K_G+ 2 + 1S-II2 + IlK-S-12
(3.8) _<_ G+II2 + K_ 2 G+ 2+ S-II2 + K_ 2IS-2

by Assumption 3.1, where the numbers e and fl are chosen so that 1/ + 1/fi 1,
p/(p- 2) =< __< a/4, and rr/(a-4)<=fl_<p/2. Since F+e+, and since
(1 + K+)- exp(log(1 K)), it follows by the (b)-part of Theorem 2.1 that
f+/(1 + K+)e+.

Similarly it can be shown that (1 + K_)S_ _, and that K_ G + e .
We now write (3.7) in the form

(3.9) F+/(1 + K+) G+ (K_G+) (1 )(K_G+) + (1 + K_)S_.

On the left of (3.9) we have a function in R+, while on the right of (3.9) we have
a function in _. From the unique representation of a function in by a func-
tion in + plus a function in

_
both sides of (3.9) must vanish a.e. on (-

so that

(3.10) F+ (1 + K+)[G+ + (K_G+);.

Taking L norms of each side of (3.10), we get

(3.11) F+ 2 JIG+ 2 - K+G+ 2 + @(K_G+)[[2 + [[K+(K_G+)[2.

If we proceed as in (3.8), we find that the first three terms on the right of (3.11) are
bounded. For the fourth term we have by H61der’s inequality and (2.11) that

K+@(K_G+) 2 <= K+ I(K_G+)II2o
_< [K+ 4’1/2 K_G+ + Yf(K_G+)

(3.12) =< 1/2ILK+ 4(IIK_G+ 12a / 26BIIK_G+ 26)

__< 1/2( + 2B)K+ ,,IK_G+ :

_<_ 1/2(1 + 26B) K+ 4IK_ llG/l 2/3,

where < < m, < 6 < 00, 1/0 + 1/fi 1, 1/(200 + 1/6 1, and where
and fl are again chosen as in (3.8). By Assumption 3.1 (b), (c) and (d) it follows
that we clearly have IK+ 4= < c, K_II4 < c, and IIG+]I2 < co. Hence,
F+ 2 < (30. Similarly we can prove that F+ e LP( c, co).

By returning to (3.3) it now follows that S_ e

_
CI Lo( oo,

Because of the unique representation (3.4) it follows that the-solution F+
given by (3.10) is unique. We thus obtainfby taking the inverse Fourier transform
of F+.

3.2. An approximate Wiener-Hopf method. Let K(x) be defined as in 3.1,
and let us make the approximation

(3.13) -log [1 K(x)] ()(x)= ] c/)jSj(h, x),
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where for some fixed h > 0,

NOW,

and therefore,

(3.16)

where

(3.17)

-log [1 K(jh + -h)],

Sj(h,x)
sin [(/h)(x jh 1/2h)]

(c/h)(x jh 1/2h)

Sj(h, x) e-i(j+ 1/2)ht

-lh
eixt dt,

rc/h h
S(h, x) e-i(j+ 1/2)ht eiXt dt

0

T(h, x),

(1 )S(h, x) T(h, x),

T(h,x) =exp 2- x jh 2- h S -and where T denotes the complex conjugate of T.
Using the functions Sj and Tj we define K and K by

K+’(x) exp { (/)T(h, x)} 1,

(3.18)
Kth’(x) exp { 4)jT(h, x)} 1.

ASSUMPTION 3.3. Let Assumption 3.1 be satisfied. Let

(3.19) -log(1 K)- 4h) 0p

as h O,for p 2 and p o, where 4)th) is defined in (3.13).
Sufficient conditions under which (3.19) is satisfied can be found, for example,

in [14].
THEOREM 3.4. Let K and K() be defined by (3.20), and let Assumption 3.3 be

satisfied. Iff L2(0, oo) denotes the unique solution of(3.1), and iff(h) is defined by

I G +(x) -ix,f(h)(t)
O- K(x)

e dx

(3.20)

492
e- iyt’-U)Kth+)(y) dy

if > O, and by fth)(t) 0 if < O, then

(3.21) Ill- fh o2

e-iX"K)(x)G + (x) dx du

ashO.
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(3.24)
(1 K)-IG+

E(1 K)- 1G +

since @(1 ) O.
Hence, we find that

Proof Let co < a be chosen such that Assumption 2.2 is still satisfied, with o-
replaced by co. It follows then by Theorem 2.3 that K)eN+ CI L(-, c),
K)e

_
f-) L( c, c) for all h > 0 sufficiently small, and that

(3.22) K+ KIIp 0, K_ Kn)llp 0

as h 0 for all p [2, ].
The function fn defined in Theorem 3.4 is readily seen to be the inverse

Fourier transform of the function

(3.23) = ((1 K)-’G+ K(1 )(KG+)).

We also have by (3.10) that

F+ (1 + K+)[G+ + (K_G+)]

(1 + K+)(1 + K_)G+ -(1 + K+)(1 -)(K_G+)

(1 + K+)(1 )(K_G+)

K+(1 )(K_G+)],

(3.26)

(3.25) IIF+ O 2 @(K+(1 )(K_G+) K)(1 ’)(K)G+))II2
Now by Parseval’s theorem it follows that if H, then ’H

[(1 )HII2 IIH 2, and so

IF+ ) < K (1 )(K G )-K)(1 )(K)G+) 22 + +

(K+ K))(1 )(K)G+) 2

+ K +( )((K_ K))G +)1

(1 + 26B)( K+ K

where , fl and 6 are the same as in (3.12).
Since K+ -K 0, I]K_ -K 0 as h0, it follows that

IF+ -) 0 as h 0. Since f) is the inverse Fourier transform of ),2

(3.21) is a consequence of F+ ) 2 0 as h 0, by Parseval’s theorem.
This completes the proof of Theorem 3.4.

3.3. The evaluation offh)(t). We evaluate the integrals on the right of (3.20)
by use of the Euler-Maclaurin formula, with step size k, where 0 < k < h. In
order to simplify the notation, we set

(3.27)

aj K(jk),

bj G + (jk),

cj K)(jk),

d K(h__)(jk),

j 0,_____1,__2,-..,

j=0,__+l,__+2,....

j=0, +1,__2,...,

j=0,__+l,__+2,....
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Here we have chosen 0 < k < h in order to achieve some accuracy in the approxi-
mation of the integrals in (3.20). We have chosen the evaluation points jk,
j 0, +__ 1, +_2,..., as opposed to (j + 1/2)k, j 0, __.1, ___2,"’, in the previous
section, in order to achieve a simpler program at the final stage of computation;
the numerical evaluation of K)(x), x (j + 1/2)h would require a different proce-
dure than that for the case when x does not have the form (j + 1/2)h.

We thus use the approximations

(3.28)

f_ I,:(x)6+(x)
2re K(x)

k ab ijkt

e- iXt dx - 1- a
O, [0,

k
j ijkt,f_ gth+)(x)e_iXdx - cje

2
o, o,

[0, /k],

e 1-0, /k],

to get

(3.29)

where

k ijktbd e- e I-n/k, n/k],

2re
Kth-)(x)6 + (x) e- i dx - O, [-folk,

f)(t) - f)(t),

k , ajbj -ijktfh)(t) g(t) +
" 1 a

4rc2 bjcjdj e- ij

(3.30) ik e -i, 1) e-’
42 bsc,d

r,s r S

rCs if ONtN/k,

and f)(t) { g(Ot) ifif <o.t> folk,

3.4. Error bounds. Let se’ denote the family of all functions H H(x + iy)
that are analytic in the region {x + iy’lYl <= d}, such that H(x + iy)---, 0 as
x --, + o for all lyl =< d, and such that

(3.31) M(H, d)= max IH(x + iy)l 2 dx
y=+_d

1/2
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Let H(h) be defined by

(3.32) H(h)(x) H((j + 1/2)h)Sj(h,

where Sj is defined in (3.14).
LEMMA 3.5. Let H ,./. Then

2M(H d)
(3.33) H- H(h)l[ 2 < sinh (7d/h)

and

M(H, d)
(3.34) IIH- H(h) =< (red)l/2 sinh (red/h)"

Proof. By proceeding as in [14, p. 148], we obtain the identity

cos (/h)x
H(x)- H(h)(x)=

2rci
(3.35)

H(t- id)foe [ H(t+id) ldt.(t- id-x) cos(rc/h)(t- id)- (t + id-cos(r/h)(t + id)

Now if E e ’, E + @E, then for y > 0 it follows by (2.4) that

;_ E_+(t) dt--1 f_ E(t)
dt.(3.36) E+(x + iy) i t x iy i x iy

By a result of Hille [16, p. 440] we thus get

(3.37) IE+(x + iy)l z dx
:/2

foe
1/2

IE+(x)l2dx E+ 2,

and by Parseval’s theorem, tlE+I[2 IIEII2. Now by successively taking

H(t- id) H(t + id)
(3.38) E(t) E(t)

cos (rc/h)(t id)’ cos (rc/h)(t + id)

and using the inequality Icos(g/h)(t +_ id)l >= sinh (d/h), in (3.35), we obtain
(3.33). The inequality (3.34) is obtained directly from (3.35) using Schwarz’s
inequality, i.e.,

sup
x(-oe,oe) 2r sinh (=d/h)

H(t- id)
t-x-id

H(t + id)
t-x+id

dr

(3.39) < 1[2rc sinh (rcd/h) ;_ 1/2

IH(t id)l 2 dt + IH(t + id)2 dt

dt

(t- X)2 q- d2

,/2 M(h,d)
(red) 1/2 sinh (Ted

This completes the proof.
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THEOREM 3.6. Let dp =- log (1 K) be real on or, ), and let the conditions

of Lemma 3.5 be satisfied, with H . If r/ 4) th), where dpth) is defined by
(3.13), and if []G+llo < o, then

(3.40) f_f(h) __<( 4 2 + qll2)G+ exp( + r/l[)
q 2.

Remark 3.7. We note by (3.40) and Lemma 3.5 that I]f- f(h)ll O(e -d/h)
ash0.

Proof. Using (3.23) and (3.24) it follows for > 0 that

f -ixt[F+(x) Ct+h)(x)] dxf(t) f(h)(t) e

f _ixt[K(3.41)
27

e +(1 )(K_G+)- K)(1 )(K)G+)](x)dx

=271 f_ e-Xt[K+(1 )(K_ G+) K)(1 )(K)G+)](x)dx,

since dropping the operator g does not change the extreme left-hand side of
(3.41) for > 0.

Now writing the quantity in square brackets on the extreme right of (3.41)
in the form (K+ K))(1 )(K_G+) + Kt+h)(1 )(K)G+) and using
Schwarz’s inequality and the triangle inequality, we get

[If- f)ll (1/(2:))[ K+ K)II2 (1 )(K-G+)II2

(3.42)
+ IIK)II=II( )((K_ K))G+) 2]

K lira + IKII(K Kh)G(1/(2re))[ K+ elIK_G+

=< (I G + /27)[ K_ 2 K + K+h) 2 + Kt+h)ll 2 K_ K{h) 2,

where, in getting the second inequality on the right of (3.42), we have used the
results that for any H m , IIH 2 HI 2 and I(1 )Ht]2 =< IIHII2.

Upon setting r/= q 4a), we get the identity

(3.43) K+ K)= e(1/2)(4’+a4’)[1 e -(1/2)’ + e-(1/2)/(1 e-(t/2)’)].

By assumption, b is real on (-or, ) which implies by (3.10) that q is real, and
therefore ’4 and r/are purely imaginary. Hence,

e(/2)(4,+a4,) Ioo [e(1/2)4’11o0 =< e(/2)114’11, e-(1/2)ql[ e(1/2)11n11,

Ill e-(X/2)nl 2 < ll1/2r/ll2 le-{1/2)n[ < 1/2lit/lie

2isin((i/4)q)llz <- 1/2’r/llz --1/2 r/ 2 1/211r/ 2,

where we have used the inequality [sin 0[ __< 101 for 0 real, and where the very last
inequality, IIUfr/ll2 _<_ ]lr/l12, was obtained by combining the representations (2.6)
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with Parseval’s theorem. Therefore,

(3.44)
K+ K 2--< el/2)ll4)ll[e(’/2)llnll. 1/2 r/ 2 -+- e(1/2)llnll" 1/2

/// 2 e( 1/2)(114)11 / I1.11 )o

Similarly, we obtain

K_ K(h)-2=< /12 e(1/2)(114)11 / I1"11 ),

K_ 2 e(1/2)4)(e-(1/2),vg4) 1) + e(1/2)4) 12
(3.45) < 1/2 J/C/’D2---- e(1/2)114)11 -- 1/2 (D 2

<- (]) 2 e(1/2)114)11 < ((]) 2 -]- q 2) e(1/2)(114)11/1 11)

lIKe) 2--< q5h) 2
e(1/2)l14)’h)ll --<((]) 2 -+- I/’1 2)

Combining (3.44) and (3.45) with (3.42), we get (3.40).
This completes the proof of Theorem 3.6.
LEMMA 3.8. Let the conditions of Theorem 3.6 be satisfied. If M(., d)is defined

as in (3.31), then

(3.46) M(b(h), d), M(q5(h), d) < 21/2 IIb(h)ll 2 cosh (red/h),

where

b(h) IqS(m(x)12 dx h(3.47)

and where (jh + 1/2h).
Proof. Let Sj be defined by (3.14). The identity

z/h h
(3.48) Sj(h, x + iy) e-i((j+ 1/2)h-ir)t

rt/h

and Parseval’s theorem together yield

o, S(h, x + iy)S(h, x + iy) dx

(3.49) 2rt

Consequently,

h 2 f,/h ei(l-j)ht 2yt dt
zlh

eixt dt

h 2

rc (l- j)h + 2iy

Idp(h)(x + iy) 2 dx pj491Sj(h, x -+-iy)Sl(h,x q- iy) dx

By assumption, 05 is real on (- m, m), and therefore each qSj is real; since the sum
on the extreme right of (3.50) is also real, we may replace j,l in (3.50) by its real
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part, which is given by

(3.51) Jj-l =- loj,t

Hence in the notation of (3.47),

(3.52)

2y (- 1)J-

rc (j- l) 2 + 4y2/h

IqSIh)(x + .iy)l 2 dx j_l(/)j(Dl
j,!

E 4)j E j-14)l

=h

Now using the identity

rt cosh rtz
(3.53)

z2 + n2 z sinh

which is readily obtained by means of the Fourier series expansion of e -t over
-re < < re, and also, using the extreme right of(3.51), we get

(3.54) M((h),d)2 =< IIh)ll cosh--
2red

Since cosh (2rtd/h) =< 2 cosh20td/h), we get the first part of (3.46). The second part
of (3.46) follows as a consequence of the inequality

Iqb(h)(x -t- iy)[ 2 dx >= I(h)(x + iy)l 2 dx,

which is valid for all real y.
This completes the proof.
Let H s, and define IV(H, d) by

(3.55) N(H, d) sup IH(x + iy)l.
y=+__d
<x<oo

LEMMA 3.9. Let 4th) be de.fined as in Lemma 3.8. Then

(3.56) N(4h), d) N(b(h), d) <[4h)ll 2 e’a/h.
(4red)l/2

Proof. By (3.13), (3.14) and (3.15), and the fact that h)ll 2 < c, it follows
that there exists a function e L2( rc/h, z/h), such that

(3.57)
rt/h

c/)h)(x) O(t) eixt dr.
rc/h
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Hence,
rc/h

(3.58) b(a)(x) (t) eix’ dt.
,0

We now replace x by x + iy in (3.57) and (3.58), apply Schwarz’s inequality to
each integral on the right, and note by Parseval’s theorem that (I) 2

(2re)-1/2 qS(h) to get (3.56)2,

This completes the proof.
THEORFM 3.10. Let the conditions of Theorem 3.6 be satisfied, and let fh) be

defined by (3.30). If G + (x + iy) is an analytic function of x + iy for all [Yl <- d, if

(3.59) E max |
+_ d ]

K(x + iy)G+(x + iy)

K(x + iy)
dx < ct3

and if 0 <= < re then

(3.60)

2 edtE G +l/(h)(t) fh)(t) <= e=a/k sinh (td/k)
+

2t

K(h) K(h+ K(k+ + K(k+ K(h) g( 212 2 2

where

(3.61) K

Remark 3.11. We note that II(h)ll I111 + I111 for p 2, , where
r/= q5 qth), and therefore a bound on Ilrtll is readily obtained by use of Lemma
3.5. We note in particular that for fixed h and t, Ifth)(t)- fh)(t)l O(e -d/k) as
k ---, 0. Thus a bound on If(t) fh)(t)l may be obtained by combining the results
of Theorem 3.6 and Theorem 3.10.

Proof of Theorem 3.10. The function fh) defined in (3.30) is the inverse
Fourier transform of a function qh), which is given by

(3.62)

where

(3.63)

ajbj
S;(k,x),co(x)=

1- aj

x),

Zk(X) bdSj(k, x),
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and where aj, bj, cj, dj and Sj are defined as in (3.28) and (3.14). By (3.23), fth)is
the Fourier transform of the function

KG+(3.64) ,)= a+ + ca 1 K
K’( )(K6+

If we take the inverse Fourier transform of )- Wh), and note, as in (3.41),
that for > 0, we can drop the operator Ca on the left, we obtain

If(h)(t) f?)(t)l--

(3.65)

o (I< K)( )(KO+)

K(1 Ca)((K)- K))G+)](x)e-’ dx].
By the definition of ook, it follows that for 0 < < rc/k, the integral

(3.66)
2re K cok (x) e dx

is just the error of the approximation of J’oo [KG/(1 K)](x)e -ix’ dx by the
Euler-Maclaurin formula, with step size k. This error is bounded in [14, p. 151];
using the results of [14, p. 151] we obtain the first term on the right of (3.60).
We get the remaining part of (3.60) by following the steps taken on the right-hand
side of (3.42). The method of bounding IlK_ 112 on the right-hand side of (3.45) is
then used to get the second set of inequalities in (3.61). By Lemma 3.5 and (3.31)
we thus get

K)- K <2

(3.67) =<

2M(exp (caSh()) 1, d)
sinh (rtd/k)

2M(ca;b(h), d)N(ca4h), d)
sinh Ozd/k)

2 q(h) e’a/h cosh (rcd/h)
(27zd) 1/2 sinh (rtd/k)

where the second and third inequalities are obtained using Lemma 3.8 and Lemma
3.9 The term llK)- K is similarly also bounded by the extreme right of(3.67)2

This completes the proof of Theorem 3.10.

3.5. An example. The above described procedure has been applied by the
author to the Picard equation [25, p. 95],

(3.68) f(t) - e-lt-rlf(’c) d’c + 4 e -3t, > 0,
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which has the explicit solution

f(t) (

(3.69)

+ 12t21
e- + e

3+

where fl v/1 l/ft. Taking h r/10 in (3.13) and using a step size k h/5 in
(3.28), we found that the approximation which we obtained was accurate to five
significant figures.

REFERENCES

Ill B. NOBLE, Methods Based on the Wiener-Hopf Technique, Pergamon Press, New York, 1958.
2] G. CARRIER, M. KROOK AND C. E. PEARSON, Functions ofa Complex Variable, Theory and Tech-

nique, McGraw-Hill, New York, 1966.
[3] E. FOLIAS, The stresses in a cracked spherical shell, J. Math. and Phys., 44 (1965), pp. 164-176.
[4] I. N. DOMUROVSKIA, Approximate solution of singular integral equations, Ural. Gos. Univ. Math.

Zap., 4 tetrad 2 (1963), pp. 38-45. (In Russian.)
[5] R. BAXTER, A norm-inequality of a "finite section" Wiener-Hopf equation, Illinois J. Math., 7

(1963), pp. 97-103.
[6] D. L. ORTII, An algorithm for discrete Wiener-Hopf equations, to appear.
[7] H. WIDOM, Inversion of Toeplitz matrices II, Illinois J. Math., 4 (1960), pp. 88-99.
[8] A. Win, Some results on convolution-type equations, Preprint of the Department of Mathematics,

Uppsala University.
[9] R. G. DOUGLAS AND J. L. TAYLOR, Wiener-Hopf operators with measure kernels, to appear.

[10] A. ZYGMUND, Integrales Singuliers, Publication du S6minaire de Math6matiques d’Orsay, 1965.
[11] E. C. TITCHMARSH, Introduction to the Theory of Fourier Integrals, Oxford University Press,

London, 1948.
[12] W. RUDIN, Fourier Analysis on Groups, Interscience, New York, 1962.
[13] M. G. KREIN, Integral equations on the half-line with kernel depending upon the difference ofargu-

ments, Amer. Math. Soc. Transl., 22 (1963), pp. 163-288.
14] J. MCNAMEE, F. STENGER AND E. L. WHITNEY, Whittaker’s cardinalfunction in retrospect, Math.

Comp., 25 (1970), pp. 141-154.
[15] F. STENGER, The approximate solution of Wiener-Hopfequations, J. Math. Anal. Appl., 37 (1972).
[16] E. HILLE, Analytic Function Theory, vol. II, Blaisdell, Waltham, Mass., 1962.
[17] F. STENGER. Constructive proofs of approximation by inner functions, J. Approximation Theory,

4 (1971), pp. 373-386.
[18] C. CARATHODORY, Theory ofFunctions ofa Complex Variable, vol. 1, Chelsea, New York, 1958.
[19] M. SmNBROT, An inversion formula for certain general Wiener-Hopf operators, to appear.
[20] --, The solution of some integral equations of Wiener-Hopf type, Quart. Appl. Math., to

appear.
[21] H. H. KAGIWADA, R. E. KALABA AND A. SCHUMITZKY, A representationfor the solution ofFredholm

integral equations, Proc. Amer. Math. Soc., 23 (1969), pp. 37-40.
[22] A. MCNABB AND A. SCHUMITZKY, Factorization of operators II." A non-linear Volterra methodfor

numerical solution oflinear Fredholm equations, J. Comput. System Sci., 4 (1970), pp. 103-128.
[23] G. F. CARRIER, Analytic approximation techniques in applied mathematics, SIAM J. Appl. Math.,

13 (1965), pp. 68-95.



CONVOLUTION-TYPE INTEGRAL EQUATIONS 555

[24] A. MCNABB AND A. SCHUMITZKY, Factorization of operators III: Initial value methods for l&ear
two-point boundary value problems, J. Math. Anal. Appl., 31 (1970), pp. 391-405.

[25] W. POGORZFLSKI, Integral Equations and Their Applications, vol. 1, Pergamon Press, New York,
1966.

[26] K. ATKINSON, The numerical solution of integral equations on the halfline, SIAM J. Numer. Anal.,
6 (1959), pp. 375-397.

[27] H. C. KRANZER, Asymptotic factorization in nondissipative Wiener-Hopfproblems, J. Math.
Mech., 17 (1967), pp. 577-600.

[28] S. K. PICHORDS, On the best values of the constants in the theorems of Riesz, Zygmund, and
Kolmogorov, Ph.D. thesis, University of Chicago, Chicago, 1971.



SIAM J. MATH. ANAL.
Vol. 4, No. 4, November 1973

A RESULT ON DIFFERENTIAL INEQUALITIES AND ITS
APPLICATION TO HIGHER ORDER TRAJECTORY DERIVATIVES*

ROBERT W. GUNDERSONf

Abstract. A result on differential inequalities is obtained by considering the adjoint differential
equation of the variational equation of the right side of the inequality. The main theorem is proved
using basic results on differentiability of solutions with respect to initial conditions. The result is then
applied to the problem of determining solution behavior using comparison techniques.

1. Introduction. In the following let I denote a compact interval and letfbe
continuous on the open set Do I x R". Let the vector functions x and u satisfy

(1) x’ f(t, x),

(2) u’ <= j’(t, u)

for e I, where the inequality of (2) implies the corresponding inequality for each
of the component equations. Then, iff is additionally restricted by requiring a
certain monotonic property on DO (called type K by Coppel [1]), a standard
theorem from the theory of differential inequalities (Kamke [2]) asserts that if x(t)
is a right maximal solution on [a, b] c I and u(a) <_ x(a), then u(t) <_ x(t) for all
e [a, b].

The above result has been used extensively to develop comparison type
(vector Lyapunov function) stability theorems. It is also possible to rephrase the
result in terms of a scalar nth order differential equation (Szarski [3, Chap. 2]) and
to obtain comparison theorems in terms of higher order trajectory derivatives of
v-functions (Gunderson [4]). However, these last theorems suffer from an overly
restrictive condition in that the right side of the comparison equation must be of
type K. This leads to the require’ment that all n derivatives of the v-function
satisfy comparison inequalities, along with the v-function itself, and to difficulties
in the application.

In the following, a less restrictive condition of the required type is obtained
by making use of some basic results on the differentiability of solutions with respect
to their initial values. The condition agrees with a necessary condition for the solu-
tion of Chaplygin’s problem obtained by Averbuch [5] through use of the
Pontryagin maximal principle. Finally, the result is applied to the problem of
determining solution behavior from higher order trajectory derivatives.

2. Component differential inequalities. In the following, x(t, to, Xo) will
denote a solution of (1) satisfying X(to, to, Xo) Xo. It will be assumed that the
solutions x(t, s, u(s)) exist on the compact interval I for each s >__ to, to I, where
u(t) satisfies inequality (2). Let, denote the matrix with cji/cxk at the intersection
of the ith row and kth column and assume fx continuous on the open region Do.
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The notation ek will be used to denote the real n-tuple with unity as its kth entry and
zeros elsewhere. The notation f(x) <= g(x) for vector functions will be used if and
only ifji(x) =< gi(x) for all 1, 2, ..., n.

THEOREM. Consider the adjoint differential equation ofthe variational equation

(3) y’ L(t, x(t, s,

jbr each s >= o, i. Suppose for some k every solution z(t, , ek) of the adjoint to

(3) satisfies
z(s, , ek) > 0

for each s and I, with o <= s <_ . Then

u(t) __< x(t, o, U(to))

for all >= to, I.
COROLLARY. Let the n x n real matrix, A(t), be continuous on I and suppose

(1’) x’= A(t)x,

(2’) u’ <= A(t)u

jbr I. Suppose the solution z(t, , ek) of the adjoint equation of(l’) is nonnegative
on the interval [to, ] for each >_ to, I. Then (1’) and (2’) imply

u,(t) <= x(t, to, U(to))

Jbr all >= o tel.

Proof of theorem. For fixed k, k 1, 2, ..., n, consider

v(s) x(, s, u(s)),

where is fixed and to _-< s =< t. Under the assumptions placed on f the unique
solution x(t, to, ) is of class C on its open domain of definition o9- < < o9 +,
(to, ) Do, where (o9-, o9 + denotes the maximal interval of existence (Hartman
[6, p. 95]). Consequently,

[x(, s, ) lu,,(s).v’()
axq, s, )

+ i .,t0S u(s) i= j=

Now suppose.

(A)
Ox(t, s, )

u(s)

>__0, i= 1,2,...,n,

for all s, to _-< s =< [. Then, since

u’(s) <__ Ji(s, u(s)), i= 1,2,-..,n,

it would follow that

=u(s) i=
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for o =< s _< . According to the theorem on differentiability of solutions with
respect to their initial values mentioned above (Hartman [6, Thm. 3.1]),

(4)

and

s =u(s)

(5) x(t, s, )1--, Y(t, s),

where Y(t, s) is the fundamental matrix of the variational equation

(6) y’ fx(t, x(t, s, u(s)))y

satisfying Y(s, s)= I, the identity matrix. From (4), it follows that if inequality
(A) holds, then v’(s) <= 0 for to -<_ s <= , so that

vff) xff, , uff)) u() <__ x(t, to, U(to)) V(to).

Since >_ to was arbitrary, the theorem would follow.
It remains to show then that condition (A) is satisfied. From (5), this will be

the case if the kth row of Y([, s) is nonnegative for each s, to =< s =< i. Instead of
(3), consider its adjoint

(7) z’ -f(t, x(t, s, u(s)))z

and the fundamental matrix Z(t, s) of (7) which satisfies Z(s, s) I. Note that

yr([, s) Z- 1([, S).

By assumption, every solution

satisfies

z(t, :, ek) Z(t, s)Z- 1(, s)e

z(s, , e) Z- (t, s)ek >= 0

for each s and I, with to =< s =< . That is,

yr(t, s)e >_ O,

which verifies inequality (A) and the theorem.
Remark. It can be shown that the conditions of the theorem imply that each

component function Jj,(t, x) off(t, x) is monotone nondecreasing in each xi for
# k. In the case that the conditions hold for all k, the usual type K condition of
Kamke follows. However, for the problem of interest here, i.e., component in-
equalities, the monotone condition is not sufficient, as can be seen by considering
the system of equations x’ x2, x -x with solution x(t)= cost, x2(t)

-sin and u(t) 1/2, u2(t) 0 over the interval [0, rt].

3, Application to higher order trajectory derivatives. Consider the system of
first order equations

(8) x’ g(t, x),
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where x and g are n-vectors, is a scalar and g .C on [to, oe) x R". Let
v(x) xrHx be a positive definite quadratic form and suppose the trajectory
derivatives of v formed relative to (8) satisfy

(9) vtin) + am-Iv(m- 1) _[_.,,, .ql_ aov <= 0

for (t, x) [to, ) R". Consider the comparison system

(10) r’

0 0

0 0

-’ao -al -o2 a

where r is an m-vector. If the coefficients ai are constants, then it is reasonably
convenient to determine whether (10) satisfies the condition of the corollary. The
results on component differential inequalities can then be used to obtain estimates
on solution behavior for (8), such as the following theorem.

THEOREM. Suppose the comparison system (10) has the solution property given
in the corollaryjbr k 1. Then there exist constants Ca, "", Cm such that

Ix(t, to, xo)l 2 1
Cjuj(t).=

jbr >= o, where 7 is the minimal eigenvalue ofH and thejimctions uj(t) are linearly
independent solutions oj’

(11) hi(m) + am lU(m-1) _+..,,

__
aou O,

The proof follows immediately from the corollary upon writing the scalar
inequality (9) as a system of first order inequalities and from observing that, since
v xrHx is positive definite, it will satisfy an estimate of the form yxrx <= v(x).
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ON THE SOLUTION OF A VOLTERRA INTEGRAL EQUATION
WITH A WEAKLY SINGULAR KERNEL*

FRANK DE HOOG AND RICHARD WEISS?

Abstract. The solution x(t) of the Volterra integral equation of the second kind x(t)= fl(t)
+ x/f2(t) + j’ g(t, s, x(s))(t s)-1/2 ds is examined. It is shown that x(t) u(t) + x//v(t), where u(t)
and v(t) are smooth under appropriate smoothness conditions on fl(t), fE(t) and g(t, s, x) and satisfy
a system of Volterra integral equations of the second kind.

1. Introduction. A number of problems in mathematical physics can be
formulated in terms of the Volterra integral equation

fl g(t, s x(s))
(1.1) x(t) f(t) + tf2(t) + ds, 0 <= <= T

(see, for instance, Chambre [1] and Levinson [21]).
Finite difference schemes, based on product integration, for Volterra integral

equations of the second kind with weakly singular kernels have been investigated
by Linz [3]. These schemes can be applied to (1.1) and are convergent if g(t, s, x(s))
is continuous with respect to s and on 0 =< s _< =< T. To estimate the rate of
convergence, information about the smoothness of x(t) is required. An investiga-
tion of the smoothness of solutions of Volterra integral equations with weakly
singular kernels has recently been made by Miller and Feldstein [4]. One of their
results is that, ifjz(t) 0 and f(t) and g(t, s, x) are sufficiently smooth, then

x’(t) o(t-1/2) as 0.

In this paper we extend this result and show that x(t) u(t) + x/v(t), where
u(t), v(t) are smooth under appropriate smoothness conditions on J](t), )(t) and
g(t, s, x) and satisfy the system of equations

u(t) f(t) +
/ sg(t’ s, u(s), v(s))ds, 0 <__ <= T,

(1.2)
g2(t, s, u(s), v(s))

ds, 0 <_ <_ T,/)(t) f2(t) -+-

where

(1.3a) gl(t, s, u, v)

(1.3b) gz(t, s, u, v)

Received by the editors June 22, 1972.
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The system (1.2) provides an alternative for the numerical computation of
x(t) in a neighborhood of the origin. This will be examined in a subsequent paper.

In 2, we establish a number of basic lemmas. The equivalence of (1.1) and
(1.2) and the smoothness of u(t) and v(t) are examined in 3. In 4, the results of
3 are used to justify a procedure for the numerical solution of (1.1) suggested by

Noble [5].
Since some of the arguments used are similar to those in [4], we have used

the notation of [4] whenever possible.

2. Preliminaries. In this section we shall establish some lemmas which will
be required in the subsequent analysis.

LEMMA 2.1. Let f(t),fz(t)6 C[0, T] and g(t, s, x) be continuous with respect to
t, s on 0 s <= < T and globally Lipschitz continuous with respect to x. Then (1.1)
has a unique solution x(t) C[0, T].

Proof. The result follows from the usual contraction mapping and transla-
tion argument on C[0, T].

LEMMA 2.2. Let
(i) f(t),f2(t) C[0, T],

(ii) g l(t,s, u, v), gz(t,s, u, v) be continuous with respect to t,s, u and v on
O <= s <= <= T, -o < u,v < and

(iii)
Igl(t, s, u, Vl) gl(t, s, u, v2) LIv Vz[,

(2.1)

L
Iga(t,s, bl U) gl(t,s, uz, v)l slUl uzl,

[gz(t, S, U, V) gz(t, S, U, Vz) ____< LxsIv -/)21,

[gz(t, s, u 1, v) gz(t, s, u2, v)l =< Llu
jbr some constant L and all u, u l, u2, /), /)1 and/)2. Then the system of equations

u(t) j](t) + _1 fo st+ 1/2

v/t 2s
g(t’ s, u(s), v(s))as,

i sr
(2.2) v(t) f2(t) + t+i/2 v .g2(t, s, u(s), v(s)) ds,

0t T, r=0,1,...

has a unique solution u(t), v(t) C[0, T].
Proof Define

w(t) K/)(t), K > O,
such that

2KL fl s
ds<l, O<t<T.

The result follows by the application of a contraction mapping and translation
argument on C[0, T] to the corresponding system of equations for u(t) and w(t).
This completes the proof.
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Let a(t) L’(O, T). The resolvent R(t) associated with a given kernel function
a(t) is defined as the unique L’ solution of the linear equation

R(t) a(t) + a(t s)R(s) ds, 0 <= <= T.

If a(t)is nonnegative, then R(t) is nonnegative a.e. (see [4, Lemma 1]).
LN 2.3 (Tricomi [6, Chap. 1]). If X(t) is the solution of the linear equation

then

Then

(2.4)

x(t) f(t) + fl a(t s)X(s) ds, 0 <= <= T,

(2.5)

Let

X(t) f(t) + R(t s)f(s) ds, 0 <= <= T.

LEMMA 2.4. Let j’l(t),j’z(t)e C[0, T] and u(t), v(t) be the solution ojthe system

u(t) f(t) + tr x//t S

v(t) j’z(t) + tr + 1/2 , U(S) -" U(S))

0t T, r=0,1,....

u(t) j](t) + - R(t s)sr(fl(s) + x/sf2(s))ds,

v(t) f2(t) +
2V + ,/2 R(t S)St(fl(S) k- xsf2(s))ds,

0=<t=< T, r=0,1,

where R(t) is the resolvent associated with the kernel function a(t) 2Lt-,/2.

Proof Clearly from (2.3),

u(t) tv(t) fl(t)- x/tf2(t).

w(t) t(u(t) + tv(t)).
Then from (2.3), w(t) satisfies

w(-----) ds’w(t) V(f,(t)+ x/f2(t))+ 2L
x//t- s

Hence from Lemma 2.3,

(2.6) w(t) tr(fl(t) + x/f2(t)) + R(t S)Sr(fl(S) + x/f2(s))ds.

The result for 0 < T follows from (2.5) and (2.6).
u(t), v(t) C[0, T]. The result follows.

O<_t<_T.

From Lemma 2.1,
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LEMMA 2.5. Let ul(t), u2(t), vl(t) and v2(t be the unique continuous solutions of
the systems

(2.7)

and

fl sr+l/2
Ul(t) fl(t) + gl(t, s, Ul(S),/)l(S))ds,tr x// S

/)l(t) f2(t)
1 f s

F+ /2 x//t sg2(t, s, ul(s), /)l(S)) ds

(2.8)

r g+ 1/2

u2(t ql(t) +-tr X//t S
kl(t, s, U2(S), /)2(S))ds,

k2(t S, U2(S), /)2(S)) ds,/)2(t) q2(t) +

wherefx(t),fz(t), q l(t), qz(t)e C[0, T], g l(t, s, u, v), g2(t, s, u,/)), k l(t s, u,/)), k2(t, s, u, v)
are continuous with respect to t, s, u and v on 0 <= s <= <= T, u, v <= c, and
gl(t, s, u,/)), gz(t, s, u, v) satisfy (2.1). Then

lUl(t) u2(t)l If(t)l + R(t s)s(Ifx(s)l +

and

I/)1(0- v2(t)l [f2(t)l +

where

f (t) f (t) q (t)

fl st+ 1/2

+-? ,/t-s
f2(t) f2(t) q2(t)

2tr+ 1/2 R(t s)g(lf(s)l + /l2(s)l)ds,

(gl(t, S, Uz(S),/)2(S)) kl(t S, U2(S),/)2(S))) as,

f s

tr+ 1/2 N//t ’S(g2(t, s, u2(s), V2(S)) k2(t s, u2(s),/)2(s))) as,

and R(t) is the resolvent associated with the kernel 2Lt-1/2
Proof Define

z(t) U (t) u2(t),

W(t) Vl(t Vz(t),

gl(t, s, Ul(S), /)1(S)) gl(t, s, Ul(S), /)2(S))
W(S) = 0

C l(t S) W(S)

O, w(s) 0;
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x/S(gl(t, S, Ul(S),/)2(S)) gl(t, S, U2(S),/.)2(S)))
D l(t, s)

0,

g2(t, s, Ul(S), l(S)) g2(t, s, u(s), v2(s))
c(t, s) sw()

O,

g2(t, S, U l(S), V2(S)) g2(t, S, U2(S), V2(S))
Z(S) 0

D2(t, s) z(s)

O, z(s) O.
Clearly from (2.1),

(2.9) ]C(t, s)], [C2(t, s)[, IDl(t, s)l,[D2(t, s)] L.

Subtraction of (2.8) from (2.7) yields

z(t) f(t) + C (t s)w(s) + D (t s)z(s)) ds

1 f s* (C:(t, s)w(s) + Da(t, s)z(s))ds,t) ?(t + t+/ t
and it follows from (2.9) that

[z(t)l < If(t)l +- (lw(s)l + Iz(s)l)ds,
tr t S

z(s) :# O,

z(s) O;

v/()ws =0,

Let y l(t), y2(t)e C[O, T] be two nonnegative functions such that

L ’" s
Iz(t)l If(t)l y(t) +- Jo (x/[w(s)[ + [z(s)l)ds

L fl s (v/lw(s)l + lz(s)l)ds.Iw(t)[ [f2(t)[- y2(t) + V+,/2 # s

Then from Lemma 2.4,

Iz(t)l If,(t)l-

+ R(t s)g(lf(s)[- yl(s) + (If2(s)l y2(s)))ds,

lw(t)l If:(t)l- y:(t)

2V+ 1/2 R(t- s)g(Ifx(s)l- yl(s)+ (If2(s)l- Y2(S)))ds.

The result follows since R(t), y(t) and y2(t) are nonnegative.
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LEMMA 2.6. Let

f(t), g(t) e c2n[ b + b], b > O,

Then F(t), G(t)e C"[O, b2].
Proof. The result is clearly true for n O. Assume the result is true for n r.

Consider the case n r + 1. Clearly

From Taylor’s theorem with integral remainder,

Hence,

where f(t), ,(t) satisfy the hypothesis with n r. It follows that F(t) Cr+ 110, b2].
Similarly G(t) C+ 110, b2]. The result follows by induction.

COROLLARY 2.1. Let g(t, s, x) be n times continuously differentiable with respect
to and s on 0 <= s <= <= T and 2n times continuously differentiable with respect to
x jbr all x. Then sgl(t s, u, v), gz(t, s, u, v) defined by (1.3) are n times continuously
differentiable with respect to t, s, u and v on 0 <= s <= <= T, - < u, v < .

3. Smoothness results. We first consider the relation between x(t) defined
by (1.1) and u(t), v(t) defined by (1.2).

THEOREM 3.1. /f
(i) fl (t),f2(t). C[0, T],
(ii) g(t, s, x) is continuous with respect to and s on 0 <_ s <_ <_ T and globally

Lipschitz continuous with respect to x, then (1.1) and (1.2) have unique continuous
solutions x(t) and u(t), v(t). Furthermore,

x(t) u(t) + ,,fttv(t).
Prooji Existence and uniqueness of x{O, u(t) and v(t) follow from Lemmas 2.1

and 2.2. The result follows since u(t) + x/tv(t) satisfies (1.1).
We shall now examine the smoothness of u(t), v(t). Since inductive arguments

will be used, it is convenient to consider the more general problem

Sr+l/2g (t S U(S),
u(t) j’i(t) + tr )0 //t S

ds, r O, 1,

fl s*g2(t’ s, u(s), v(s))
U(t) ji(t) -- tr + 1/2 4i S

ds, r =O, 1, ...,
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or equivalently,

ds, r =0,1,...

r =0,1,

Formally differentiating (3.2), we obtain

where

st+ 1/2 fF(t) f’l(t) + xss
gl(t, ts, u(ts), v(ts))

+ t-(t, ts. u(ts), v(ts)) + ts (t. ts. u(ts), v(ts)) ds.

F(t) f’2(t) + ./1- (t. s, u(ts), v(ts))

We now consider the system

(3.3)
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In the following lemma we prove that under appropriate assumptions on ji(t),
fz(t), gl(t, s, u, v) and gz(t, s, u, v), (3.3) has a unique continuous solution U(t), V(t),
which coincides with u’(t), v’(t), where u(t), v(t) is the solution of (3.1).

LEMMA 3.1. Let
(i) fx(t), f2(t), sgx(t, s, u, v) and g2(t, s, u, v) be continuously differentiable with

respect to and t, s, u, v respectivelyjbr 0 <= s <_ <= T and all u, v, and

(ii)

3gl L
<L, <L,

c3v
<

Then the solution of(3.1) is continuously differentiable and satisfies
u’(t) U(t), v’(t)= V(t), 0 <_ < T,

L const.

where U(t), V(t) is the unique continuous solution of(3.3).
Proof. It follows from Lemma 2.2 that (3.3) has a unique continuous solution

U(t), V(t). Using an argument similar to Miller and Feldstein [-4, Theorem 1],
we may assume that sg(t, s, u, v) and gz(t, s, u, v) have compact support.

Let 6 be a real number in the range 0 < 6 < T/2. For 0 < h =< 6 and
O < < T- 6, 6 5/T, define

u(t(1 + h))- u(t)
z(t, h) > O,

th

and

v(t(1 + h))- v(t)
w(t, h) >0.

th

z(t, h)
f(t(1 + thh)) f(t) +-1 f x//is’+ /2t-s {(1 + h)gl(t(1 + h),

ts(1 + h), u(ts(1 + h)), v(ts(1 + h))) gl(t, ts, u(ts), v(ts))} ds.

Then

By the mean value theorem,

(1 + h)g (t(1 + h), ts(1 + h), u(ts(1 + h)), v(ts(1 + h))) g (t, ts, u(ts), v(ts))

hg(t(1 + h), ts(1 + h), u(ts(1 + h)), v(ts(1 + h)))

+ O(th), ts(1 + h), u(ts(1 + h)), v(ts(1 + h)))

+ tShs(t, ts + q(tsh), u(ts(1 + h)), v(ts(1 + h)))

+ (u(ts(1 + h))- u(ts))u(t, ts, ft(ts), v(ts(1 + h)))

+ (v(ts(1 + h))- v(ts))(t ts, u(ts), (ts)),
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where 0 < O(th) < th, 0 < rl(tsh) < tsh, (ts) lies between u(ts) and u(ts(1 + h)) and
(ts) lies between v(ts) and v(ts(1 + h)). Hence

(3.4)

where

fl Sr+3/2 Oglz(t, h) F (t, h) + t-;-4-f x//i --s [ c3u
(t, s, fi(s), v(s + sh))z(s, h)

+ --(t, s, u(s), (s))w(s, h)} ds,

F1(th)
fx(t(1+h))-f(t) j’l {g(t(1 + h), ts(1 + h),

th +
o x//1 s

u(ts(1 + h)), v(ts(1 + h)))

+ t-(t + O(th), ts(1 + h), u(ts(1 + h)), v(ts(1 + h)))

+ tSs(t, ts + rl(tsh), u(ts(1 + h)), v(ts(1 + h)))} ds.

Similarly,

w(t, h) Fz(t, h) +

where

x
(t, s, (s), v(s + h))z(s, h)

tr + 3/2
S

+ -v(t, s, u(s), (s))w(s, h) ds,

ji(t(1 + h)) j’2(t)
F2(t, h +th x//1 s [ c3t

(t + (th),

ts(1 + h), u(ts(1 + h)), v(ts(1 + h)))

+-s(t, ts + fl(tsh), u(ts(1 + h), v(ts(1 + h))) ds,

0 < e(th) < th, 0 < (tsh) < tsh, (s) lies between u(s) and u(s + sh), and (s)lies
between v(s) and v(s + sh). On defining

z(0, h) lim Fl(t, h)
tO

F1(0, h)

and similarly

w(0, h) F2(0, h) + (--)(r + 1)! cg2(0 0 u(0) v(0))z(0 h)
(r + )! u
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it follows from the application of Lemma 2.4 to the system (3.4), (3.5) that z(t, h)
and w(t, h) are continuous on 0 <__ <= T 3. Define

t’ Sr+ 3/2

Q x(t, h)= Fi(t, h) F(t) + t-7+-i- Jo w/t s

(t, s, f(s), v(s + sh)) -u(t, s, u(s), v(s) g(s)

+ -v(t, s, u(st, (sll v(t, s, u(st, v(sl V(sl cls,

" sr+

JoQ(t, h) F(t, h) F(t) + t +/ x s

[_ Ou
(’ s, a(sl, v(s + shlt -u (t, s, u(sl, v(s U(sl

+ -v(t, s, u(sl, (slt V2v(t, s, u(sl, v(sl V(s cls.

Let e be a positive real number. Since sg(t, s, u, v) and g(t, s, u, v) have compact
support, there exists an ho such that for 0 < h N h0,

(3.6) I(t, h)l , l(t, h)l e

for 0 N N T . Hence, the application of Lemma 2.5 to the systems (3.3) and
(3.4), (3.5) and the subsequent use of (3.6) yields

lz(t, h) U(t)l Q(t, h) + 2t+ R(t s)s+ {IQ(s, h)l

+ t (t ss + + s

lw(t, h) g(t)l IQa(t, h)l + 2t+ a/ R(t s)s+ {IQ(s, h)l

N e + 2t+/ R(t s)s+(1 + )d

for 0 N N T , where R(t) is the resolvent associated with the kernel 2Lt-/.
From Miller and Feldstein [4, Lemmas 2 and 4], it follows that there exists a
positive constant C such that

R(t) N Ct- / a.e. on0NtN T.
Hence

Iz(t h)- u(t)l < De 0NtN T-, D=const.
Iw(t, h)- v(t)l J
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Thus z(t, h) U(t) and w(t, h) V(t) uniformly on 0 __< _<_ T- 6. Since 6 is
arbitrary, U(t) and V(t) are the continuous right derivatives of u(t) and v(t) re-
spectively on 0 =< < T. In addition, from the uniform convergence to U(t) and
V(t), respectively, it follows that for any interval I {t" 3 =< =< T- 3} the sets
{z(., h)’0 < h < 6} and {w(., h)’0 < h < 6} are equicontinuous and hence

lim z(t, h) lim z(t h, h) U(t),
hO hO

lim w(t, h) lim w(t h, h)= V(t)
hO hO

uniformly on I. This implies that U(t) and V(t) are the left-hand derivatives of
u(t) and v(t) respectively on I. A simple argument shows that U(T) and V(T) are
the left derivatives of u(t) and v(t) respectively at T. This completes the proof.

THEOREM 3.2. If in (1.1),
(i) f (t),f2(t) C"[O, T]

(ii) g(t, s, y) is n times continuously differentiable with respect to and s on
0 <_ s <= <= T and 2n times continuously differentiable with respect to yjbr all y,
and

(iii) g(t, s, y) is Lipschitz continuous with respect to yjbr all y and 0 <= s <__ <__ T,
then u(t), v(t)6 C"[0, T], where u(t), v(t) is the solution of (1.2) and fitrthermore
utm)(t), v(m)(t) is the solution of the system of equations obtained by jbrmally dif-
jbrentiating (1.2) m times.

Proof. From Corollary 2.1 it follows that sgl(t, s, u, v) and gE(t, s, u, v) are n
times continuously differentiable. The result follows from induction and Lemma
3.1.

A stronger result can be obtained iffx, j and g are analytic.
THEOREM 3.3. Let

(i) fx(t),fE(t) be real analytic in a neighborhood of O <= <= T,
(ii) g(t, s, x) be real analytic in an open set containing all real ordered triples

(t, s, x), 0 <= s <__ < T and Ixl , and
(iii) equation (1.2) have a unique continuous solution u(t), v(t) in an open set

containing the interval 0 <= <= T.
Then u(t) and v(t) are analytic in an open set containing 0 <_ <= T.

Proof It follows from (ii) and (1.3) that g(t, s, u, v) and gE(t, s, u, v) are real
analytic in an open set containing the real ordered quadruples (t,s,u,v),
0 =< s =< _<_ T, lul, Ivl <_- (2, (2 < ,

For e > 0 define

D()={z’-e=<Rez=< T+e, llmzl_<_e},

P max {Ifl(z)l, Ifz(z)l;z O(e)},
E(e) {(z, zs, y)’z O(e), 0 _< s __< 1, lYl =< P / },

F() {(z, zs, p, q)’z O(), 0 __< s =< 1, IPl, Iql =< P / 1 },

M=max g(z, zs, y)], z, zs, y) "z e D(e), O __< s =< t,]yl__<2P+2

G(e) {z"-e _<_ Re z _<_ e, [Im z[ __< e/2}.
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Choose e such that fl(z) and fz(z) are analytic on D(e) and g l(z, w, u, v) and
gz(Z, W, U, V) are analytic on F(D. Let H(e) denote the set of all functions 4, real
analytic in the interior of G(e), continuous on G(e) and satisfying [(z)[ =< P + 1,
z e G(e). Given q, in H(e), define

f/ g z’ sz’ (sz) O(sz)) ds’1(, )(Z) fl(Z) + Z

I S K
(3.7)

2(, 0)(Z) gJi(Z) + g
1 s

g2 z, sz, (sz), ds,

where K . As in Lemma 2.2, K is introduced to obtain a contraction mapping.
From (1.3)it follows that

IN(4, 0)(z)l N V + (M)/2,
12(4, O)(z)l (P + M/Z).

Hence, if e < eo, eo min {1, l/M2}, then (3.7) is a mapping from H x H into
itself. It can easily be verified that (3.7) is a contraction mapping and consequently
u(z) and v(z) are real analytic in the interior of G(e).

This result can be extended in the following way. If u(t) and v(t) are real analytic
in a neighborhood of 0 =< =< z + 6, z, 6 > 0, then (1.2) is rewritten as

where

/s + z
:gl(’C at- t, T, + S, U(’C -+- S), V(’C at- s)) ds,u(’c + t)= fl(t)+

V/t- s

fo 1

s
gz(zv(’c + t)=/2(t) +

x//Z +, t x
+ t, + s, u(r + s), v(z + s)) ds,

e [0, T- r],

g( + t, s, u(s), v(s)) ds,

f,.(t) A(r + t)+ f g2(’C + t, s, u(s), v(s)) ds.
./r+t v& +t-s

Clearly fl(t) and f2(t) are real analytic in the interior of R(D {z’0 _< Re z =< ,
IIm z[ =< U2} for some g > 0. From (iii), (3.7) can be replaced by

O1(1/1 I//)(Z)--U(T At" Z)-1t- Z 1/2 {gl(’C -+- Z, "C q" SZ, )(’C + SZ),-Ip(’C + SZ))-77-
(3.8) -gl(’C -+- z, "c -+- sz, u(’c + sz), v(’c + sz))} ds,

Z1/2 (x1{g2(’ + z, z + sz, dp(’c + sz),2(, O)(z)= v(r + z)+
w/z +z 0o V/1 s

O(’c + sz))- g2(’c + z, "c + sz, u(’c + sz), v(r. + sz))} ds.
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As previously, u(z + t) and v(z + t) can be shown to be analytic in the interior of
R(g:) for sufficiently small. If 6 is chosen such that g; 26 > 0, this process can
be continued with z + 6.

Since u(z) and v(z) are bounded for z e D(e), it follows from the form of (3.8)
that the interval [e, T] can be covered by a finite number of applications of the
above process.

4. Remark. Equation (1.1) can be rewritten in the form

fl 2s
g(t2 s2 y(s)) ds 0 < < x/(4.1) y(t) fl(t2) + tf2(t2) +

x//t2 s2

where y(t) x(t2). Using the results of 3, it follows that iff ,f2 and g are suitably
smooth, then y(t) is smooth. This provides a justification for the finite difference
schemes for (4.1) which have been suggested by Noble [5, 4, pp. 234-243].

Acknowledgment. The authors wish to thank Dr. M. R. Osborne for valuable
comments on the draft of this paper.
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ANALYSIS OF WALSH TRANSFORMS USING INTEGRATION
BY PARTS*

C. K. YUENf

Abstract. Each Walsh transform of a smooth function can be expressed as a weighted average of a
derivative of the function. The weighting function is an integral of the Walsh function. Its mean and
maximum values can be found easily so that we can estimate the size ofWalsh transforms without having
to actually compute them.

1. Introduction. Although Walsh functions have been with us for some
fifty years [1 and were recently subject to extensive studies by mathematicians [21,
[3], [4], communication engineers, statisticians, physicists and even bio-medical
workers [5], mathematical analysis of Walsh transforms remains difficult. While
many common functions have Fourier, Laplace and Z transforms that can be
expressed in closed form and be evaluated easily, their Walsh transforms rarely
are. Walsh series expansions of even simple functions like x2 and x3 are already
very complex [6]. The reason is that Walsh functions are discontinuous, so that
functions that have simple Walsh transforms are usually discontinuous them-
selves.

No amount of clever manipulation can eliminate this basic mismatch between
conventional analytical techniques and Walsh functions, though for particular
purposes ways can be found to get around this difficulty. The "integration by
parts" technique we present is an example. It will be proved that each Walsh
transform of a well-behaved function can be expressed as a weighted average of
one of its derivatives. The weighting function is none other than the Walshfunction
integrated by the same number of times. The mean and the maximum of each
weighting function can be easily determined giving us a simple method for estimat-
ing the size of a Walsh transform.

The developments now taking place in various fields of science and engineer-
ing, with a few exceptions, make use of Walsh transforms of random variables
rather than analytical functions. Also, "exact" Walsh transforms, as defined in this
paper, are seldom used. In their place are approximations computed using sampled
values. Thus our technique must be modified to be applicable to these cases.
Such extensions will be discussed in a separate paper to appear in a computer
journal [7 while the present work will concentrate on laying the mathematical
groundwork.

Our discussion begins with the definition of Walsh functions and some
related quantities, followed by several basic theorems. We then derive the-integra-
tion by parts technique and prove several properties of the weighting function.
In the final section these results are shown to be useful in estimating Walsh
transforms and analyzing the convergence of the Walsh spectrum.
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2. Walsh functions and Walsh spectrum. Walsh functions were first defined
by J. L. Walsh in 1923 [1] using a set of recursive relations. Subsequently Paley [8]
redefined them as products ofanother orthogonal set called Rademacher functions.
Paley’s definition is different from Walsh’s only in ordering. However, his functions
obey a simpler kind of recursive relation, though this difference was never explicitly
pointed out.

Researchers in most engineering applications prefer Walsh’s ordering while
Paley’s orderings were found more convenient in mathematical discussions.
Our frequent use of the simpler recursive relation will illustrate this convenience.
Another point on which engineers and mathematicians differ is notation for
Walsh functions. The former, as a rule, denote the ith Walsh function by wal (i, x).
This is never used by any paper in mathematicaljournals, which have no universally
agreed notation for either Walsh’s or Paley’s functions. We shall align ourselves
with the engineers as far as notations are concerned. Thus we shall denote Paley’s
functions by pal (i, t).

DEFINITION 1. For k 1, 2,... and [0, 1) we define the kth Rademacher
function as 9]

Rk(t (-- 1)tk,

where tk is the kth binary digit of t:

tx2- + t22-2 + tk =0,1.

As goes from 0 to -, k takes values 0 or alternatingly so Rk(t alternates between
and 1. It can be seen that Rademacher functions are square waves. The larger

k is, the faster alternates, and the shorter is the period of the wave.
Walsh-Paley functions are defined as products of Rademacher functions.

Given n Rademacher functions, there are 2" possible products containing from 0
to all n factors. These are conveniently labeled from 0 to 2" 1, as follows.

DEFINITION 2 [8]. For i= 0, 1,2, and tel0, 1), the ith Walsh-Paley
function is

with

pal (i, t) 1-[ [Rk(t)’ 1-[ (- 1)ik’k,
k=l k=l

il2 -+- i221 -+- -k ik2k-1 q- ..., ik 0, 1.

In other words, Rk(t is a factor of pal (i, t) if and only if 1. Clearly, if contains
r l’s in its binary representation, then pal (i, t) is the product of r Rademacher
functions. This leads to the following definition.

DEFINITION 3. The rank of pal (/’, t) is the number of l’s in the binary digits
of/:

r(i)-- Z ik"
k=l
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DEFINITION 4. The degree of pal (i, t) is the highest order of Rademacher
functions that are its factors"

d(i) max {k’ik 1}.

DEFINITION 5. The negligibility of pal (i, t) is defined as"

p(i) r(i) + ikk.
k=l

For example, 6 22 -+- 2, so 3 2 1, and

r(6)=2, d(6)=3 andp(6)=7.

DEFINITION 6. The dyadic inner product of integer with is defined as [9]"

* ikt mod 2.
k=l

The above definition allows us to express Walsh-Paley functions in a concise
form.

THEOREM 1.

pal (i, t) (-

The following two theorems have been proved elsewhere [8].
THEOREM 2. Walsh-Paley functions are orthonormal and complete over [0, 1)"

al (i, t) pal (j, t) dt 6i,

pal (i, t)pal (i, t’) 6(t t’).
i=0

with

THEOREM 3. The Walsh series, defined by

f,(t) Fi pal (i, t),
i=0

pal (i, T)f T) dT

and f(T) being an integrable function over [0, 1), converges uniformly to f(t) as
n wherever f(t) is continuous.

F will be called the ith Walsh-Paley transform, or Walsh transform for
short, of f(t). Its rank, degree and negligibility will be taken to be the same as
those of pal (i, t).

Rank has been variously called "vielfalt" or "multiplicity". We follow Polyak and Schreider [9]
in naming it "rank"; "degree" is called "order" in Polyak and Schreider, a name we consider to be
confusing.
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We now prove a theorem similar to the recursive relation of Walsh’s original
functions.

THEOREM 4.

pal (2i, t) pal (2i + 1, t) pal (i, 2t),

pal (2i, t) pal (i, 2t 1),

pal (2i + 1, t) pal (i, 2t 1),

o__<t<1/2,

1/2=<t<l,
l<t<l2

as

IfO<t=<1/2,

SO

Proof. The integers i, 2i and 2i + 1 may be expanded in binary representation

il2 + i22x + + ik2k-1 + ".’,

21 2k-12i=0"2o + il + + ik-X + "",

21 2k-X2i+ 1 1"2o +i + +ik_ +

0.2-x + t22-2 + + tk2-k + ...,
2t t22-1 + t32-2 -k- + tk2-k+l + ...,

(2i) * (2i + 1)* t2i + t3i2 + + tk+ lik + i* (2t).

And if1/2=< t< 1,

which gives

and

t=l.2-1 + t22-2 + ...,
2t 1 t22- + t32-2,

(2i)*t=i*(2t- 1)

(2i + 1)* + i*(2t- 1).

Using Theorem we have the desired result.
We shall also need a theorem proved by Fine [11].
THEOREM 5. The fuction f(t) has the Walsh series expansion

E 2-m-lRm(t)
2 m--1

We note that this contains only Walsh-Paley functions of rank 1. We also
have the following.

COROLLARY.

t= [1/2- Z 2-m-lRm(t)]"
This will be used to prove the following theorem.
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THEOREM 6.

j’ {0 if k < r(i),
pal (i, t) dt

o 1)rti)r(i)!2- p(i) if k r(i).

Proof. The first half has been proved by Polyak and Schreider [10], but we
reproduce the argument below. We have

k k 2-"- 1R"(t)
"=1

+
2

2 m’- Rm(t)R,(t) +
m=l m’=l

+ I-) Y E 2-’- -Rm,t)"" Rt).
m=l m2=l mk=l

Integrate this with pal (i, t), which has rank r(i). If k < r(i), then the above expres-
sion contains only Walsh functions ofrank less than r(i), so they must be orthogonal
to pal (i, t). This proves the first equality. Now if k r(i), then the last term is the
only term containing products of r(i) Rademacher functions. Thus

tkpal(i,t)dt--(--1)
0 ml mE mr

2- -"2 mr-r | R,,,(t)... R"r(t) pal (i, t) dr.
0

To have a nonzero integral the product of the Rademacher functions must be
exactly pal (i, t). Thus the m’s must be such that

im im2 imr 1.

Since contains r l’s and there are r m’s, all m’s must be different. There are r!
ways of choosing them, each giving the same contribution. Thus

ri) pal (i, t) dt (- 1)rr !2 -r-"’ -"2 mr f [pal (i, 0] 2 dt

(- 1)rr!2 -r-yi-",

where we have used the fact that i, 1 for n m l, ..., mr. It can be readily seen
that the above is simply

(-- 1)rr !2 -p.

To illustrate the above theorem, we note that the function f(t) contains no
Walsh-Paley function of rank above 1, and, since pal (2k, t) Rk+ (t), we have

pal (2*, t) dt 2-- 2.

On the other hand, r(2k) and p(2k) k + 2. We have thus verified the theorem
for the special case of . It will be shown later that the theorem itself is a special
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case of Theorem 7, which applies to Walsh transforms of functions that include
integer powers of t.

3. Integration by parts. We begin developing our integration by parts
technique by defining a set of functions which will later be seen to be weighting
functions which, when integrated with derivatives of a function, give its Walsh
transforms.

DEFINITION 7.

y(i,t)=[r(i)_ 1!
pal (i r) (t T)-dr, i= 1, r=r(i).

Several of its properties will be proved.
LEMMA 1.

y(i, t) pal (i, t) dt dt,_ dtx

Proof. Differentiate y(i, t) k times with respect to giving

y((i, t)
(r k 1)!

pal(i, r)(t T)-- dr, k < r 1,

y(- (i, t) pal (i, T) d T,

yo(i, t) pal (i, t).

We also have from Theorem 6

y(i, 1) y(i, 1) O for allk <r,

and of course,

y(i, O) yk)(i, O) O.

Integrating ytr)(i, t) r times, taking into account the above boundary conditions,
we have

y(i, t) pal (i, tr) dt dt_ dt

The lemma immediately leads to our main result, that the integrand in the
definition of Walsh transforms can be integrated by parts.

THeOReM 7. For the function f(t) which is smooth (i.e., continuous and having
continuous derivatives) to order r over [0, 1],

F (- 1) f(t)y(i, t)dr, >__ 1, r r(i).

Proof. We expand f(t) in a Taylor series about 1 up to the power r 1,
giving

(t- 1)-f(t) =/(1) + f’(1)(t- 1) + + f-1)(1) r! + sr(t),
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where s,(t), the remainder, is given by

1
(t T)’- f’)(T)dT.

(r-

When the series is integrated term by term with pal (i, t), only the remainder gives
a nonzero result according to Theorem 6. So

(r 1)!
pal (i, t) (t T)’- lf’)(T) dTdt.

Interchanging the order of integration gives

f,)(T) (t T)’- pal (i t) dt dT
(r- 1)!

(- 1)" f(’)(T)y(i, T) dT.

We see that in the expression for Fi, f(t) has been differentiated r(i) times while
pal (i, T) has been integrated, as in integration by parts.

The above theorem would have been a mere mathematical curiosity but for
the fact that y(i, t) has some important properties "it is nonnegative and its maximum
and mean can be found easily, as proved below.

LEMMA 2. y(i, t) >= 0 for all and >= 1.
Proof. The lemma is proved by induction using Theorem 4. First we have

y(1 t)= pal(1 T) dT=
-t,

Now we show that if the theorem holds for y(i, t), it also holds for y(2i, t) and
y(2i + 1, t). We have r(2i) r(i) and r(2i + 1) r(i) + 1. So

y(2i, t) pal (2i, T) (t T)’- dT.

Applying Theorem 4, we have for 0 __< < 1/2,

y(2i, t) pal (i, 2T)(t T)’- dT.

Changing the variable from T to T’ 2T we have

y(2i, t) pal (i, T’)(t 1/2TT-11/2 dT’

2 pal (i, r’)(2t r’)- dr’

2-’y(i, 2t) >= 0.
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For 1/2 =< < 1,

y(2i, t) pal (i, 2r)(t ry- dr + pal (i, 2T 1)(t T) dT.
0 /2

The first term is zero according to Theorem 6, while the second is

pal (i, T’)(t 1/2)’-11/2 2-’y(i, 1) _>_1/2T’ dT’ 2t O.

Then we have, for 0 _<_ < 1/2,

y(2i + 1, t) pal (i, 2t,+ 1) dr,+ dr, dr1

2-" y(i,2t)dtl >__ O,

while for 1/2 __< < 1,

y(2i + 1, t) 2-’ y(i, 2tl) dtl 2-’ y(i, 2tl 1) dtl
/2

/2

2-" y(i, 2tl) dt >_ O.
-1/2

Thus the lemma is true for all i.
LEMMA 3.

t) dt 2- pti).

y(i, t) dt
(r 1)!

pal (i T)(t T)’- dT dt.

Exchanging the order of integration, and taking into account >__ T, we get

y(i, t) dt
(r 1)!

pal (i, T) (t Ty- dt dT

(r 1).
pal(i, T)

(1
r
TYdT"

By Theorem 6, only T’ gives nonzero contribution. Thus

y(i, t)d pal (i, T)(- Ty dT 2-

LEMMA 4. max y(i, t) 2 for 1.
Proof. We need only prove that max y(i, t)= 2 y(i, t)dr. Again induction

is used. We first note that

max (1, t) y(1,1/2) 1/2,
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while

2-p +/-

Thus the lemma is true for 1. Now we already showed (proof of Lemma 2)

y(2i, t) 2-’y(i, 2t) or 2-’y(i, 2t 1),

so if the lemma holds for some i, it also holds for 2i. Next we note

2 y(i,2r)dT, 0 <__ < 1/2,

y(2i + 1,t) 1/2

2 y(i,2T)dT, 1/2 <__ < 1.
t-1/2

Since y(i, T) is never negative, y(2i + 1, t) is biggest when the range of integration
takes the whole domain of y(i, T). This occurs for 1/2, for which

y(2i + 1,1/2) 2-- y(i, T) dT 2-- p(.

But as p(2i + 1) r(i) + 2 + p(i), the lemma holds for 2i + as well.
We have thus succeeded in showing that F is a weighted average of the

r(i)th derivative off(t), and that the mean and maximum of the weighting function
y(i, t) are readily computed. The usefulness of Theorem 7 applied in conjunction
with Lemmas 2-4 is illustrated by examples in the next section.

4. Some applications. (a) In the closing paragraph of we mentioned that
Theorem 6 is a special case of Theorem 7. This will now be shown.

Suppose f(t) k and we wish to find its Walsh transform F with r(i) greater
than k. Now if we differentiate k r times we have f( 0, thus Fg 0. And if
r(i) k, then fir) r !, so that F (- 1)rr !2-P"). We have thus derived Theorem 6
from Theorem 7.

(b) It is possible to estimate the size of each Walsh transform of a function
given its derivatives. Since y(i, t) is nonnegative, we have

or

lEvi max Ift*)(t)l y(i, t) dt max Ift’)l/2p"),

IFi[ max y(i, t) Ift’)(t)l dt ift)(t)l dt/2pti)- 1.

We see that if p(i) is large Fi has a small absolute value, and hence can be dropped
from the Walsh series representing f(t). This explains the name "negligibility".

To see when p(i) is large, we note

p(2) k + 2,

r(2k) 1,

d(2k) k + 1,

p(2k- 1)= 1/2k(k + 3),

r(2k 1) k,

d(2k- 1)= k.
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It can be seen that p(i) is large when both rank and degree are large. But if rank is
small then p(i) can be small unless degree is exceptionally large.

If f(t) and all its derivatives are slowly varying and free of isolated high and
low values, then we may expect

Fi (- 1)"2-p(i) f@)(t) dt,

as a rough estimate. Usingf sin ((rU2)t), we have computed 32 Walsh transforms,
their upper bounds and estimated values. These are shown in Fig. 1.

(c) Convergence of the Walsh spectrum can also be studied. We note that both
Fi and F2i are weighted averages of ft’), and

max y(i, t) 2". max y(2i, t),

y(i, t) dt 2’ y(2i, t) dt.
0

Thus how fast Fi converges depends on its rank. For 2k, F is likely to be halved
when is doubled, while for 2k 1, Fi is likely to decrease by a factor of 2 -k.

It can be observed that the convergence of Walsh transforms is quite different
from that of Fourier transforms. This is why the attempt to generalize discrete
Walsh transforms to make a continuous variable, so as to make them analytic
functions of i, is fairly difficult, though formally possible. It is likely that many
techniques in complex Fourier transform theory would have no counterparts in
Walsh transform theory.
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(d) Finally we examine the effect of scaling. Supposef(t) g(at) with a < 1.
Then we have the upper bounds on levi and IGI,

Thus the Walsh transforms of f(t) are smaller than those of g(t) for all the i’s,
with the reduction effect increasing with rank. We see that if a function has a
Walsh series converging too slowly and containing too many significant high rank
terms, we can divide the interval into sections, scale these to [0, 1) and obtain a
faster convergent series for each interval. However, if the original series contains
only low rank terms, then dividing and scaling does not have much beneficial
effect.

REFERENCES

[1] J. L. WALSH, A closed set of normal orthogonal functions, Amer. J. Math., 45 (1923), pp. 5-24.
[2] M. COHN, Walsh functions, sequency, and Gray codes, SIAM J. Appl. Math., 21 (1971), pp. 442-

447.
[3] J. S. BYRNES AND D. A. SWICK, Instant Walsh functions, SIAM Rev., 12 (1970), p. 137.
[4] G. R. REDINBO, A note on the construction ofgeneralized Walsh functions, this Journal, 2 (1971),

pp. 166-167.
[5] Proc.ofSymposium on Applications ofWalsh Functions, Washington, D.C., 1970-1972. (National

Technical Information Service Nos. AD-707 431, AD-727 000 and AD-744 650.)
[6] K. L. BRUNEAU AND B. R. CLARK, Walsh-Fourier series for x2, x3, x4 on -1/2 x 1/2, IEEE Trans.

Electromag. Compat., 13 (1971), pp. 155-157.
[7] C. K. YtJEN, Upper bounds on Walsh transforms, IEEE Trans. Computers, C-21 (1972), pp. 1273-

1280.
[8] R. E. A. C. PALEY, A remarkable series oforthogonalfunctions, Proc. London Math. Soc., 2 (1932),

no. 34, pp. 241-279.
[9] H. RADEMACHER, Einige satze fiber Reihen yon allegemeinen Orthogonalfunktionen, Math. Ann.,

87 (1922), pp. 112-138.
[10] B. T. POLYAK aND Y. A. SCHRIDER, The application of Walshfunctions in approximate calculations,

Problems in Theory of Mathematical Machines, collection 2, Bazilevskii, ed., Fizmatgiz,
Moscow, 1966, pp. 176-190. (Abstract in Math. Rev., 31 (1966), pp. 1096-1097.)

[11] N. J. FINE, On the Walsh functions, Trans. Amer. Math. Soc., 65 (1949), pp. 372-414.
[12], The generalized Walsh functions, Ibid., 69 (1950), pp. 66-77.



SIAM J. MATH. ANAL.
Vol. 4, No. 4, November 1973

INEQUALITIES INVOLVING A FUNCTION AND ITS INVERSE*

R. P. BOAS, JR. AND M. B. MARCUS,"

Abstract. The paper presents a simple technique for establishing a class of inequalities, some of

which arise in connection with e-entropy and its applications in probability, and which include a

generalization of Young’s inequality.

We present a simple technique for establishing a class of inequalities to

which we were led by some special cases arising in connection with e-entropy and
its applications in probability. We now give some examples.

Example 1. t(1 s) =< e + logt (0 < s < 1;t > 0).
Example 2. Iffis nonincreasing and positive,f-1 is a generalized inverse of

f, and f(u)du converges, then

f- t(y) dy <= at + f(u) du.

Example 3. If k >-- 0 and converges, the sums

Flk=

1/2

$2-- tn
n=l H k=n

satisfy 1/2S1 -<_ S. _< 2S1.
Examplea.Let= t <= 1.DefineM() max {n" ]L,t >= e}ifL t >= ;

M(e) 0 otherwise. Each of the sums $1, $2 of Example 3 and

Z e-"/2 M(e-")}I/2
n=0

is bounded by a multiple of each other one (independent of the tk).
Uses of the function M can be found in Mitjagin [6] and Dudley [3]. Dudley’s

Theorem 7.1 suggested Example 4.
We shall be dealing with a nonincreasing positive function f, not necessarily

continuous, whose domain contains the finite interval [a, hi. A generalized inverse

f- off is a function satisfying

(1) sup {x’f(x) > y} <= f-(y) <= inf{x’f(x) < y}.

Two generalized inverses of the same function differ at most on a countable
set.

We start with the following (presumably well-known) convergence theorem.
THEOREM 1. Iff is nonincreasing on [a, or), f-1 is a generalized inverse off,

and ff(x) dx converges, then o f-l(y)dy converges, and conversely.
Theorem is geometrically obvious;see Fig. 1.

* Received by the editors January 18, 1972, and in revised form June 12, 1972.

" Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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0 a x

FIG. 1. The area between the graph and the x-axis is finite if and only if the area between the graph
and the y-axis isfinite

Proof. Iff is continuous and strictly decreasing, the formula for integration
by parts can be written

(2) f ff(a)f(x) dx bf(b) af(a) + f- l(y) dy.
f(b)

In the general case, f is positive, nonincreasing, and not necessarily continuous.
We can construct, in an obvious way, a sequence of bounded, strictly decreasing
continuous functions gk such that gk(x)--+ g(x) and g-l(y) g-l(y), where
g(x) f(x) and g- l(y) f- l(y) except for a countable number of points. Since
(2) holds for g and g- 1, it holds in the general case by bounded convergence.

The hypotheses imply that xf(x)--+ 0 as x ---, oo. Consequently, we can let
b --+ oo and f(b) --+ 0 in (2). The converse follows in the same way.

COROLLARY 1. Ifp and r are positive numbers,

(3) {f(ur)} lip du and {f-l(yp)} 1/r dy

converge or diverge together.
Proof This is an immediate consequence of Theorem when f is strictly

decreasing and continuous, since g(u)= {f(u")} 1Iv and h(y)= {f-l(yp)}l/ are
inverses of each other. For the general case we have to verify that one of the gener-
alized inverses of g(u) is {f- l(yp)} 1/, wheref- is a generalized inverse off. Now
one of the definitions of g- l(y) is

inf{x’g(x) < y} inf{x’[f(x")] lip < y}

inf {x" f(x) < yP}

inf {xl/’f(x) < yV}

the last expression is indeed a value of f- l(yp)} 1/r.
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COROLLARY 2./f p > 1, q p/(p 1), then

{u- if(u)} 1/p du and {y- f-(y)} 1/q dy

converge or diverge together.
_Proof. This is obtained by taking r q in Corollary and changing the

variable of integration.
COROLLARY 3. Ifp > 1, q p/(p 1), C > 1, then

{f(c’)} I/Pc’/q dt and {f-X(c-S)} X/qc-S/P ds

converge or diverge together.
Proof This is Corollary 2 with u c’ and y c -*.
Now let t be a convergent series of nonnegative terms; to simplify the

discussion we assume that =1 t 1. Set

(4) f(x)= t, n- <xn; f(0)= 1;

define

(4a) M(e)=max n" tk>_-e =sup{x’f(x)>=e}.
k=

(5) S y
x/

tk and $3--2 c-n/p{M(c-n)} 1/q (c> 1)
n=l nk=n n=O

converge or diverge together. However, what is wanted in applications is more,
namely that the sums in (5) are mutually comparable, i.e., that each is bounded by
a multiple of the other (the multiple being independent of {t}). That the stronger
result is true illustrates how series inequalities are sometimes simpler than their
integral analogues.

To obtain the stronger result, we return to (2), let b c, and take account
of the term af(a) at each step. From the proof of Theorem 1, we obtain

faOO f
f(a)

f(x) dx -af(a) + f- X(y) dy.
0

Following the proof of Corollary 1, we have

{f(ur)} /P du -aa + {f-(y’)} /r dy,

where e {f(ar)}I/P. Take r q, a 1, and then put uq s, yP--V, SO that
0 {f(1)} i/p and

{s- f(s)} 1/p ds a + {v- f-(v)} ’/q dr.
q P

The function M is a generalized inverse off.
If we interpret Corollary 2 in terms of t and M, we see that
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Interpreting this in terms of tk and M as in (4) and (4a), we have

{s- ’f(s)} ’/p ds + {e-1M(g)} ’/q(6)
q k=,

sum.
We now proceed to compare each of the integrals in (6) with a corresponding

On one hand, we have

(7) k2 j=k
{s- if(s)} ’/p ds <= t,

=1 j=k

1/p

On the other hand, M(e) 0 when e > aP f(1), and hence when e > we have

e-’ M(e)}’/ de e-’ M(e)}’/ de.
n=l

NOW

and hence

(8)

f-n+l fl{e-1M(e)} 1/q de (log c) {M(c-t)} 1/qc-t/P dt,

(log c){M(c -"+ ’)} 1/qc-n/P {e--’M(e)} ’/q de

-< (log c){M(c-")} 1/qc--(n--1)/p,

(log c)c- / 2 {M(c-)} /qc-/ <= {e-M(e)} /q de
n=O

=< (log c)c ’Iv {M(c-")}’/qc -"Iv
n=l

and

Comparing (7) and (8), we get from (6)"

lk ( k )l/ptj
qk=2 j--k

nt-

k=l

_<_ p-’(log c)c ’/p {M(c-")}’/%-"/v
n=l

l(log c)c-1/p {M(C-n)} 1/qc-n/p

_
P n--O

k
k=l k=l

Therefore we have the required result about (5), namely, the following corollary.
COROLLARY 4. If k is a convergent series ofpositive terms with

Ztk<l
k=l

ifp > 1 and q p/(p 1), c > 1, and S S 3 are defined by (5), then

q- c- a/PSx <= p- X(log c)S3 <= c/P(1 + q- )Sx.
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Corollary enables us to provide an elementary proof of a useful lemma ([5],
Russian p. 20; English p. 10).

COROLLARY 5. If {a,} is a nonincreasing sequence of positive numbers and
M(s) sup {n: a, >= s}, then

log m(s)
lim sup- inf
s-0 log(l/s)

Proof. Definef(x) a, for n < x =< n" then M(s) is a generalized inverse
off. Interpreting (3) in this notation with p 1/e and r 1, we have that

{f(t)}dt and M(/) d

converge or diverge together. Suppose that they converge. Then since M decreases,
iM(/) --, 0 as O;in other words, M(s)s 0 as s O. Therefore,

log M(s)
limsup ,
0 log(l/s)

say. Then for s small enough, M(s) _< s -"-’, e > 0. Therefore

M(s1/(n+ 2)) ds < o

and using (3) again, we see that a,"+2 < oe for all e > 0. This completes the
proof.

Theorem and its consequences are in fact corollaries of a generalization of
Young’s inequality.

THEOREM 2. Let f be nonincreasing and positive and let be in the domain of
f- 1, a generalized inverse off Then

(9)

and

bf(b) + f- l(y) dy <= at + f(u) du
(b)

f(a)(10) af(a) + f(u) du <= bt + f-l(y)dy,
’t

with equality only when f(a +) <= <_ f(a-) in (9) or f(b +) <= <=f(b-) in (10). (See
Fig. 2.) Furthermore, whenf is nondecreasing and positive, (9) and (10) hold with the
direction of the inequality reversed.

Young’s inequality [8] is (10) with a nondecreasing function and reversed
inequality (Young considered only strictly increasing differentiable functions).
The usual statement of Young’s inequality [4, p. 111], [7, p. 48] is the special case
when a f(a) 0. Generalized inverses were introduced in this context in [2].
We omit the proof of Theorem 2, which will be presented elsewhere.

In our final theorem, we introduce a third sum which is comparable to the
sums in (5). This theorem, like Theorem 1, is a result of an integration by parts in
which the monotonicity of the function allows some simplification. However, it is
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f(b)

0 a b
FIG. 2. Pictorial representation of(9)

still simpler to prove the theorem by means of a summation by parts; that is the
method we shall use.

THEOREM 3. Let be a convergent series ofnonnegative terms. Ifp > and
q p/(p 1), the sums

n=l k=n n=l k=n

satisfy
(1/q)S1 <= $2 <= PS1.

Proof If S converges,

Sx n tk
n=l H k=n

>= , n a/q

>= t.
1/q

In the other direction, we have

S= n
k:n n+lk=

Yl k=n n k=n+
k + tk

k:n

1/p
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Therefore,

S <__ q n/ t
k=n k=n+

-x/q

l k=n

The last inequality follows because

b/ (b a) /p ab-/.

It is interesting to observe that t/ < is a necessary condition for S
and $2 to be finite [4, p. 255, Theorem 345]. In fact, if we apply H61der’s inequality
with index 1/p to $2, we find

S > (,/.1-.k 1

It is also known that S is finite when {tk decreases and
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IMBEDDING A CLASS OF LINEAR INTEGRAL EQUATIONS
THROUGH THE FIRST CRITICAL POINT*

ALAN SCHUMITZKY’ AND TOM WENSKA

Abstract. In this paper, we investigate the continuation of an imbedded solution (x(t) x(t, )) of

x(t) f(t) + k(t, s)x(s) ds f(t) + (Kx)(t)

through its first "critical point" c. Under the assumption that the Fredholm resolvent

F, (I Ks)- has a simple pole in its meromorphic expansion about 0 c, we obtain a simple
eigenspace corresponding to 2 for the operator Kc; and in accordance with the Fredholm alter-
native, we have an imbedded solution for > c for forcing functions orthogonal to the one-dimensional

eigenspace of the adjoint operator K*. The principal technique is the explicit solving of the Bartle-
Schmidt bifurcation equation.

1. Introduction. We are concerned with linear Fredholm integral equations
of the second kind:

(1) x(t) f(t) + k(t, s)x(s) ds.

By an "imbedding" of (1) we mean the consideration of the solution x(t) x(t, )
as a function of the interval-length parameter e. The imbedding formalism leads
to an equivalent formulation of (1) as an initial value problem. The initial con-
ditions are specified at e 0 by x(t,O)= f(t). New and effective numerical
procedures have been obtained in this way (cf. [1], [3] and the references cited
therein). In addition the imbedding concept has led to a general and unified theory
for factorization of integral operators (cf. [13]). Nevertheless, there is one intrinsic
limitation of the imbedding formalism from the practical point of-view. This
1imitation can be described as follows.

Assume f and k are continuous and let c be the first "critical length" of (1),
i.e., c is the largest number a such that the operator I K, is invertible for all
a [0, a). (K is the integral operator defined by Kx(t) o k(t, s)x(s) ds.) For
general forcing function f, the imbedded solution x(t, ) tends to (in absolute
value) as a tends to c. If originally (1) were to be solved for a b > c, then the
initial value methods, which start at a 0, never get past a c.

The main question to which we address ourselves in this paper is: When can
an imbedded solution get past the first critical length? Viewed in this light, the
problem becomes one of bifurcation theory (cf. Wenska [5]). The Fredholm
alternative shows that a necessary condition is that the forcing function f be
orthogonal to the null-space of the adjoint of (I- K). It turns out that this
condition is not, in general, sufficient. A crucial role here is played by the nature of
the singularities of the Fredholm resolvent F--(I- K)-a I considered as
a function of a.

* Received by the editors January 27, 1972, and in revised form August 7, 1972.
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Our main result is as follows" If k(t, s) is symmetric, real analytic on 0 <=
<= s <__ b, c < b, if F is meromorphic in z and has a simple pole at c, and if f
satisfies the necessary orthogonality condition, then (1) has a unique imbedded
solution which exists jbr > c.

A word about the hypotheses is in order. The symmetry assumption on k is
merely a convenience to make an already complicated proof more tractable.
It could be omitted without violating the conclusion. The analyticity assumption
on k and meromorphy assumption on F are necessary ingredients of the bifurca-
tion machinery and are satisfied in a wide class ofproblems. The drastic assumption
is, however, the one concerning the simplicity of the pole. Unfortunately the
result is not true without it. (A counterexample is given in 5.) However, the
argument we give can be used for higher order poles at the expense of more labor
and a more complicated conclusion.

A brief summary of the paper follows" In 2 we state precisely our hypotheses.
Section 3 contains a description of two classes of kernels which satisfy the mero-
morphy assumptions; namely, the class of kernels analytic on the square 0, b

[0, b] and the class of kernels analytic on the triangle 0 =< __< s =< b and
fundamental in the sense of Schumitzky [33. This latter class is important for
applications in the area of prediction and control. In 4 a characterization is
given of those kernels for which F has a simple pole at c; namely, a necessary
and sufficient condition for this is that no eigenfunction e(t) of K (corresponding
to eigenvalue 2 1) vanishes at c. This result may be of independent interest.
A corollary of this result is that a simple pole in F implies a simple eigenvalue at
2 1. An example is given to show that the converse is false. In 5 we obtain an
imbedded solution to (1) at c.

Sections 6 through 9 concern themselves with continuation past c.
Section 6 outlines the general bifurcation technique. Sections 7 and 8 are devoted
to the identification and solution of the "bifurcation equation." And 9 concludes
the paper with a statement of the main result and a formula for the aforementioned
continuation.

2. Assumptions. In this section we make assumptions on the kernel k and
on its resolvent. We shall adhere to these assumptions throughout the remainder
of this paper. Our first assumption is the following"

(A1) The kernel k(t, s) is symmetric and real analytic
in (t, s) on 0 < < s < b and admits continuous extension
onto 0, b] I0, b].

By virtue of (A 1), the operator K defined on C[0, e] by

(Kx)(t) k(t, s)x(s) ds, O<=t<=,

is continuous from C[0, ] into itself.
Let F,(t, s) be the Fredholm resolvent kernel of K, i.e., the kernel of the

operator [I- K]-1 I.
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Let c be the first critical length of k(t, s), i.e.,

c sup {sl for every 0 e [0, s], [I Ks]- exists in the algebra of
bounded linear operators on C[0, el}.

The Fredholm alternative characterizes c as the first point a such that there
exists V 0 and V(t) .o k(t, s)V(s)ds. McNabb and Schumitzky [1] have given
equivalently that c is the first point a such that the mapping e IIFII becomes
unbounded for e e [0, a].

Our second and third assumptions are as follows:

(A) Fs(t, s)is meromorphic in near c; i.e.,
there exists a sequence of bounded kernels

{A,(t s)} such that F(t s)= A,(t s)(c- )""-N
-N

(A3) F(t,s) has a simple pole at e=c; i.e.,N 1.

Assumption (A1) is completely straightforward. In the next two sections we
elucidate the meaning of the latter two assumptions in terms of properties of k.

3. The meromorphy assumption. We give two classes of kernels which imply
Assumption (A .)

(a) Kernels analytic on the square [0, b] x [0, b]. We consider first finite rank
kernels of the form

k(t, s) gi(t)hi(s),
i=1

{gi}, {hi} analytic on [0, b] and respectively linearly independent. Then the
singularities of Fs in fact are related to the zeros of the determinant

i gi(s)h(s) ds D(),

and hence the singularities of F are the zeros of an entire function. Hence F
does in fact have a meromorphic expansion.

Next we consider the general analytic k; the technique is basically in the style
of Riesz and Nagy [2].

Suppose k(t, s) is analytic on [0, b] x [0, b]. Then k(t, s) can be uniformly
approximated by its truncated power series on [0, b] x [0, b]. Let k,(t, s) be the
nth sum, i.e.,

k.(t, s) E Aj,ktjSk"
j+k=i

Then k,(t, s) --, k(t, s) uniformly, and it is known (see Wenska [5]) that K,,, - Ks
in the operator topology. Let N be such that supt0,b [IKN,- KI[ < 1/2.
Then (I (Ks KN,)) is invertible since K Ku, has norm less than 1, and
(I- (K Kv,s)) -1-- I + (K Ks,s)+ (K Ku,)2 d- I + F, where
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the series is absolutely convergent in the operator norm. We can therefore write

(I K) (I -(K Ks,))(I -(I -(K Ks,))-Ks,);(2)

and

(I (K Kv,))-lKv,(t, s) (I + F)K,
N

Z Aj,k(I + C)tksj
j+k=i

N

Z Z Aj,g(t,a)(t)sj,
i= j+k=i

where g(t, a) is analytic in a being just the sum of convolutions of an analytic
kernel and . Hence (I + F)Ku, is of finite rank. It is also clear from (2) that
I Ks is invertible if and only if (I (I + F)Ku.,) is invertible. Re-indexing the
summands of (I (I + F)Ku,) we see that the invertibility of (I (I + F )Ku,)
is related to the zeros of a determinant

U gi(s)h(s) ds D(e)

of order at most Na, and each term of which is analytic in e. Letting I + F, be
the inverse of (I- (I + F)K,) we have I + F (I + F,)(I + F) and the
singularities of F are in fact the zeros of D(e), and F has a meromorphic ex-
pansion.

(b) Fundamental kernels. Let A(t), B(t), C(t) be n x m, n x n, m x m matrices
respectively, whose entries are real analytic functions on the interval [0, b;
let F be an n x m constant matrix. Following Schumitzky [3, we say that the
continuous n x m matrix kernel Q(t, s) is fundamental relative to (A, B, C, F) if
Q(t,s)iscontinuouslydifferentiableoneachofthesetsO <= < s < b,O <= s< < b
and 0 _< s < b, and satisfies the system of equations

8s

d

-Q(t, s) B(t)Q(t, s), < s,

-Q(t, s) Q(t, s)C(s), s < t,

-Q(t, t) A(t) + B(t)Q(t, t) + Q(t, t)c(t), o < t,
dt

Q(O, O) F.

Now let H(t) and G(t) be n and m real analytic matrices respectively
on 0, b]. Then the kernel k(t,s)= H(t)Q(t,s)G(s) is scalar-valued and satisfies
Assumption (A1). Further, it is proved by McNabb and Schumitzky V4] that F
satisfies the meromorphy assumption (A2).

A typical example of kernels of this type is given by

k(t, s) hi(t)gi(s exp (- Tilt sl),
i=1
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where H(t) (hl(t), h2(t), h,(t)), G(t) transpose of (gl(t), g2(t), "., g,(t))
and Q(t,s)= diag(exp (-Talt- sl),exp(-7lt- sl), ..., exp (-7,It- sl)). Here
Q(t, s)is fundamental relative to (A, B, C, F), where -1/2A B C diag (-71,
-72, "’", -7,). (For further applications of kernels of this type see Schumitzky
[3], and Kailath and Anderson [11] .)

4. The simple pole assumption (A3). The following result characterizes those
kernels whose meromorphic resolvents have simple poles.

THEOREM. F has a simple pole at c if and only if no eigenfunction of K
(corresponding to 2 1) vanishes at c.

Proof. Let F have a pole of order N >= at c. Thus

A_N(t,s)
(3) V,(t, s)=

(c- ) + O
N-1

Then the Bellman-Krein formula (see [3]) gives

c (c )+ + O

F(t, e)F(s, e)

A N(t, )A N(s, )
(C )2N

Multiplying through by (c )2N, we have

(4)

+O )2N-1C

NA_N(t, s)(c a)N- A_N(t, a)A_N(s, ) + O(c ).

If N= 1, then

(5) A_ l(t, S) A_ l(f, c)A_ l(S, c).

Setting s c, then either A_ l(t, C) 0 or A_ 1(c, c) 1. However, A_ l(t, c) 0
for every implies A_ l(t, S) 0 from (5), which contradicts the order of the pole.

Thus A_ 1(c, c) 1. If N > 1, then (4) implies A_N(t, c) O, [0, c].
At this point we claim that A_N(’, So) is an eigenfunction of Kc for some So.

The following is one of the resolvent equations for F(t, s):

F(t, s) k(t, s) + k(t, 0)F(0, s) dO, 0 <= t, s <= .
Let A_N(t, s) A(t, s). Then

A(t, s) (- A(O, s)
Jo(c a)N + B(t, s, ) k(t, s) + k(t, O)(c a)N

+ B(O, s, ) dO,

where B(t, s, ) O(1/(c a)N-1). Multiplying through by (c a)N, we have

A(t, s) k(t, O)A(O, s) dO + O(c )

or A(t, s) fo k(t, O)A(O, s) dO; since A(t, s) 0 by hypothesis, our claim is verified.
In particular for N 1, A(t, So)= A(t, c)A(so, c) and A(t, c) is an eigenfunction.
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Hence, if N > 1, then A_N(t, So) is an eigenfunction and A_N(c, s) 0, i.e., there
exists an eigenfunction which vanishes. If N 1, we claim that A_ l(t, c) is the
only eigenfunction (up to scalar multiples) and A_ 1(c, c) 1. Let A_ l(t, c) A(t).
K is compact by the Arzela-Ascoli theorem, and I K has a finite-dimensional
null space U. If A(t) does not span U, then there exists a g e U,g 0 and

o g(t)A(t)dt 0, i.e., g .1 A.
Since Kc is self-adjoint, g is also in the null space of I- K*. Hence the

Fredholm alternative implies that there is no solution to the equation

(6) x(t) g(t) + k(t, s)x(s) ds.

However, consider

x(t, ) g(t) + r(t, O)g(O) dO

{7)
g(t)+ g(O)A(O) dO + (t, 0, )g(0) 0.

The integral j’ B(t, 0, 00g(0)dO is analytic in about c since B(t, s, ) is also, and
hence is bounded. Likewise,

lim --1A(t) fl--,c C
A(O)g(O) dO A(t)A(c)g(c).

Hence, (A(t)/(c ))o A(O)g(O)dO is bounded. Thus the right-hand side of (7) is

bounded, and Wenska [5] showed that a solution to (6) exists, and this contra-
diction verifies our claim.

So if N > 1, an eigenfunction vanishes at c, and if N 1, then there is
only one eigenfunction and its value at c is not equal to zero.

COROLLARY. If r’a has a simple pole at c, then
(a) is a simple eigenvalue,
(b) A_ (t, s) e(t)e(s), where e(t) is the eigenfunction corresponding to eigen-

value 1, and e(c) 1.
Remark 1. With regard to the corollary, we note that a simple eigenvalue at

2 does not imply that F has a simple pole at a c. Consider the following
example" k(t,s)= 3(1 t)(1 -s), where c 1, e(t)=(1 t) and F(t,s)=
3(1 t)(1 s)/(1 003.

Remark 2. If k(t,s)= H(t)Q(t,s)G(s), where Q is fundamental ( 2), and G
and H have constant coefficients, then it can be shown, using the Ricatti formalism
of Schumitzky [3], that F has a simple pole at c. Kernels in this class include
those of the form k(t, s) = n e-Tnlt-sl" Such examples are important in the
the6ry of filtering and control I11].

5. The solution x(t, ) at a critical length. In [53, Wenska showed that if
x(t, )is a function jointly continuous on 0, b] [0, ), uniformly bounded and

x(t, a) f(t) + fl; k(t, s)x(s, a) ds, a 6 [0, c),
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then a solution Xo(t) to the equation

x(t) f(t) + k(t, s)x(s) ds

exists and is the uniform limit of some subsequence x(t, a,), where a, c.

THEOREM. If k satisfies (A1), (A2) and (A3), and if of(t)A(t)dt O, then

there exists a unique function x(t, ), jointly continuous on [0, c] x [0, c], which

satisfies

x(t) j’(t) + k(t,s)x(s) ds jbr 0<= t,o <= c.

Note. Since I- K is self-adjoint on C[0, c] imbedded as a subspace of
L2[0 c], A( generates the null space of(I K *c) and the condition j’ A(s)f(s) ds

0 is the Fredholm condition of being orthogonal to the adjoint null space.
Proof. Let U be the integral operator defined on C[0, c] by

Ux(t) f A(t)A(s)x(s) ds

; AZ(s)ds

Since c is the first critical point of k, x(t, ) is given uniquely on [0, c] x [0, c) by
x(t, ) (I + F)f](t).Byhypothesis, Uf =_ 0;hence, x(t, a)= [(I + F)(I- U)f]
and by the remark prefacing the statement of the theorem, we need only show
that F(I U)f remains bounded in sup norm about c.

[F(I- U)f](t)=
A(t) fo A(s)f(s) ds
(c a)I) A2(s) ds + B(t, s, a)f(s) ds

and

-A(t)A(c)f(c)
lim_c [r(I u)f](t)

fo A2(s) ds + B(t,s,c)f(s)ds

and on {j[Uf=O}, F(I- U)f <= [If A 2 + liB c},where [[F(I- U)f[I,
f and A are the sup norms on [0, c], whereas the B represents the sup norm
on [0, c] x [0, c] x [0, c]. Hence, x(t, ) is uniformly bounded on [0, c] x [0, c] and

x(t, c) lim f(t) + F(t, s)f(s) ds

f(t)-
A(c)f(c)A(t)
) A2(s) ds + B(t, s, c)f(s) ds.

The following should be noted" the simplicity of the pole is crucial at this point.
Intheexamplediscussedin 4,F(t, s)= 3(1 t)(1 s)/(1 -a)3,ande(t)= (1 t).
But given any f orthogonal to e(t) such that f(1) :/: 0, then lim_.c IIFf[I oe.
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6. Continuation--bifurcations / la Bartle. Now that we have a solution to
the "critical equation," we examine the problem of getting past the critical point
by means of the bifurcation mechanism of Bartle [6].

The set-up for the general bifurcation problem is the following: Let B1 and
B2 be Banach spaces and a nonlinear operator from B1 B2 into B Suppose
that (x, y) Lx + F(x, y), where

(i) L is a bounded linear operator from B1 into itself;
(ii) the dimensions of the null space of L and its adjoint are equal and finite
(iii) F(x, y) is defined and continuous for t[xll and Ilyll small, F(0, 0) 0;
(iv) IIF(xl,y)- F(x2,y)ll =< M(xl,x2,y)llxl x211, where M is a non-

negative real-valued function which goes to zero with its arguments.
The object of bifurcation theory is to find solutions of

(8) Lx + F(x, y)= 0

in a neighborhood of (0, 0).
The following facts are easily verified algebraically. L:B B1 implies that

B1 is subject to two direct sum decompositions:

n D N(L), B1 R(L) ( C,

where N(L) is the null space of L, R(L) the range of L, D the "essential" domain
and C the complementary space of R(L). These decompositions induce a decom-
position on the dual structure:

B D* N*(L).

Moreover, L*’BT B, and N(L*) C*. Hence C is the dual of C* and is finite-
dimensional and admits a continuous projection Z. Let N be a projection on N(L).

Since N(L) and N(L*) have the same dimensions, there exists an onto injection
U :N(L) C and L + U :B1 B1, 1-1 onto. Hence a continuous inverse exists
(L + U)- Lt 1, and

L{IL=I-N.
Equation (8) is then equivalent to

(9) x + L{1F(x, y) u for some u 6 N(L).

If we fix u in (9), the conditions on F allow us to choose y sufficiently small so that

L 1F(x, y) is contractive, and for fixed u, (9) may be solved by iteration. Let
Vy(u) be the unique solution to (9).

THEOREM (Bartle [6]). A solution Vy(u) to (9) is a solution of (8) if and only if
(10) ZF(Vy(u), y) O.

Equation (10) is called the bifurcation equation. Also, in the self-adjoint
case, it should be noted that N(L) N(L*) C, and the maps U, N and Z are
identical.

7. Specific application to integral equations. In this section we make the
identifications with Battle’s theorem. We first extend the various mappings and
functions to a larger domain. Define:
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(i) K’C[O, b] C[O, b] by

(Kx)(t) k(t, s)x(s) ds, O<t<b.

(ii) F(t, s) by the solutions of the following"

F(t, s) k(t, s) + k(t, O)F(O, s) dO, O<=t<_b, O=<s__<,

F(t, s) k(t, s) + F(t, O)k(O, s) dO, s<b.

(iii) A(t) ={A(t) for 0_< =< c,

f k(t,s)A(s)ds for c __< __< b.

(iv) x(t, a) f(t) + k(t, s)x(s, ) ds for a _< __< b.

A closer look at the Bartle analysis indicates that the Banach space structure
of B1 is needed to guarantee the existence of the solution of (9) obtained by
successive iteration. In our application we shall use the pre-Hilbert space C[0, b]
and a solution will exist since convergence will occur in the uniform sense as well
as the L2 sense.

To get to the bifurcation problem, we wish to get x(t, c + ) as x(t, c) + (t, ).
Then

and

x(t, c) + g(t, z) f(t) + k(t, s){x(s, c) + g(s, a)} ds

(t, ) k(t, s)(s, a) ds + k(t, s){x(s, c) + (s, a)} ds

or

f fc
+a

(t, a) k(t, s)(s, a) ds k(t, s){x(s, c) + (s, a)} ds O.

The identifications with Bartle’s analysis are the following"

(i) L= I- K,

(ii) F(x, o) k( s){x(s, c) + x(s)} ds.

The Lipschitz condition of (iv) is effected via the mean continuity of k implied by
the continuity of k(t, s) (see Wenska [5]), and the 52 properties of k (see Zaanen [7]).

Since K is compact, the dimension of its eigenspace is finite and equal to the
dimension of the adjoint null space. Moreover, every eigenfunction of Kc in
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C[0, c] L2[0, C] can be extended to an eigenfunction of Kc as an operator on
C[0, b] L2[0, b] by the extension

e(t)=IIfoe(t)c for 0_<t_<_c,

k(t,s)e(s)ds for c=<t<_b.

Likewise every eigenfunction of Kc in C[0, b] L2[0, b] satisfies the extension
equation. The following lemma shows that all the eigenfunctions of Kc are in
C[O,b].

LFMMA. lf x L2[O,b and x Kx, where k(t,s) is continuous on [0, bl
[0, b, then x C[0, b-].
Proof. Since k is continuous on [0, b3 [0, b3, it is uniformly continuous.

Given > 0, there exists a 6 > 0 such that Ihl < implies that
< /cllxll2;then for Ih] < 6 we have

Ix(t + h)- x(t)l {k(t + h,s)- k(t,s)}x(s) ds

<-_ Ik(t / h, s) k(t, s)l Ix(s)l ds

<= Ik(t + h, s) k(t, s)l 2 ds

< cllx .
Hence, every eigenfunction of K is in C[0, b] and as a result there is only one

eigenfunction, the extension of A(t), henceforth denoted as
To see the adjoint null space structure, we know that A(s) generates the

adjoint null space of Kc on C[0, c] L2[0, c]. Thus, for every x L2[0, c],

0 ((I Kc)x, A) x(t) k(t s)x(s) ds} A(t) dt.

Hence, consider

Then for x e L2[0, b],

A(s) for
A*(s)

0 for

O<=s<c,_

c<s<b.

A*(t) (t) k(t, s)x(s) ds A(t) x(t) k(t, s)x(s) ds

=0

and A* e N(I K* L2[O, b].

dt

The simplicity of the eigenfunction as well as the equality of the dimensions
of the null spaces imply that up to scalar multiples, A* is the only element in
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N(I K’c), and that the operator U in the Bartle machinery is an integral operator
with kernel

u(t,s)
.3i(t)A*(s)
j’ A2(t) dr"

I K + U is now invertible. Let I + Fv be its inverse. Let Fv(t, s) be the resolvent
kernel of K U on C[0, b] c L2[0, b]. Consider the resolvent kernel equations
of Fv(t, s)"

rv(t, s) k(t, s) U(t, s) + k(t, O)Fv(O s) dO
A(t)

A*(O)Fv(O s) dO
o fo A2(t) dt

O<=t, s<=b

k(t, s) U(t s) + r’v(t O)k(O s)dO
f; 1-’t(t, 0)(0)dOA*(s)

fo A2(t) dt

Hence, it is obvious that Fv(t, s) has the property that on [0, C 2, Fv(t, s) satisfies
the resolvent kernel relations for the resolvent of Kc U on C[0, c] c L2[0, c],
and by uniqueness they are one and the same. Since K U is symmetric on
C[0, c], it is known thai Fv(t, s) Fv(s, t) for 0 < s, N c.

The equivalent bifurcation problem appears as

(11) v(t,a) (I + Fv) k(.,s){x(s,c) + v(s, a)} ds (t) + (t).

Writing out the operator convolutions, we have

v(t, a) t(t) + k(t, s)x(s, c) ds + Fv(t, O)k(O, s)x(s, c) ds dO

+ | k(t, s)v(s, e) ds + Fv(t, O)k(O, s)v(s, e) ds dO.

Hence,

v(t, e) A(t) + k(t, s) + Fv(t, Olk(O, s) dO {x(s, c) + v(s, a)} ds.

The resolvent equations for Fv imply that

Kc+ FvKc= Fv + U+ FvU.
The following lemma gives further simplification.
LEMMA. FuU O.
Proof. U (1 + Fe)(I- K + U)U (1 + Fv)U, and we are done. Hence,

(t)A*(s)
k(t, s) + F(t, O)k(O, s)dO Fv(t, s) + f A2(t dt’
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and

f+ { fl(t)A*(s)
{x(s c) + v(s z)} ds.

But A* -= 0 on (c, c + el, so

v(t, ) (t) + rv(t, s)x(s, c) ds + Fv(t, s)v(s, ) ds.

Considering this last equation as a Fredholm equation with kernel Fv(t, s) and
forcing term

A(t) + Fv(t, s)x(s, c) ds,

for small we can use the Neumann expansion for A(t, s), the resolvent kernel of
Fv(t, s) on [c, c + ]. Therefore,

v(t, ) v(t, e) 2(t) + Fv(t, s)x(s, c) ds + A(t, s)A(s) ds

+ A(t, O)Fv(O, s)x(s, c) ds dO

and

f(v(t, ), ) (t, s)x(s, c) ds + (t, s)(s) ds

+ k(t, O)Fv(O, s)x(s, c) ds dO

+ (t, 0)(0, s)2(s) ds dO

+ k(t, 01)A(01, 02)FU(02, S)X(S, C) ds dO2 dO

I + I2 + I + I + 15.
The Z projection in the Bartle machinery is generated by the dual basis of the
adjoint null space. Hence,

A*(t)
*(s) x(s) ds

and

where

A*(t) {f]A(s)ZF(v(., z), 0)(t) ; A2(t dt
cili(s)

fl for i= 1,3,5,
ci

for i=2,4.
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Hence the bifurcation problem is reduced to finding a such that

f A(s)( cili(s)) ds O.

8. Solution of the bifurcation equationomputation of . In this section we
solve specifically the bifurcation equations in a neighborhood of c. Some simplifi-
cations are in order.

(i) A(O)I 1(0) dO A(O)k(O, s)x(s, c) ds dO

k(O, s)fl(O) dO x(s, c) ds

A(s)x(s, c) ds.

Similarly,

(ii) A(0)I2(0) dO 2(s) ds,

(iii) A(O)I3(O dO (O)Fv(O, s)x(s, c) ds dO,

(v) A(O)Is(O)dO (O)(Ol,O2)v(02,s)x(s,c)dsdO2dOx.

Noting also the resolvent relations for A we have

c+fcC+c+i(O1)A(Ol,0Z)i-u(O2,s)x(s,c)dsdO2dO
(O1){ia(O1,s I-’u(O1,s)}x(s c) dsdO

Hence the term involving 13 cancels out, and the bifurcation equation is the
following:

fi.(O)A(O, s)t(s) ds dO) O.
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Consider now the coefficient of . Call it Mc+s.

+s22(s) ds + (0)A(0, s)(s) ds dO

[As(t, s)l 2 ds dt 22(s) ds

by two applications of Schwarz’ inequality. Consider Fv(t,s) 2[c,b] (see
Zaanen 7]). It is clear that A,(t, s) 5a2c, c + ]. Imbed As(t, s) W2[c, b] by
defining

j’A(t,s) if c<__t,
t, s)

0 otherwise.

s<_c+o,

It is easy to show that 0 As(t, s) is a continuous mapping into P2[C, b], and
Ao(t, s) 0 a.e. by its resolvent equation. Hence,

and

lim [A(t, s) 0[ 2 ds dt 0

fbfcb (f’;’ )2[As(t S)[ 2 dt ds > IA(t s)[ ds dt
(b c)2

(b c)2
+a t,c+s 2

[A(t, s)[ ds dt

Hence there is an entire neighborhood of 0 such that

fc+ ff+ IAa(t, s)[ 2 ds dt < 1.

The analyticity of k on [0, b] 2 implies the analyticity of . Hence for all > 0,

22(s) ds > O.

Thus for e sufficiently small, Mc+, > 0 and solving for , we have

{.f;+" 2()x(, c)d + I;+S; +" 2(o)a,(o, )x(, c)ds dO}
q:+" 2(s) d + j’;+’.f;+" 2(o)L(o, s)2() d dO)

The following proposition discusses some properties of ().
PROPOSITION. () is differentiable in and lims_o (z) 0.
We need the following lemma in the proof of this proposition.
LEMMA. /f.f A(t)f(t) dt O, then x(c, c) O.
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Prooj oj’ lemma. Iff’(c) exists, then

xlt, ) xlt, c)
0{ C).(C ) Ic0 A2(S)Ms + lCo AZ(sldsJ

{B(t, s, ) B(t, s, c)}f(s)ds
( C

f: B(t, s, c)f(s) ds.

Our initial assumption about the meromorphic structure of F implies the
following"

x(t, ) x(t, c)
lim
--,0- C

A(t) f"I) A2(S) ds(Af)’(c) + B(t, c, c)f(c) A l(t, S)f(S)ds

d
x(t,c) < oo

do-

for e [0, b]"

d
x(t a)

d {y 2(t) ; A(s)f(s) ds fid- 5 A2(s) ds (c )
+ B(t, s, cz)j(s) ds

ICO A (s) ds ( c
+

(c a)2

+ B(t, , a)f(a) n A.(t, s)(c (X) lf(s)ds

and

lim
d-- x(t, ) x(t, c).

But it is known (see, for instance, Kagiwada, Kalaba and Schumitzky [9])
that

--x(t, o) x(a, 0)F(t,

and it is also known (see McNabb and Schumitzky [-1) that F is unbounded in
norm as c. Since

lim J-- x(t, ) <
_+

it must be that lim_, x(a, cz) 0. For general f, the result follows by choosing a
sequence of {J),} c C’[O, b] converging to f(for instance, an e-mollification off)
and applying collectively-compact arguments (see Wenska [5]).

Proof of proposition. For the differentiability of (), just compute formally
the derivatives by quotient rule, and notice that the only, perhaps, unjustified
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differentiation is the one involving A But the Bellman-Krein formula allows us
to so justify it.

To show that lim,_.o+ (c) 0, consider

lim
(1/0 {J’+ (s)x(s, c)ds + c++ A(O)A(O, s)3(s) ds dO} -x(c, c)

-.o+ (1/) {.f+/-(s) ds + + ,(0)A(0, s)Y(s) ds dO} (c)
since As(0, s) - 0 a.e. The corollary of 3 and the last lemma give the conclusion.

9. The continuation theorem. Sections 7, 8 and 9 implement the requirements
of Bartle’s theorem, and prove the following.

THEOREM. If k satisfies (A1), (A2) and (A3), then given f orthogonal to the null
space of I Kc, an imbedding x(t, o) exists on a neighborhood A which properly
includes [0, c], where

x(t, 0) j(t) + k(t, s)x(s, 00 ds jor all cze A.

It should be noted in the proof of this last theorem that the solution past the
critical length is given by the following"

x(t, c + ) x(t, c) + As(t, s)x(s, c)ds t) + As(t, s)A(s) ds

+ c,

where As(t, s) is the resolvent of Fv(t, s) computed by Neumann expansion, and
Fv(t, s) the resolvent of

K(t, s) U(t, s) k(t, s)
A(t)A*(s)
; A 2(S) ds"

It should also be noted that x(t, c) + (t)is also a solution to the critical
equation, but the imbedded solution is the only solution which vanishes at c.
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LINEAR INTEGRAL EQUATIONS OF THE THIRD KIND*

G. R. BART," AND R. L. WARNOCK

Abstract. Linear integral equations of the third kind are studied as equations in two different
spaces of generalized functions. In the first space D which consists of linear combinations of delta
functions and continuous functions, the equation of the third kind has properties similar to those of
the Fredholm equation of the second kind. The second space P is comprised of linear combinations
of delta functions and functions continuous except for poles, integration over the poles being defined
by Cauchy’s principal value. In P the behavior of the third-kind equation is essentially different
from that of second-kind Fredholm equations. Solutions in both De and P may be constructed explicitly
via Fredholm theory. Examples showing the suitability of these spaces in physical problems are cited,
and earlier literature on third-kind equations is surveyed briefly.

(1,1)

1. Introduction. We are interested in linear integral equations of the form

g(t)o(t) 2 K(t, t’)q(t’) at’ f(t),

where g(t) vanishes at least once in the interval [a, b]. Such equations are often
called equations of the third kind. Several papers on the topic have appeared during
the six decades following the early work of Hilbert [10] and Picard 15], but the
amount ofattention it has received hardly compares with that directed to equations
of the second and first kinds. Most of the standard treatises on integral equations
have little to say about equations of the third kind. Noteworthy exceptions are
the books of Schmeidler [18] and Hellinger and Toeplitz [9].

One must begin, of course, with the question of what is meant by a solution
of (1.1). Various answers have been proposed in the literature. We suggest a new
definition of solution, which appears to be natural and appropriate in certain
applications of third-kind equations that we have encountered.

We look for solutions in a space D of generalized functions of the type

(1.2) o(t) co,6(t- t,) + y(t).
i=1

Here, y(t) is a complex continuous function on the closed interval [a, hi, and 6(0 is
Dirac’s generalized function. The coi are complex numbers, and the ti are the points
at which g(t) vanishes; we suppose that n is finite, and ti : a, b. The space of test
functions consists of all complex, continuous functions on [a, b]. The subscript z of

D denotes the set of all t:z {tilg(ti) 0}. The space D is a Banach space with
the following norm:

(1.3) sup leoil + sup ly(t)l.
<i<n a<t<b
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In this space, one is able to obtain close analogues of the usual Fredholm
theorems, provided that g, K, and f satisfy certain continuity conditions, and that
d det K(ti, tj)] is not zero. The continuous part of the solution, y(t), is obtained
as the solution ofa regular Fredholm equation, while the oi are explicit functionals
of y. In other approaches, both the Fredholm-type theorems and the reduction
to a regular Fredholm equation are lacking.

In the case d 0 we have not been able to show that the very close analogy
with Fredholm theory persists. We do establish some results which resemble
Fredholm theory, however. We study this case both in the space De, and in the
space P of generalized functions of the form

(1.4) q(t)
g=l

cofi(t- tg)+ Pig(t)],
where P denotes Cauchy’s principal value integration, g(t) is the coefficient
appearing in (1.1), and x(t) is a complex continuous function. Similar solutions
were discussed by van Kampen in connection with a problem of transport theory
see 5.

For purposes of comparison, we begin with a brief survey of that earlier work
on third-kind equations which has come to our attention. The papers mentioned
deal with fairly general classes of equations. In 5, we cite literature on various
special equations of the third kind.

Hilbert 10] investigated a class of equations of the form (1.1) which he
called "polar equations". For these equations g(t) is piecewise continuous and
takes on only the values _+ 1, while K(t, t’) is symmetric and nonnegative. A
number of authors have extended Hilbert’s work in various ways for a summary
and references, see [9, 21, 38, 44]. Schmeidler [18] devotes a chapter to treating
the third-kind equation by Hilbert’s method of infinitely many variables.

In the spirit of Hilbert’s approach, Picard 15] handles the important case of
(1.1) when g(t) t, by substituting (t) tq(t)and replacing the integral equation
by

(1.5) (s) 2 K(s, t)t- /(t) dt 2 K(s, t)t- (t) dt f(s),

where 0 < e < -a and 0 < r/< b. He then treats (1.5) as a regular Fredholm
equation and lets e and r/go to zero, in the solution, in such a way that In (q/e) goes
to a nonzero finite constant limit C. If K is analytic, the solution converges to a
linear function of C which satisfies the original integral equation for , as the limit
of (1.5). For extensions of this work, see the references in 9, 21]. (In addition,
Chvoles 4] has proved the convergence of Picard’s limiting process under the
assumption that K and f have first order derivatives satisfying a Lipschitz con-
dition. Also, Trjitzinsky [21], 22] has developed a general theory of singular
integral equations of the second kind using an approach similar to that of Picard.)

One should note, however, that it is not always expeditious to consider the
equation for gq, i.e.,

(1.6) /(t) f(t) + 2 K(t, t’)g- l(t’)t(t’)dr’,
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in place of that for o because, in general, the singularity structure given to 9 by
the singular kernel in (1.6) will be very complicated [12]. Sometimes one may
avoid the singular integration in (1.6) by using a principal value rule. Thus, the
equation

(1.7) (t) + P.P. F(t, t’, q(t’))[g(t’)] --k dr’ f(t),

where 0 < a < b, k > 0 is an integer and 0 < z < 1, has been discussed by
Vekua [24] when F is linear in q and g(t) b t, as well as by Weiner 25], 26]
when F is nonlinear but vanishes for t’ > with g(t) ]b

2. The quasi-Fredholm case. The equation (1.1) is abbreviated as follows"

(2.1) (gl Kx)q f.
By the adjoint of this equation, we mean

(2.2) ,(t)9(t) i K*(t, t’)O(t’) dr’ f(t),

or

(2.3) (,I- K)O (gI- Kx)*O f,

where , is the complex conjugate of g, etc., and K*(t, t’) K(t’, t). Iff is identically
zero, the equation for q) or is called homogeneous. Whenever the limits of inte-
gration are suppressed hereafter, the interval [a, b] is to be understood.

We suppose that g(t) and f(t) are continuous in [a, hi, and that K(t, t’) is
continuous in the square [a, b] x [a, hi. We assume that g(t) has at least one zero
in (a, b), and g(a), g(b) # 0. The derivatives g’(t), f’(t), OK(t, t’)/Ot, OK(t, t’)fi?t’,
c32K(t, t’)/c3t C3t’ are all assumed to exist and be continuous when or t’ is sufficiently
close to a zero of g(t). Also, g’(t3 must be nonzero if g(t3 0. It will be clear that
some of these conditions can be weakened without difficulty. For the work of this
section in particular, the continuity of g’(t) near t may be replaced by the require-
ment that g’(t) be continuous near t except for a jump discontinuity at t. This
entails a corresponding generalization of the space D, to allow for jumps of y(t).
Furthermore, one could drop the requirement that g’(t) be continuous from the right
or left, and assume instead that g(t) has asymptotes of the type g(t) i_+lt -til’,
t--* +_ 0,0 < fli+ < 1.

Suppose that g(t) has n zeros at in (a, b), 1, 2, ..., n. Let C be the
set of all continuous complex functions defined on [a, b], and let D, be the space of
generalized functions defined in the Introduction. For the operators gI, Kz’D - C
we have the definitions

(2.4) gIq(t) g(t)y(t),

(2.5) Kzq(t 2 oiK(t, ti) + 2 f K(t, t’)y(t’) dt’.

Obviously, K is completely continuous.
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Although the adjoint operator (gI Kx)* may be viewed as just a second
mapping from De to C, the natural interpretation is in terms of dual spaces. Let
D* and C* be the dual spaces of De and C, respectively. An element of C* is a
continuous linear functional which assigns the complex number (O,y) to an
element y of C. An element of D* is similarly a continuous linear functional
assigning (tp, q) to an element q ofD. The adjoint operator (gl K)* C* D*
is related to (gI K):D C as follows:

(2.6) <(gI- Kx)*, q) <,(gl- Kx)q).

Just as we do not consider all (p 6 C* which are solutions of (1.1), we shall not

considerall 6 C*whicharesolutionsof(2.2).Rather,weconsider only 6 D = C*.
THEOREM 1. If g(t) has only the n zeros at i, 1, 2,..., n, in (a, b) with

g’(ti) :/: 0 and

(2.7) d det [K(ti, tj)] - 0,

then either (a) both (1.1) and (2.2) have unique De solutions, or (b) the homogeneous
forms of (1.1) and (2.2) each have a finite number k >= of linearly independent non-
trivial D solutions and (1.1) has a D solution if and only if for every De satisfying
the homogeneous adjoint equation

(2.8) (gI K) 0,
one has

(2.9) J (t)f(t) dt O.

Note that in case (b) the general D solution p of (1.1) involves k arbitrary
constants ak and is obtained from a particular solution Po by the formula

(2.10)

where the %, k > 0, are linearly independent solutions of the homogeneous
equation

(2.11) (gI K)cp 0.

The theorem is trivial if 2 0 since then (b) always holds. Suppose, therefore, that
2 - 0 and consider first n with, say, 0. With p co6 + y, equation (1.1)
becomes

(2.12) g(t)y(t) f(t) + o2K(t, O) + 2 f K(t, t’)y(t’) dr’.

We obtain an expression for o by evaluating this equation at -0. Since by
assumption K(0, 0) - 0,

(2.13) co _f(0) + 2 j" K(0, t’)y(t’) dr’,
2K(0, 0)

and (2.12) becomes

K(t, O)
(2.14) g(t)y(t) f(t) f(O)

K(0,0) fl K(t,O)K(O,t’).]+ 2 K(t, t’) -K--- y(t’) dt’.
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Now if q9 co6 + y is a solution of(1.1), then co is fixed in terms of y by (2.13)
and y satisfies (2.14). Conversely, if y satisfies (2.14) and co is defined by (2.13), then
one can check that q9 col + y is a solution of(1.1). Thus, in this case, (1.1) and
(2.14) are equivalent. Similarly, (2.2) is equivalent to an equation like (2.14). But
by our assumptions on g, f, and K, clearly (2.14) is a regular Fredholm equation
ofthe second kind in the space C (after dividing by g), since we may use l’Hospital’s
rule to evaluate the 0/0 limits when they occur. Hence, (2.14) may fail to have a
unique continuous solution only if there exist a finite number k => of nontrivial
continuous solutions to the equations

(2.15) g(t)y(t) 2 K(t, t’) -K-(6- y(t’) dt’,

(2.16) z(t) . f IK*(t, t’) K*(t,]_g(6O)K*(O, t’)lz(t’_],(t, dt’.

Note that (2.16)is obtained from (2.15) by first dividing by g(t) and then taking
the adjoint in the usual Fredholm sense. Equation (2.16) is different from (2.8),
the adjoint homogeneous equation in De. Suppose these nontrivial solutions exist
and z is any solution of(2.16). Notice that z(0) 0 and z’(t) is continuous at 0.
Hence, .9(0 z(t)/,(t) satisfies the adjoint (with respect to De) of (2.15) and is
continuous. Consequently, if one defines

(2.17) q(t) 6(t) + y(t),

(2.18) I/li(t doff(t) + i(t)
with

(2.19) coi - K(0, t)yi(t)dt
K(O, O)

(2.20) do _f K*(O, t)i(t dt
I*(0, O)

in terms of each of the linearly independent solutions Yi, )3i, 1,..., k, then
one can verify that the q satisfy (2.11) and are linearly independent, while the

satisfy (2.8) and are linearly independent.
Thus, we find that in the theorem either (a) or the first part of (b) is true when

n 1. The second part of (b) is obtained by noting that (2.9) is equivalent to the
well-known condition for (2.14) to have a solution when (2.15) has nontrivial
solutions, i.e., since z

f i(t)-rT.,gt01 [f(t) f(O)K(o,K(t’O)]dt=f
(2.21)

/i(t)f(t) dt O.

Consider next the case when g has n > zeros in (a, b) at points t near which
g’(t) is continuous and for which g’(t) : O. We use (1.1) and (1.2) to write

(2.22) g(t)y(t) f(t) + 2 coiK(t, ti) + 2 f K(t, t’)y(t’) dt’.
i=1
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The co are fixed by the requirement that the right-hand side of (2.22) be zero when
evaluated at each ti. Thus,

(2.23) 2 coK(tj, t) f(tj) 2 K(tj, t)y(t) dr.
i=1

Since, by assumption,

(2.24) d det K(tj, tk)] 4 0,

we have

(2.25) co f(2d)- 1,

where fi is the determinant of the matrix formed from the matrix [K(tj, tk)] by the
replacement of the ith column, K(tj, t), byf(tj) + 2 K(tj, t)y(t) dr. If the expression
for co is substituted into (2.22), one obtains

g(t)y(t) V(t) + 2 M(t, t’)y(t’)(2.26) dr’,
d

where

(2.27)

f(t) K(t, l) K(t, t,)

f(tl) K(tl,tl)...K(tl,t,)F(t) -
(2.28) M(t, t’) -Note that for 1, 2, ..., n,

f(t,) K(t,, 1)-.. K(tn, tn)

K(t, t’) K(t, l) K(t, t,)

K(t t’) K(t ,) K(t t,)

K(t,, t’) K(t,, 1)-.. K(t,, t,)

(2.29) F(ti) M(ti, t’) M(t, ti) O.

From this point on, one may proceed with (2.26) to (2.29) essentially as in the n
case to complete the proof.

From Fredholm theory, we know that y(t) in (2.26) is a meromorphic function
of 2 with no singularity at 2 0. Thus, each o0 and the solution q of(1.1) is also a
meromorphic function of 2 with, perhaps, a pole at 2 0.

3. A principal value interpretation of the integral equation. In this section we
drop the requirement d - 0, but work in a different space, the space P, mentioned
in the Introduction. Under the restrictions we have placed on g following (2.3),
the Cauchy principal value integrals P [x(t)/g(t)] dt will exist, provided that x is
continuous and has a continuous derivative in a neighborhood of each zero of g.
Let us define the space P,, {t , tz, ..., t,}, as the space of generalized functions
of the form

(3.1) q(t) co,6(t- t,)+ P[x(t)/g(t)],
i=1
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where x is continuous and has a continuous derivative in a neighborhood of each
zero ti of g. The P in (3.1) indicates that Cauchy principal values are to be used
when integrating expressions containing 1/g. The space Pe is closely related to De.

In fact, members of Pe for which x(ti) 0, for all i, are also members ofDe. We shall
show how one can obtain particular solutions of (1.1) in Pe for a wide class of
possible kernels. But, because the homogeneous form of (1.1) always has a non-
trivial solution in Pc, a particular solution of(1.1) can never be a unique solution
in Pe. (One can sometimes find a unique solution of(1.1) by the following approach
in that subspace of Pe defined by requiring all the co to vanish in (3.1).)

By substituting (3.1) in equation (1.1), one obtains

(3.2) x(t) 2P K(t, t’)-g dr’ f(t) + 2 co,K(t,
i=1

This equation may be written in a more convenient form by making use of a set
of continuous functions pi(t) which are required to have continuous derivatives in
a neighborhood of each zero of g and to satisfy

(3.3) pi(tj)

Thus,

(3.4)

where

x(t) 2 f D(t, t’)x(t’) dt’ f(t) + k (iK(t, ti),
i=1

(3.6) (i (-Di -}- P f pi(t)x(t)
dr.

g(t)

Note that (3.4) is a necessary condition on any solution x of (3.2). Since the &i are
constants, equation (3.4) is a regular Fredholm equation of the second kind for x, if
the &i are considered as given. Furthermore, any continuous solution of (3.4)
automatically has a derivative, which is continuous in a neighborhood of each ti.

Suppose that (3.4), with the right side set equal to zero, has no nontrivial
continuous solutions. That is, suppose (I 2D)- exists in the space ofcontinuous
functions. Then

(3.7) x-- X0 + k (OiXi
i=1

is a particular solution of (3.4) with

(3.8) x0 (I 20)-

(3.9) xi (I 2D)-12K(., ti).

To have (3.7) yield a solution of (1.1), it is required that the cb satisfy the consis-
tency condition obtained by substituting (3.7) into the right-hand side of (3.6).
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Thus,

Put

(_Oi_" i+ P f p,(t)Xo(t)
dr + L rbjP f p(t)xj(t) dr.

g(t) = g(t)

Pi(t)xj(t)(3.11) Au P | dr.
g(t)d

Then (3.10) becomes

(3.12) ((3 A(3)i gO qt_ p P| PiXdt
d g

If det [I A] 4: 0, this equation has a solution for arbitrary o)i. Therefore, either
the coi or the (h may be regarded as free parameters. If the xi, 1, ..., n, are
linearly independent, then we have in (3.7) an n-dimensional manifold of solutions
of(1.1) in the space P. If we put f 0, then Xo 0, and (3.7) yields a solution of
the homogeneous form of (1.1). The o) may always be chosen so that this solution
is nontrivial. If det [I A] 0, then it is possible that there is a solution of (3.12)
with some of the co still arbitrary. But there is always a solution with 65 - 0 for
some and

(3.13) ci -P I pixdt"
g

Again, if (h - 0, then P(oixi/g is a solution of the homogeneous form of (1.1), so
our solution in P is not unique.

Finally, if(3.4) with the right side set equal to zero has a nontrivial solution x,
this directly yields a solution q of the homogeneous form of(1.1) by taking

Pi(t)x(t)
(3.14) ci P g(t) at.

Thus, by (3.6) we have cbi 0 and

(3.15) q(t) L 6(t t,)P f ,,x(t’) Fx(t)l
--i=1 p,(t);dt’+ PLg(t)j.

There are many ways to choose the pi(t). For a particular kernel, this free-
dom might be exploited to ensure that I 2D has an inverse in the space of con-
tinuous functions. One simple choice for the p is

pl(t)- if n-- 1,

l (t-
(3.16) Pi(t)

= (t tj)
if n > 1.

je

If there exist n points z such that

(3.17) A det [K(zi, tj)]
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does not vanish, then another choice of the Pi is minus the coefficient of K(t, ti) in
the following expression:

(3.18) D(t, t’)g(t’)

!K(.t, t’) K(t, l) K(t, t,)

K(z, t’) K(Zl, 1)... K(Zl,

K(’cn, t’) K(’cn, 1)... K(’cn, t,)

(3.19)
where

This choice is motivated by analogy with 2. If one evaluates (3.2) at the points
z, solves for the coi, and substitutes for the coi in (3.2), there results

2 f D(t, t’)x(t’) dt’ H(t),
d

(3.20)

f(t) K(t, tl) K(t, t.)

1 f(z)-x(z) K(z,,tl).."H(t)

f(z,) x(z,) K(z,, 1)... K(z,, t,)

Note that the n values x(zi) are unconstrained by (3.19) since D(z, t’) 0 and
H(zi) x(zi). The linearity of H in K(t, t) and in x(z) implies that the quantities
x(zi) are just a new parametrization of the manifold of solutions previously
parametrized by the

There is some overlap between the present approach and that based on the
space De. Suppose that we have the situation where.the co are arbitrary, and that

(3.21) det [xi(tj) 4= O.

This requires that the xi(t), 1, ..., n, be linearly independent. In that case, one
can determine the (5 in (3.7) so that x(t) 0. Since x’(t) is continuous at ti,
x(t)/g(t) is continuous near t and the principal value prescription is unnecessary.
The resulting solution of (1.1) lies in De. A similar conclusion may be stated in
terms of the x(z).

The main results of this section are summarized in the following theorems.
THEOREM 2. Let q)(t) P, be a solution of the integral equation of the third kind

(1.1). Then the corresponding x(t) satisfies (3.4), where the pi(t) are arbitrary except
for the restrictions stated.

THEOREM 3. There is always a nontrivial solution in P, ofthe homogeneous third-
kind equation

(3.22) (gl Kz)cp 0.

THEOREM 4. Suppose that (I 2D)- exists on the space of continuous func-
tions C[a, b], for a particular choice of the pi(t). Let xi(t), 0, 1, 2,..., n, be
defined by (3.8) and (3.9). Then, if det(I A) 0, the general solution of (1.1) in
P, is given by

(3.23) q(t) co6(t ti) + P[x(t) + =x ixi(t)1i= g(t)

where the co are arbitrary, and the do are obtained as the unique solution of (3.12).
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THEOREM 5. Under the hypotheses of Theorem 4, plus condition (3.21), there
exists a unique choice of the o such that the solution (3.23) belongs to De.

4. Analysis of the case det [K(ti, (/)] 0. We now return to the analysis of
(1.1) in the space De. Although we know of no counterexample to the consequences
of Theorem in the case d det [K(ti, tj)] 0, we have not been able to extend
the theorem, as it stands, to this case. In this section, we shall examine an alternate
approach to the third-kind equation yielding theorems which hold even if d 0.
The obstacle to extending Theorem 1 is the possibility of unequal dimensions for
the null space of gI K and its adjoint (acting on D). We can show, however,
that the dimensions are both finite numbers.

THEOREM 6. The null space of gI Kx, N(gI Kx) D isfinite dimensional.
Proof It suffices to show that every closed and bounded set in N(gI K) is

compact. Let F N(gI Kz) be closed and bounded. All we need show is that
from every sequence {z} in F we can extract a convergent subsequence (the limit
is, of course, in F since F is closed). Since the z belong to N(gI K), they have
the representation

where

(4.1)

z(t) coj6(t tj) + r(t),
j=l

and

(4.2)

Let

(4.3)

g(t)r(t) 2 o)jK(t, tj) + 2 f K(t, t’)r(t’) dr’
j=l

j=l

(t- tj)
Pi(t) (I

(t tj)j=l
j4:i

so that pi(tj) 6. Multiply (4.2) by p(t), sum over i, and subtract from (4.1) to get

(4.4)

r(t) ) coj K(t, tj) pi(t)K(ti, tj)
j=1 i=1

+- K(t, t’)
i=1

p,(t)K(ti, t’) r(t’) dr’.

Now the sequence of n-tuples {co, (co1, co,2,..., o,,)} certainly contains a
convergent subsequence {}. Since the integral operator in (4.4) is completely
continuous on the space of continuous functions, it follows that the associated
subsequence {r} contains a convergent subsequence and, hence, so does {z,}.
Similarly, the dimension of the null space of the adjoint operator is finite.

A useful property of the integral equation of the third kind is that if g(t)go(t)
vanishes at one ofthe zeros ofg(t), say t, and f(t) ,# O, then the inhomogeneous
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(4.5)

integral equation, (1.1), is equivalent to a homogeneous equation plus a subsidiary
condition. That is, we have the following theorem.

THEOREM 7. If ti is a zero of g in (a, b) and f(ti) 4: O, then q(t) satisfies both
(1.1) and g(ti)q(ti) 0/f and only if q(t) satisfies both

fl f(t)K(ti’t’)lg(t)q(t) 2 K(t, t’) -ft q(t’) dr’

(4.6) J K(t,, t’)q(t’) dr’ # O.

Proof. I is trivial to see that (4.6) is necessary. One can see that (4.5) is necessary
by evaluating (1.1) at t, multiplying the result by f(t)/f(t) and subtracting
from (1.1). From any solution 0(t) of (4.5) which satisfies (4.6), one can check that
one gets a solution of (1.1) by taking

(4.7) q(t) NO(t),
where

(4.8) N f(t,)/ f 2K(ti, t)O(t dt.

Let us suppose that t 0 is the only zero of g in (a, b) and impose the same
assumptions on f, g, and K as in Theorem 1, except that K(0, 0) 0 is allowed,
but f(0) 0 is not. Then, (4.5) may be interpreted as a regular homogeneous
Fredholm equation which might have nontrivial continuous solutions. If there are
continuous nontrivial solutions of (4.5), either there is one which satisfies (4.6)
and thus gives rise to a solution of (1.1), or obviously there exists a nontrivial
solution of (2.11). If there are no continuous nontrivial solutions of (4.5), put
o(t) 6(t) + y(t) in (4.5) to get

fl f(t)
K(O t’)lY(t’)dt’f(t)

K(O O) + 2 K(t t’)(4.9) g(t)y(t) 2K(t, O)- )t
This equation must have a continuous solution y(t) if(4.5) has none by the Fredholm
alternative. One can verify that q + y must, therefore, be a solution of (4.5).
This o leads to a solution of(1.1) via Theorem 7 if(4.6) holds; that is, if

(4.10) f K(0, t)[b(t) + y(t)] dt q: 0.

On the other hand, ifthe left-hand side in (4.10) is zero, then by inspection q + y
satisfies the homogeneous equation, (2.11), which is identical with (4.9) for this q.
Hence, we have proved the f(0) 4:0 part of the following theorem.

THEOREM 8. If g(t) has only one zero, say at O, in (a, b) with g’(O) :/: O, and
possibly K(O, O) O, then either (a)equation (1.1) has a unique D, solution, or(b) the
homogeneous form of (1.1) has a finite number k >= of linearly independent non-
trivial D, solutions.

The finiteness of k in Theorem 8 comes from Theorem 6. The f(0) 0 case is
reducible to the f(0) 4:0 case by the substitution

(4.11) q(t) Z(t) + K(0, t),

and
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if K(0, t) does not identically vanish. Thus,

(4.12) g(t)g(t) f(t) + 2 f K(t, t’)Z(t’) dr’

with

(4.13)

and

f(t) f(t) g(t)(0, t) + 2 f K(t, t’)(O, t’) dt’

(4.14) f(0) 2 J ]K(0, 0] 2 dt # O.

If K(0, t) _= 0, one only has to put (p (o6 + y in (2.11), which becomes a regular
Fredholm equation for y,

o)2K(t, O) 2 f(4.15) y(t)
g(t) + K(t, t’)y(t’) dr’,

to see that case (b) always holds. Here, one takes o) 0 or o) - 0 as the situation
requires.

For the case when g has n > zeros in (a,b) at ti, we have a second
theorem like Theorem 8. First, however, we note the following lemma, which may
be proved by induction.

LEMMA. If n > 1,

(4.16)

and

(4.17)

then

lI [f(t,) f(t)] 4:0
r,8
r<s

(t) (--I [ f(t) f(t)
j= f(ti) f(tj)J’
j:i

(4.18) (t)f(t) f(t).
i=1

We then have the following theorem.
THEOREM 9. If g(t) 0 for 1, 2, n with n >- 2 and

(4.19) If(t,) f(t)] 4: 0,
r,s
rs

then a necessary condition that q)(t) satisfy (1.1) and g(t)q)(ti) O, 1, 2, n, is
that q) satisfy the homogeneous equation
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Also a sufficient condition for (1.1) to have a solution q(t) is that there exist at least n
linearly independent solutions qj(t) to (4.20) such that

(4.21) det[;K(ti, t’)qj(t’)dt’]
The solution of(1.1) is given by

(4.22) (t) jpj(t),

where the j are determined by

(4.23) zj f K(ti, t’)qj(t’) dr’
i=1

f(ti)

This theorem is a direct consequence of the lemma since (4.20) follows from (1.1)
by evaluating (1.1) at t, multiplying the result by r’(t), summing over i, and sub-
tracting the result from (1.1). The rest of the theorem is easy to verify. Note that
the property ,".(tj) 6i implies that the adjoint (with respect to D) to the homo-
geneous equation (4.20) necessarily has at least n linearly independent solutions,
namely, the 6(t tj).

5. Applications of equations of the third kind. We now mention examples of
third-kind equations which are found in the literature. (i) In the scattering matrix
theory of elementary particle interactions, one encounters the integral equation of
Frye and Warnock [7]. This equation has the form (1.1), with g(t) being the elas-
ticity function. Under certain physical conditions, g acquires a zero, and the solution
of physical interest lies in the space D,. (ii) Under simplifying assumptions, the
Boltzmann transport equation reduces to an integral equation of the third kind.
The physically meaningful solution of the latter, identified by van Kampen [23]
and studied by several authors [2], [3], [23], [17], [8], lies in the space P. (iii) Third-
kind operators occur in certain physical problems as Fr6chet derivatives of
nonlinear operators;for instance, the nonlinear integral operator which appears
in the unitarity equation of scattering theory [1]. An understanding of the Fr6chet
derivative is important in the solution of the nonlinear equation by the Newton-
Kantorovich method. It is not yet clear, however, that our spaces of generalized
functions are relevant to such problems. (iv) Various other special integral equations
of the third kind appear in the literature; see [20], [16], [14], [5, [6], [13], [19,
[11].
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SINGULAR DIFFERENTIAL EQUATIONS IN HILBERT SPACE*

JOHN LAGNESE

Abstract. A singular differential equation in a Hilbert space H is one of the form

A
du(t)

Bu(t) f(t),
dt

where A and B are linear operators in H which may be unbounded and A may have zero as a spectral
point. In the current paper we obtain necessary and sufficient conditions for solvability and uniqueness
of solution of such equations. Representation formulas and eigenfunction expansions for the solutions
are also obtained. We show that our results apply to a large class of boundary value problems for
certain nonclassical partial differential equations. This class contains in particular equations which
occur in various physical problems such as fluid flow through a fissured rock, shear in second order
fluids, soil mechanics and thermodynamics.

1. Introduction. Various problems in mathematical physics lead to boundary
value problems for the equation

(1.1)
U

(1 ?z’)--.- Nu f,

where is some nonzero real physical constant and ’ and are elliptic partial
differential operators in the space variables with the order of ’ at least as great
as the order of. For example, (1.1) with z’ Laplacian occurs in the theory
of flows of second order fluids [5], [14], consolidation of clay [13], and seepage of
fluid through a fissured rock [2] and thermodynamics [4]; cf. [1]. In the next to
last application, for example, the constant ), represents a characteristic of the
fissured rock and decreases as the degree of fissuring increases. In the limit (i.e.,
when 0), (1.1) coincides with the parabolic equation arising in the classical
theory of seepage of a fluid under elastic conditions.

Let us consider /and ’ as certain unbounded operators A and B in, say,
some Hilbert space H and write (1.1) as

du
(1.2) (1 ?A)= Bu f

a[

If 7- is not in the spectrum of A, (1.2) is equivalent to

du
dt

(1 7A)-1Bu (1 7A)-

and in applications the operator (1 7A)-1B is a bounded operator in some
other function space. In this case the integration of(1.1) poses no serious problems
and very strong and complete results are known concerning existence, uniqueness,
regularity and various other properties of solutions, not only for (1.1) but for much
more general classes of equations (see e.g. [8]-[12], [15]). However the situation is
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more complex if 7-1 is a spectral point of A. As we shall show, in this case (1.1) may
not have solutions (at least in the sense we shall use) even for very smooth functions

f. And even when (1.1) has a solution satisfying some prescribed initial condition

(1.3) u(0) Uo e H,

the solution to this initial value problem may not be unique.
That anomalies of this sort can occur seems to have first been observed by

Coleman, Duffin and Mizel [5] in the case where 7 and 2/(x2.
Among other things, they gave necessary conditions in order that (1.1) have a
solution satisfying

u(x, O) Uo(X), O < x < rc, u(O,t) u(rc, t) O, >= O,

and also proved that the solution is unique whenever it exists. Later, Showalter
[11, 2] considered the singular problem (1.2) assuming B A A* and that
A- exists and is compact (so that 7 is a characteristic number of A of finite multi-
plicity). Necessary and sufficient conditions were given for the unique solvability
of (1.2) subject to the initial condition (1.3). It was shown that existence of solutions
to this problem implies uniqueness and it follows easily from the results of [11]
that (1.2) always has solutions in this case wheneverf is continuously differentiable
in H. Similar results were obtained in [9, 3] in the case where B A is not neces-
sarily self-adjoint but has compact inverse, usually under the additional assump-
tion that the root vectors of A form a basis of one sort or another for H.

The purpose of the present note is to give general existence-uniqueness theory
for (1.2) when A is self-adjoint and 7- is an eigenvalue of A. The multiplicity of
7- may be infinite and, in the general theory developed in 3, we place no further
restrictions on A. As for B, we assume that D(B) (the domain of B) and D(B*)
contain D(A) and that E, the eigenspace of A corresponding to 7-1, is an invariant
subspace of B. In applications to the differential equation (1.1), the first assumption
on B means roughly that the order of does not exceed that of while the
condition on the invariance of E under B is motivated by applications to physical
problems. While this assumption could be replaced by some other or even elimin-
ated altogether, it seems to be the condition which leads to the most natural and
satisfactory results. We note that our results contain in particular those in [5], 11]
mentioned above.

Almost all of our results give both necessary and sufficient conditions in order
that (1.2) have some property or another. For example, we prove that (1.2) has a
solution for every C-function f if and only if E is contained in the range of B
(Corollary 3.1); that solutions of (1.2) are uniquely determined by (1.3) if and only
if the restriction of B to E is injective (Corollary 3.2), and so forth. In addition we
obtain in Theorem 3.2 a representation formula for solutions of (1.2). We close
3 by applying our results to the problem considered in [5] previously mentioned.

In 4, under additional hypotheses on A and B, we obtain eigenfunction
expansions for solutions of (1.2). Here we suppose that the spectrum of A consists
of a discrete sequence of eigenvalues of finite multiplicity having no finite accumu-
lation point and that B leaves invariant each eigenspace of A, a condition which
we prove to be equivalent to BA AB. We show that these hypotheses are
satisfied by a large class of boundary value problems for (1.1). In particular they
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hold when B is the realization in LZ(f) of the elliptic operator under Dirichlet
boundary conditions, s’ is a certain polynomial in and A the realization of
in L2(f) under a certain system of normal boundary conditions.

In 2 we state our hypotheses and develop some preliminary material. The
final result of that section, Theorem 2.2, is the only one needed in 3 and 4.

Finally we remark that all of our results are valid when dim E 0, i.e.,
when 7-1 is in the resolvent set of A. But in this case more general results than
those presented here are already known. However, it is the singular problem which
is of primary interest here.

2. Preliminaries. H shall denote a complex Hilbert space with norm ]. and
inner product (.,.). Let A be a closed, densely defined linear operator in H and B
a linear operator in H such that

(2.1)B is a closed operator and

D(B) f"l D(B*) D(A).

LEMMA 2.1. There are positive constants C and C* such thatfor all u D(A),

IBul C(lul + IAul),

IB*ul <= C*(lul + IAul).

The proofcan be found in 7, p. 121], for example, and is a simple consequence
of the closed graph theorem.

Let E {u:Au 0}. Since A is a closed operator, E is a closed subspace of
H and we may write

H=EHI,

where H Rg(A*), the closure of the range of A*.
Let VA (respectively, VB) denote the linear space D(A) f’l H (respectively,

D(B) f’l Ha)endowed with the norm

(respectively,

lulva lul + IAul

lUlv, lul +
vA and VB are Banach spaces each of which is dense in Ha, and the injections of
VA and VB into H are continuous. Moreover, VA V and Lemma 2.1 implies
that the injection of VA into VB is continuous.

Next we introduce the Banach space VB, D(B*) H with the graph norm

lUlv,- lul / IB*ul.
Then VA c V, with continuous injection. Thus if V is the closure of VA in V, we
have

VA= V=H,
each space is dense in the one that follows and the injections of VA into Vand of V
into H are continuous. Thus if we identify the Hilbert space H with its dual and
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denote by V’ and V the duals of V and VA, respectively, we may write

Va c V c H c V’ c V’A,

each space being dense in the one that follows with continuous injection. We
remark that the V V’ duality (.,.)v coincides with the inner product (.,.) on
V H and similarly for the VA V’A duality (.,.)v, on VA

In what follows we shall assume that A satisfies the following"
(2.2)A is a self-adjoint operator having closed range.
Condition (2.2) implies that zero lies either in the resolvent set or point

spectrum of A. One can prove that for any self-adjoint operator A, the injection
of VA into H1 is compact if and only if the following holds" Rg(A) is closed and the
spectrum of A consists of a discrete sequence of eigenvalues having no finite
accumulation point, each nonzero eigenvalue being of finite multiplicity. This fact
is implicit in the proof of the proposition in the Appendix.

Let A1 denote the restriction of A to VA, B1 the restriction of B to VB and let
P be the orthogonal projection of H onto E. Then A1 is a continuous bijection of

VA onto H and (I P)B1 a continuous mapping of VB into H
LF.MMA 2.2. A1 has a unique linear extension to a continuous bijection

onto V’A. (I- P)B1 has a unique linear extension to a continuous mapping B
of H into V’.

Proof We first prove the statement concerning (1 P)B1. Since this operator
maps Vn H1 into H1 = V’, we may consider (I P)B1 as a mapping from the
dense set Vn in HI into V’. Considered in this way, we show that (I P)B1 is
bounded.

Let u e Vn and ( .,. )v denote the V V’ duality; this duality coincides with
(.,.) on V HI. Thus for all ve V c D(B*) f’l

(v, (I P)Blu)v (v, (I P)Blu) (v, Bu) (B’v, u).

Taking the supremum over the set {v V’lvlv 1} we obtain

I(I P)Bxulv, <= lul sup IB*vl (const.)lul,

since the restriction of B* to V is a bounded linear operator from V into H. There-
fore (I P)B1 may be extended by continuity to a bounded linear operator
from H into V’.

In a similar way one proves that A1 is a bounded linear operator from the
dense set VA in H into V and may therefore be extended by continuity to a
bounded linear operator/]1 from H into V. Moreover, ifu Va and v (A-(
IA - Ulva we have

_-> (const.)lul,IAaulg,a >= I(v, AlU)gAI I(Av,u)l
iA_lulva

since A1 is a continuous bijection of VA onto H1. Thus/]l has a bounded inverse
from Rg(.3.1) V] onto H1. But Rg(A1) H1 is dense in V and it follows that
Rg(A1) VA.
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THEOREM 2.1. Let fl C([O, ), V’) and ul H1. There is one and only one

function u C’([0, H1) such that

(2.3) $lu’(t) lu(t)= fl(t), >_ O,

(2.4) u(0) ul.

Proof By Lemma 2.2, (2.3) is equivalent to

u’(t) u(t) (z 1)- lfl(t), 0,

where ( (.3.1)- 1/1. Since/1 is a bounded operator from H into V’ and the
injection of V’ into V4 is continuous, is a bounded operator on H1. Therefore
( is the generator of a uniformly continuous group {ere’- < < +} of
bounded operators on H It follows that (2.3), (2.4) has a unique solution given by

u(t) eteu + e
, s)e(, )- lfl (s) ds.

THEOREM 2.2. Let f C([O, ), H1) and u Vs. There is one and only one

function u C’([0, ), H1) such that u(t) D(B), u’(t) D(A), u(O) u and

(2.5) Au’(t) (I P)Bu(t) f(t), >= O.

Moreover, u C’([0, ), Vs) and d C([0, v), VA).
Proof Uniqueness follows from Theorem 2.1. For if u6C’([0, ),H1)

satisfies (2.5) and u(0) u then u is the solution of (2.3), (2.4).
The existence proof is similar to the proof of Theorem 2.1. In fact (I P)B1

is a bounded operator from Vs into H and A1 is a continuous bijection of VA onto
H 1. Since the injection of VA into Vs is continuous, A- 1(1 P)B is a bounded
operator on Vs. It therefore follows that

Alu’(t -(I P)Blu(t) f(t), t>=O,

u(0) u V.
has a unique solution in the class C’([0, ), Vs) provided
Moreover,

u’(t) A- 1[(1 P)Slu(t) + fl(t)]

is easily seen to be continuous as a function in VA. The proof is completed by recall-
ing that A1 A on VA and B1 B on Vs.

3. Singular differential equations. We consider the problem

(3.1) Au’(t) Bu(t) f(t),

(3.2) u(0) Uo.

DEFINITION. A solution of (3.1) is a function u6C’([0, ),H) such that
u(t) D(B), u’(t) D(A) and (3.1) is satisfied for all >= 0.

Note that the definition requires u(O) Uo D(B) but does not require Au’
or Bu to be continuous. However, it turns out that each of these functions is
continuous whenever Au’-Bu C([0, ), H) (Corollary 3.4). We also remark
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that we could consider (3.1) on any interval [t0,ta). All of our results remain
valid after obvious changes in their statements and in the above definition.

Let Be denote the restriction of B to the subspace E and let E0 {u e E"
Bu 0}. This subspace is closed in E since Be is a bounded operator. If we write

E=Eo@E1
and let B be the restriction of B to El, then B maps E1 one-to-one and boundedly
onto Rg(Be). Moreover, Be has a bounded inverse if and only if the following holds

(3.3) The range of Be is closed in H.
This condition is automatically satisfied if dim E < o. It also holds whenever

E is an invariant subspace of B and the injection into E of El, endowed with the
norm of the graph of B, is compact (cf. the remark following (2.2)).

We now state the main results of this section.
THEOREM 3.1. Assume (2.1), (2.2) and that E is an invariant subspace of B. Let

f C([0, ), H), uo D(B) and set

fo(t) =- Pf(t), f(t) =_ (I P)f(t).

Let u be the unique solution in C’([0, ), H) of (2.5) satisfying

u,(O) (I P)uo.

In order that (3.1), (3.2) have a solution the following conditions are necessary"

(3.4) fo e C’([0, ), E),

(3.5) f(O) + Buo e H,,

(3.6) fo(r) + PBu,(t)6 Rg(BE), >__ 0.

If in addition we suppose (3.3) holds, then (3.4), (3.5) and (3.6) are also sufficient
conditions in order that (3.1), (3.2) have a solution.

From this result we obtain the following existence-nonexistence theorem
for (3.1).

COROLLARY 3.1. Assume (2.1), (2.2), that B B* and that E is an invariant
subspace of B. If E el: Rg(B), there is an analytic function f’[O,) H such that
(3.1) has no solution on any interval [0, t), tx > 0. If E Rg(B), then for any
f6 C’([0, ), H) equation (3.1) has a solution on [0, ).

The following gives a representation formula for solutions of (3.1).
THEOREM 3.2. Assume (2.1), (2.2) and that E is an invariant subspace of B. Let

f C([0, ), H), uo D(B) and suppose u is a solution of(3.1), (3.2). Then

(3.7) u(t) -B2(fo(t) + PBu,(t)) + v(t) + u,(t),

where v C’([0, or), E0) such that v(O) O. Conversely, if (3.3)-(3.6) are satisfied,
then (3.7) is a solution of(3.1), (3.2)for each such v(t).

Concerning uniqueness of solution we have the following.
COROLLARY 3.2. Assume (2.1), (2.2) and that E is an invariant subspace of B.

Then (3.1), (3.2) has at most one solution ifand only ifBE is injective.
When BE is injective and dim E < , Theorems 3.1 and 3.2 yield the following

concise result.
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COROLLARY 3.3. Assume (2.1), (2.2) and that E is an invariant subspace of B.
In addition suppose BE is injective and dim E < . Let f C([0, v),H) and

uo6 D(B). Then (3.1), (3.2) has a solution if and only if fo C’([0, or), E) and f (O)
+ Buo H When these conditions are satisfied, the solution is unique and given by

u(t) -B{(fo(t) + PBu(t)) + ul(t).

From Theorem 3.2 we also obtain the following regularity result (cf. Theorem
2.2).

COROLLARY 3.4. Assume (2.1), (2.2), (3.3) and that E is an invariant subspace
ofB. Letf C([0 ), H)and suppose u is a solution of(3.1). Then u C’([0, m), D(B))
and u’ e C([0, m), D(A)) where D(A) and D(B) are equipped with the norms of the
graph ofA and B, respectively.

Proof of Theorem 3.1. Let u be a solution of (3.1), (3.2) and write

(3.8) u(t) Vo(t) + Vl(t), > 0,

where

Vo(t Pu(t), v(t) =-(I P)u(t).

Then Vo C’([0, ), E) and Vl C’([0, ), H). Substituting (3.8) into (3.1) gives

(3.9) Av’(t)- S(vo(t + v,(t)) f(t), >_ O.

Since E is an invariant subspace of B and H1 an invariant subspace of A, the last
equation is equivalent to the system

(3.10) Av’t(t) (I n)Sv,(t) ft(t), >= O,

(3.11) Bvo(t) / PBvl(t)= -fo(t), >_ 0..

As v(O)- (I- P)uo it follows from (3.10) and Theorem 2.2 that Vl(t Ul(t
and in addition/)1 Ct(I0, o()), VB). This last fact implies that PBv C’([0, c), E).
Since BE is a bounded operator we also have Bvo C’([0, c), E) so that (3.11)
implies f0 m C’([0, c), E). Moreover, (3.11) is solvable for Vo only iffo(t) + PBu(t)
Rg(BE) for all __> 0.

Returning to (3.9) we see that f(t) + Bu(t) Av’(t) H for all __> 0 and in
particular f(0) + Buo H.

We have therefore proved that (3.4), (3.5) and (3.6) are necessary conditions
in order that (3.1), (3.2) have a solution. That these conditions, together with (3.3),
are also sufficient is a consequence of Theorem 3.2 which we now prove.

Proof of Theorem 3.2. Suppose that u(t) given by (3.8) is a solution of (3.1),
(3.2). Then (3.4), (3.5) and (3.6) hold. As already noted, necessarily Vx(t ----ul(t)
and Vo(t) satisfies (3.11). Using the decomposition E Eo (R) Ex we may write

Vo(t v(t) + w(t), v(t) e Eo, w(t) e E 1.

Then v e C’([0, ), Eo) and

w(t) B2 t(fo(t) + PBu,(t)), >_ O.

Condition (3.5) is equivalent to

fo(0) + PBuo 0
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so that

(3.12) w(0) -B-’(fo(0)+ PB(I P)uo)= Puo Vo(0).

Thus v(0) 0 and

(3.13) u(t)

where v e C’([0, ), Eo) such that v(0) 0.
Conversely, given such a function v we must show that (3.13) is a solution of

(3.1), (3.2). Using (3.12) we easily see that u(0)= Uo. Since fo e C’([0, ),E),
u e C’([0, ), V)and B-1 is a bounded operator on Rg(Be) because of (3.3), the
first term in (3.13),is of class C’([0, ),E1). Thus u e C’([0, ),H) and Au’(t)

Au’(t) since the first two terms in (3.13) take values in E. Therefore

Bu(t) -(fo(t) + PBu,(t)) + Bu,(t)

-(fo(t)+ nSu,(t))+ (Au(t)+ nBu,(t)- f,(t))

Au’(t) f(t).

Proof of Corollary 3.1. If there exists f 6 E Rg(B), set f(t)= tf Since
B B*, PBUl(t 0 and so (3.6) does not hold for this f(t) for any > 0.

IfE Rg(B)then E Rg(B) so that (3.3),(3.6)are satisfied. Iff C’([0, ),H)
then (3.4) holds. We therefore have only to choose uo 6 E such that Pf(O) + Buo 0
in order to satisfy (3.5).

Proof of Corollary 3.2. If u is a solution of (3.1), (3.2) with homogeneous data,
then ua(t) =_ 0 and by Theorem 3.2, u C’([0, ), Eo). If B is injective we have
Eo {0} so that u(t) =_ O. Conversely, if the homogeneous problem has only the
trivial solution then Eo {0} since, otherwise, the function u(t) tv (v Eo) gives
a nontrivial solution to the homogeneous problem.

Proofof Corollary 3.3. Uniqueness follows from the previous corollary. Since
dim E < v, B is a bijection of E onto itself and so (3.3) and (3.6) are automatically
satisfied. Now apply Theorems 3.1 and 3.2.

Proofof Corollary 3.4. u(t) is given by (3.7) where ui C’([0, ), V). The first
two terms are differentiable with respect to the]. norm and take values in E.
Since ]Bwl <= C]w[ on E it follows that these terms are of class C’([0, ), D(B)).
Finally, Au’ Bu + fis continuous as a function in H, that is, u’ 6 C([0, ), D(A)).

By way of example (other examples are discussed in the next section), we
consider the problem

(3.14)
(2 (U (2U

+ ] Ot cx2 F(x, t),

u(x, O) Uo(X),

u(O, t) u(mz, t) O,

0<x<m, t>0

O<x<m,

t>=O,

where m is a fixed positive integer. We take H L2(0, m), A + dZ/dx2 and
B dZ/dx2, where D(A) D(B) is the closure in the Sobolev space H2(0, mT) of
the class of functions u in C2([0, m]) which satisfy (3.16). Then A and B are both
self-adjoint and the eigenspace E is 1-dimensional" E span [x//2/m sin x]. If
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u.e E then Bu d2u/dx2 -U E and Bu 0 if and only if u 0. Thus B leaves
E invariant and Be -I is obviously injective. Moreover, Rg(A) is closed since,
as is well known, the injection of H a(0, ran) into L2(0, rnn) is compact (see Appen-
dix). Let the mapping t--. F(., t) of [0, oo) into L2(0, ran) be continuous and
Uo D(B). Then from Corollary 3.3 we find that (3.14)-(3.16) has a solution if and
only if the mapping --+ f0(’, t) of [0,’oo) into E defined by

fo(x, t) (PF)(x, t)
2

sin x F(, t) sin d

is continuously differentiable and

F(, 0) - d2 j
sin d: [F(, 0) Uo()] sin d 0.

Moreover, the solution is necessarily unique. These conclusions imply the results
of Theorems 3.1, 5.1, and 5.3 of [5].

We next use the representation formula (3.7) to obtain an explicit expression
for the solution. Since Be is injective we have v(t) 0 and Be Be -I. Also,
PBul(t) =- 0 since B is self-adjoint and leaves E, and thus H1, invariant. From
(3.7) we therefore obtain

u(x, t)
mT
sin x F({, t) sin d{ + u(x, t).

u may be obtained as an expression in the eigenfunctions of A as in the next
section or as in [11, 2] and has the form

where

/,/I(X t)
2

vi(t sin
ix

mn = rn
iCm

i2t fi"=Vi(t exp
i2 m21 U0() sin--m d{

+ ma i2
exp (t s)ia m; F(, s) sin mi d ds.

The above series, together with the series obtained by termwise differentiation with
respect to t, converges in Ha(0, ran) uniformly on bounded subsets of [0,

4. Eigenfunction expansions of solutions. In this section we obtain, for each
solution of (3.1), (3.2), an expansion in the eigenfunctions of A. The coefficients in
the expansion will be determined through systems of first order linear differential
equations with constant coefficients. The conditions which we require on A and B
are somewhat more restrictive than those of the last section. First of all we assume

(4.1)A is a self-adjoint operator such that the injection into H of D(A), with the
norm of the graph of A, is compact.

The compactness of this injection implies that the range of A is closed and
that the spectrum of A consists of a discrete sequence of eigenvalues, each of
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finite multiplicity, having no finite accumulation point. (See Appendix.) In partic-
ular, dim E < oe. If A is the realization in H L2(f) of a formally self-adjoint
elliptic differential operator under Dirichlet boundary conditions, then (4.1) is
satisfied (see example below).

We shall further assume:
(4.2)B is a closed operator such that D(B) f’l D(B*) D(A). Each eigenspace

ofA is invariant under B and Bit is a normal operator.
Concerning this condition we have the following proposition.

PROPOSITION. Let (4.1) hold and B be a densely defined operator such that
D(B) f) D(B*) D(A). Then each eigenspace of A is invariant under B if and only
if BA c AB.

Proof Let {2,}=t be the sequence of distinct nonzero eigenvalues of A,
arranged in order of nondecreasing magnitude, and s,h ,,+t be an ortho-(WkJk ni +
normal basis of eigenvectors of A for the eigenspace E(2,). Here nt < n2 < "",

where we set nt dim E. Because of (4.1), A- is a compact self-adjoint operator
on H whose eigenvalues are exactly {2 }?= and therefore

(4.3)
i=1

The condition BA c AB clearly implies that each eigenspace of A is an
invariant subspace of B. Conversely, suppose this condition is satisfied and
u D(BA). Writing u u0 + u with Uo E and u H t, it suffices to show that
u D(AB) and BAu ABu

Since each E(2)is invariant under B it follows from (4.3) that each E(2) is
also invariant under B*. Thus from (4.3) we have

BAUl 2 (BAul, (])k))k E (U l, AB*dpk)dp
i= k=ni+ i= k=ni+

where

Z 2, (ut,B*dPk) AO,,
i= k=ni+ i=

Oi (BU l, )k))k
k=ni +

We have

Bu lim , BAu lim A
n--* i=

Since A is closed it follows that But D(A) and ABut BAu 1"

From (4.3) we see that the spectral expansion of A is given by

(4.4) A
i= k=ni +

Let {/i}7’2 l(ml _-< nt) be the nonzero eigenvalues ofB Ble, taking into account
algebraic multiplicities. Choose an orthonormal basis {q5,}’ for E consisting of
eigenvectors of Be such that (i}7’2 correspond to the nonzero eigenvalues. Then

ml

U-1 E fl/- 1(., )i))i, BE O, m -t- 1,..., n
i=1
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In what follows we shall use, for 1, 2,..., the notation, [(, B)],_,;+ ,,
0, [(Uo 4 lJk=ni +

F,(t) [(f{t) WklAk=ni + I"

T.EORE 4.1. Assume (4.1) and (4.2). Let uo D(B) and f C([0, ), H). Then
(3.1), (3.2) has a solution if and only if
(4.) (f(.),) c’([o, )),

(4.6) (f(t), ) o,
4.7) (f(o) + Uo, ) o,
When these three conditions hold, a function u:[0,) H is a solution of (3.1),
(3.2) if and only if

k= 1,2,... m,

k =mx + 1,...,n,

k 1,2,...,n.

where

g C’([0, oo)), g(0) 0, k m + 1,..., nl,

and Ui(t) =- {Vk(t)} hi+’ is given byk-hi+

(4.9) Ui(t) eXC’’(-Ji + 2 e-xc Fi(s) ds, i= 1,2,...

Proof It is easily seen that (4.5), (4.6) and (4.7) are equivalent to the three
conditions (3.4), (3.5) and (3.6) and, since dim E < oo, (3.3) also holds. Thus (3.1),
(3.2) has a solution if and only if (4.5)-(4.7) hold. Formula (4.8) is obtained from
(3.7). In fact PBu 1(0 O, so the first term in (3.7)is exactly

; ’(f(t), Ck)Pk.
k=l

Moreover, the function v in (3.7) necessarily has the form of the second sum in
(4.8).

Let u be the unique solution in C’([0, oo), H) of

Au’(t)- Bu,(t)= (I- P)f(t), t>=O,

(4.10) u,(O) (I P)uo.

If we set Vk(t) (u(t), Ck), then

tli+

(4.11) u,(t)
i= k=ni+

Using (4.3) and (4.4) we obtain from (4.10)
tli+

(4.12)

v,(t).

[2/v,(t) (Bu,(t), dpk -(f(t), bk)]qk O.
i= k=ni+

(4.8) u(t) l; ’(f(t), dpk)dpk + gk(t)bk + vk(t)dpk,
k= k=m + i= k=ni+
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Since B* leaves E(2i) invariant we have for k ni + 1,..., ni+

(Bu l(t), dp) (u 1(0, B*dp) vj(t)(B*dp, dpj).
j=ni+

Therefore (4.12)implies that for 1,2,-..,
tli+l

(4.13) 2v’(t)-
j=ni+

(k, BCj)vj(t) (f(t), k ni + 1,..., ni+

The system (4.13), together with the initial conditions

(4.14) v(0) (Uo, ), k ?1 - 1,

has a unique solution given by (4.9). It follows from (3.7) that a function u is a
solution of (3.1), (3.2) if and only if u has the form (4.8) with the functions Vk(t)
determined by (4.13) and (4.14). The proof is complete.

Example. In a bounded open set fl c R" we consider the problem
cu J(x, D)u F(x, t),(4.15) (1 7s’(x, D))- (x, t) e f x [0, o),

(4.16) u 0,
ct

0,

j 1, ..., l;k 1, ..., m l;(x,t)ecf x [O,z).
In (4.15), 7 is a nonzero real number,

(x, D) a(x)D, ,(x, D) b(x)D,
]x]_< 2m

where __< m and D (?/cxlY’... (c/?x,)" for any multi-integer z (zl, ..., a,),
ai >_- 0, and ]a] a + 2 + + n" We suppose and N are each elliptic in
fi, with formally self-adjoint, that is of class C2 and that the coefficients in

and are of class C(fl). If n 2 we assume additionally that and N satisfy
the roots condition (see e.g., [3]).

Let H L2() and H() be the Hilbert space consisting of functions in
LZ(fl) whose derivatives, in the distribution sense, to order k belong to LZ(fl). The
norm in H() is

1/2

lull= ID ul

We define unbounded operators A and B in H as follows" D(A) is the closure in
H() of those functions u in C() which satisfy on

(4.17) u 0

for j 1,2, ..., m. For u D(A) we set

Au z’(., D)u( ).
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Similarly, D(B) is the closure in Hz/() of functions in C2/() which satisfy (4.17) on
c3f for j 1, 2, ..., l, and Bu (., D)u(. ). Clearly D(B) D(A) and it is well
known [-3] that B is a closed operator such that D(B*)= D(B), that A is self-
adjoint and, in particular, that 7A satisfies (4.1) and afortiori (2.2). Thus if
we write f(t) F(., t) and define a solution of (4.15), (4.16) to mean a solution
of

(I 7A)u’(t)- Bu(t)= f(t),

the results of 3 may be applied to (4.15), (4.16). In particular, the conclusions of
Theorem 3.2 are valid for this problem provided only that the subspace {uD(A)"
7Au u} is invariant under B.

Suppose M is formally self-adjoint, so that B is a self-adjoint operator in H.
Then the conclusions of Theorem 4.1 are valid for (4.15), (4.17) provided only that
BA AB. This last condition holds in all applications in which (4.15), (4.16) occurs
since in the applications we have A clB + C2I (Cl - 0), that is, l= m and
(x, D) caM(x, D) + c2.

More generally, suppose that

sO(x, D) p((x, o)),

where P(z) is a polynomial of degree p in the complex variable z with real coeffi-
cients. We may suppose the leading coefficient in P equals unity and for simplicity
we assume the coefficients in B are of class C(f). We wish to show that A P(B)
so that, in particular, BA AB and the conclusions ofTheorem 4.1 can be applied.
However this will not in general be true when p > unlesswe redefine the domain
ofA. Thus let B be defined as above; B is then a self-adjoint operator which satisfies
(4.1) with respect to D(B). We set D(A) D(Bp) and Au s( D)u( for u D(A).
As is well known, D(Bp) D(P(B))c H2pt() and it is clear that A P(B).
However we must show that the operator A so defined satisfies (4.1), for the
boundary conditions associated with A are no longer the Dirichlet conditions but
rather

Ri(x,D)u=O, xec3f, j= 1,2,.-.,m,

where

Rk+q(x,D)= [B(x,D)]q, k 1,...,l; q =O, 1,...,p- 1.

To show that A satisfies (4.1) we first observe that A* P(B*) P(B) A
([6, Thm. XII.2.6 and Cor. XII.2.8). Let {/i}

_
be the nonzero eigenvalues of B

enumerated according to nondecreasing magnitude, taking into account algebraic
multiplicities, and {Oi}= be the corresponding orthonormal basis of eigen-
vectors of B for Rg(B). Then B has the spectral resolution

Bu ,(u, 2,),,
i=1

so that

u 6 D(B),

Au P(li)(u, Oi)/i, u 6 D(A).
i=1



636 JOHN LAGNESE

We therefore see that the nonzero spectrum of A is {P(#i)’i 1, 2,...; P(#i)
4: 0} and each point of this set is an eigenvalue of A of finite multiplicity. Writing

p

Au I-] (B fly)U, u e D(A),
j=l

we see that zero is in the spectrum of A if and only if some/ is an eigenvalue of B
and moreover

p

E {ueD(A)’Au =0} @/(flj),
j=l

where (/j) {U D(B)" Bu ju}. Thus zero is either in the resolvent set of A
or is an eigenvalue of A of finite multiplicity. If A is the restriction of A to
D(A) Il IN ( E] and B the restriction of B to D(B) I1 IN ( /()] we have

p

A u I-I (By fly)U, u e D(Ax).
j=l

Since j is in the resolvent set of Bj it follows that A has a bounded inverse from
H @ E onto D(A ). Thus A has closed range and so satisfies (4.1).

Appendix. The purpose of this section is to prove the following result.
PROPOSITION. Let A be a self-adjoint operator in a Hilbert space H. Then the

injection into H ofD(A), endowed with the graph norm ofA, is compact ifand only if
Rg(A) is closed and the spectrum ofA consists ofa discrete sequence of eigenvalues,
each offinite multiplicity, having no finite accumulation point.

Proof. Write H E H1, E {uD(A):Au 0} and let A be the restric-
tion of A to D(A) CI H1. Let us suppose first of all that Rg(A) is closed and the
spectrum of A is as described in the proposition. Denote by {2i} the nonzero
eigenvalues of A enumerated in order of nondecreasing magnitude. Then A1 maps
D(A 1) one-to-one onto Rg(A) H and the spectrum of A consists of the points
{i}, each of which is an eigenvalue of A of finite multiplicity. Therefore A - is a
bounded, self-adjoint operator whose spectrum consists of a discrete sequence of
eigenvalues, each of finite multiplicity, which can accumulate only at zero. This
implies that A-I is a compact operator which in turn implies that the injection
into H of D(A 1), endowed with the graph norm of A, is compact. Since, moreover,
dim E < , the desired conclusion follows.

Conversely, let us suppose the injection is compact. Then dim E < c.
Assume for the moment that Rg(A) is closed. Then A - exists as a bounded opera-
tor with range in D(A1). The compactness of the injection shows that AI is
compact. It follows that (2 A1)-1 exists as a compact operator for- all 2 except
a discrete sequence of eigenvalues of A1, each of finite multiplicity, having no
finite accumulation point.

It therefore remains to show that Rg(A) is closed. Since A is closed, it suffices
to prove that for all u D(A 1),

[u[ 5 C[A lu[

with some constant C not depending on u. If this inequality is not true, there is a
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sequence {u.} in D(A,)such that ]u.] and A,u. -- O. {lu.I + IAu.I} is therefore
bounded and so, by choosing an appropriate subsequence if necessary, we may
suppose {u,} converges in H a. Since A lu.--, 0 we conclude that {u.} also con-
verges in D(A1). The limit must be zero since A1 maps D(A1) (with the graph
norm of A1) boundedly into H and A u. 0. But this contradicts lu.I 1.
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LIE THEORY AND THE APPELL FUNCTIONS FI*
WILLARD MILLER, JR.

Abstract. It is shown that sl(5, C) is the dynamical symmetry algebra of the Appell functions F1.
This permits use of representation theory and the techniques of Weisner and Vilenkin to derive
systematically a variety of addition theorems, generating functions and Mellin-Barnes integrals for
the F1.

Introduction. In a recent paper Ciftan [73 has shown that Appell functions F
arise naturally in the. study of irreducible representations of the unitary groups
U(n). However, the significance of this relationship is left somewhat unclear in
Ciftan’s work. Here we show that, in fact, sl(5, C) is the dynamical symmetry
algebra for the F and that the F1 are basis vectors for models of irreducible
representations of sl(5, C).

By the dynamical symmetry algebra for the F we mean the maximal Lie
algebra generated by all differential recurrence relations obeyed by this family.
(In this sense fgp,q is the dynamical symmetry algebra for the generalized hyper-
geometric functions pFq, (see [1]), and sl(4, C) is the algebra for the Gaussian
hypergeometric functions 2F1 (see [8]).) In [93 it is shown in some detail how one
constructs these algebras for all Lauricella functions, including the Appell
functions.

Alternatively, one can, in the sense of [8], define the dynamical symmetry
algebra for the F as the maximal algebra of Lie derivatives L which map all
solutions f of the simultaneous partial differential equations Cf C’f 0, (1.6),
into other solutions Lf As indicated in [8], both definitions lead to the same
algebra.

In we show that the F transform as canonical basis vectors under certain
irreducible representations of sl(5, C). Computing the matrix elements of the
associated local group representations, we find that some of these too can be
expressed in terms of the F1. In 2 we demonstrate that the sl(5, C) symmetry
can be used to derive all the transformation formulas and large numbers of
generating functions for the F1. Finally, in 3 we apply Vilenkin’s integral trans-
form method and obtain the F as kernel functions associated with certain integral
operators.

It follows from our work that the machinery of group representation theory
and harmonic analysis can successfully be applied to the study of Appell functions.
Indeed, the majority of known properties of these functions can be obtained most
easily using group theory and this theory is well-suited to the derivation of new
properties.

In future papers the group theoretic method will be simplified and applied to
all Lauricella functions.
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1. The dynamical symmetry group SL(5, C). The Appell function F is defined
by the series

(1.1) Fl(O, fl, fl’ 7 x, y

where e,/,/’, 7 are complex numbers and 7 is not a negative integer. Here,

(1.2) (),, 0( + 1)... (e + n 1)

is Pochhammer’s symbol. The series (1.1) converges for Ixl < 1, lyl < 1. Following
the method described in [1] we search for the differential recurrence relations
satisfied by F and use them to construct the dynamical symmetry algebra for this
class of functions. The results are as follows: The symmetry algebra is 24-
dimensional with basis

Ea sutcx
E,a, svtcr
E s(xc + yc3y + SC3s)

Ea u(xc3 +
Ea, v(yc?y + vc3v),
E_ (xcqx + yc3r + tc 1),

Ear st((1 x)c3 + (1 y)cqy scs),_ (v/u)((y x) + v),

Ea,_ a, (u/v)((x y)c3 +

Ear ut((x 1)c + Uau),

Eta, vt((y 1)c3y + vc3v)
E t((1 x)c + (1 y)cr + to3 so3 uc3,

E_ s-l(x(1 x) + y(1 y)y + tc3t sc3 xu3 yvc3),
E_ a u-l(x(1 x)3 h- x(1 y)c3y -f- t, uc3 v63 XSs)
E_ a, v-(y(1 x)c3 + y(1 y)c3r + tc,- uc. vc3 ysc),

E_,_ t-is-l(x(1 x)c + y(1 y)cr xuc. yvc3 + tc3 1),

E_,_a,_ -u-it is-l(x(1 x) + y(1 y)c3y + to3

-yvc3 xscs + x 1),

E_,_a,,_ v s (y(1 y)c + x(1 x) + tc? yvc3v

-xuc3, ysc + y 1),

E_a,_ u-it-(x(1 x)O + y(1 x)cy + tc xsc 1),
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E_a,,_r -v-lt-l(y(1 y)c3r + x(1 Y)Ox + tc3t YSOs- 1),

J ss 1/2tt,
J, vco + (u t,),

J,-, (uu v),

d t,- (sO + uO + vO + 1).

Setting

(1.4) aa,r(s u v x y)
F(7 e)F(e)fx(, , ,; ; x, y)suava’t

r(y)

we can verify directly that the action of the operators (1.3) on the basis vectors
(.4) is

L,,,

EoL,

+L’ L,+,
-7+

(1.5) E,#,,f##,

--1

&,-,L,, ( ’)L,,,
J,L,, (7-)( + + ’ + 1))Le,,.
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Here the upper factor in each bracket is associated with the plus sign and the
lower with the minus sign.

By a tedious computation one can verify that the operators (1.3) form a basis
for a 24-dimensional simple Lie algebra, necessarily isomorphic to sl(5, C). It
follows from relations (1.5) that the functions fa, can be used to construct
irreducible representations of sl(5, C).

Let

(1.6)
C =- EEa EaE_,
C’ EEa, Ea,E_ .

It is easy to check that the solutionf of the simultaneous equations

(1.7) Ja,-a,f 1/2(fl fl’)f

Cf =O,
Jrf= 1/2(27 a fl fl’- 1)f,

C’f= O,

analytic in a neighborhood of x y 0 in the complex x, y-plane, is

(1.8) f F1( 1, 1’ X, y)sutvt’t,
unique to within a multiplicative constant. Indeed, the first four equations imply

and the last two imply

f F(x, y)suava’t

(1.9)
{(xc3: + yqy + z)(xO + fi) c3,,(xO + yOy + y 1)}F O,

{(Xx + y + )(y + Y) (x + y + )}F 0,

which are the standard partial differential equations for F1 (see [2]). Although the
operators C and C’ do not commute with all of the generators of sl(5, C), it is not
difficult to show that each generator maps a solution f of the equations Cf O,
C’f 0 into another solution. Similarly, the group operators obtained by expo-
nentiating the Lie derivatives (1.3) also map solutions into solutions.

Iff(s, u, v, t, x, y) is a solution of Cf C’f 0 which has a Laurent expansion

(1.10) f= gaa,r(x,y)sutbt’tr
,/,/’

and iff is analytic at x y 0, then it follows from the above remarks that

(1.11) gaa,r k(afifi’7)Fa(a, fl, fl’; ’;x, y),

where k(aflfl’7) is a constant.
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To determine the group action of sl(5, C) we note that each of the triples

{J+, J-, -= L},

{E,E_,_,_,J + J + J, + J,_,},
(1.12) {Ea,r,E_,_a,,_r,J + J, + J}, {Er,E_,_r,J + J},

{Ear,E_a,_r, Ja, + Ja,_a, + Jr},
{Ea,, E_a,,_r, Ja, + Jr}, {Ea,_a,, E_a,a,, Ja,_a,}

satisfies the commutation relations

[j3 j+] +j+ [J+,J-] 2J3

and forms a basis for a subalgebra of sl(5, C) isomorphic to sl(2, C). Thus each
such triplet generates a subgroup of SL(5, C) isomorphic to SL(2, C) and the ten
subgroups so obtained suffice to generate the full group SL(5, C). The group
action of SL(2, C) is given in terms of the Lie algebra action by

b +(1.13) T(A) exp -J
where

(1.14) A

exp (-cdJ-) exp (’cJ3),

c

a bd)SL(2’C)’ ad- bc 1.

The computation of the group action from the Lie derivatives (1.3) is now routine
[3]. The results are

as + c u(as + c) v(as + c)
Tl(A)f(s, u, v, t, x, y) f d + bs’as + c(1- x)’as + c(1- y)’

ts xs ys
as + c’ (d + bs)(as cx + c)’(d + bs)(as cy + c)

for the triplet {E, E_,, J,},

(1.16)
T2(A)f f

s(av + c) U
(av + c)

av + c vt

av + c(1 y)’v ’d + bv’av + c

avx + c(x y) yv
av + c(1 y) ’(d + bv)(av cy + c)

for the triplet {Ea,, E_a,,

(1.17)
T3(A)f f

s(au + c) au + c V_(au + c),
au + c(1 x)’d + bu’u

ut

au + c’

xu

(d + bu)(au- cx + c)’ auy+c(y-x2)au + c(1 Z-
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for the triplet {E,E_,J, J, + J,_,},

(1.18)

s(d + bt), u(d + bt), v(d + bt),T4(A)f f

[dx bt(1 x)]

for the triplet {E, E_ s, J},
cx

Ts(A)f f as --U’ au

t(asut + c- cx)
(1.19)

asut cx

at+c

d+bt’

[dy bt(1 y)]

cx asut cx

asut + c(y- x)]
(xd bsut)(a + c cx),

a+
C CX

y(astu + c cx).
astu + c(y x)

for the triplet {Ea, E_

(1.20)

T6(A)f f
asvt cy cy

asvt + c(x y)
av

st

t(asvt + c cy) x(astv + c cy)
(yd bsvt)(a + c cy)

asvt cy astv + c(x y)

a + C Y cY
vts

for the triplet {Et,, E_,_#,,_, J + J#, + J},
s

TT(A)f f d bst’
ust vst c

ast cx ast cy s

(dx bst)(ast c) (dy bst)(ast c)l c )-(d bst)(ast cx)’- ----b -c] a --,-,J + J},
sut u c

aut + cx’d + but’
v, at +-’u

(1.21)

for the triplet {E, E

Ts(A)f f
(1.22)

(dx + but)(aut + c) y(aut + c)l
(d + but)(aut + cx)’ ut--(--c-

for the triplet {Et,E_a,_,J, + Ja_a, + J},

(1.23)
f( svt v c

Tg(A)f
art + cy

u
d + bvt

at +-v
x(avt + c) (dy + bvt)(avt + c)l

+ cy ’-(d
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for the triplet {Ea,r, E_a,,_ r, Ja’ + Jr}, and

(1.24) T o(A)f f s
dv + bu’ au + cv’

dxv + byu ayu + cxv

dr+ bu au + cv

for the triplet {Ea,_a,, E_a,a,, Ja,-a’}- Each of the operatorsTj(A) maps a solutionf
of Cf Cf 0 into another solution.

Let ao, flo, flo, 7o be fixed complex numbers, not integers, and let a ao + nl.
fl flo nt- n2, fl’ fl’ fl0 + n3,7 7o -+- n4, where the nj run over all integers.
Then the basis functions {f,aa’r}, (1.4), and the operators (1.3) define an infinite-
dimensional irreducible representation P(aoflofl’o7o) of sl(5, C). (The cases where
some of the complex numbers are integers still lead to representations but will
not be studied in this paper.) Using the operators (1.15)-(1.24) we can extend this
Lie algebra representation to a local group representation ofSL(5, C). To determine
the matrix elements of this representation with respect to the basis {f,aa’r}, it is
convenient to construct a simpler model of P(aoflofl’o7o).

The following model is realized by Lie derivatives in only four complex
variables s, u, v, rather than six. The basis functions are

faa’r(s, u, v, t) s’uava’tr,

and the Lie derivatives are

(1.26)

E s(tc3 so3 1), E_ s- 1(s 1),

Ea, v2tv, E_ O, V-1(tC3,- UC3 VC3v),

Ea u2(u, E_ a U-l(t( Ut

E t(tO uO roy) E_ t-l(SC3s- tO3 + 1),

Ea,- a’ (u/v)(vc3v 1), Ea’,- a (v/u)(uc3, 1),

Ea st(uc3, + vc3v- E_,,_ s- it- 1(S 1),

It is easy to show that these operators and basis functions satisfy relations (1.5),
so they define a model of P(flfl’7). To extend this model to a representation of
SL(5, C) we compute the operators Tj(A) analogous to (1.15)-(1.24) for the previous
model.
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T(A)f(s, u, v, t) (d bs)-

T2(A)f= f

T3(A)f f

T4(A)f

T(A)f

(1.27) T6(A)f

TT(A)f

Ts(A)f

T9(A)f

Tlo(A)f

as c

d bs’
u, v, t(d bs)

at + c
u(d + bt), v(d + bt), d btl

ut’ d + bust’ V’

c
as + ,u, d + bvst,t

c
as --, u(d bst), v(d bst),

d bst

sut u c

c + aut’d + but’V’at +-u],
svt v

,u ,at +
c + avt ’d + bvt

a f(s, au cv, dv bu, t).

Those matrix elements which correspond to a representation T (A) of SL(2, C)
induced by a triplet {J+, J-, j3} acting on a basis {f} according to

(1.28) J+fm (--0 +_ m)fm+ J3fm mfm, o C,

are well known [3]. Setting

(1.29) T(A)fmo+, T,,,(A)fmo+,’, n O, +_- 1, + 2,

we have

Tn,,(A) a+mo+,,do_mo_,c,_,, F(oo + mo + n + 1)
F(oo+mo +n’+ 1)

2F1(-o9 mo n’, -o + mo + n;n n’ + 1;bc/ad)
r(n n’ + 1)

for A in a sufficiently small neighborhood of the identity element.
From this it is easy to compute the matrix elements of each of the operators

Tj(A). As an example we consider the triplet {E,_t,,E_o,t,, Jt,-’}" From (1.5)
we make the identifications

to9 1-1/2(flo +fl), mo =(flo-flo), fl=fio-n =flo +n
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n 0, +1, _2,’". Then

dxv + byu ayu + cxvl
dv + bu au + cv

/o-n /,/ )/6+nau + Cv

al_#o+n,dl_#b_ncn_ n, F(2 -/30 + n)(1.30) .,=/-’_ F(2 flo + n’)

2Fx(flo n’, fl 1 + n;n n’ + ;bc/ad)
F(n n’ + 1)

F(e, flo n.....o + n 7, x, y)sua-"’v6 +"t,
[c/a[ < lu/v] < Id/bl.

(This expression can be greatly simplified.) In the special cases where T o(A)
reduces to exp bEa,_t, or exp bEt,,_ , this identity simplifies to

f e,,ff;/;
b
’y (1 b)-(1.31)

==o(fl’-k 1) F’(a’fl+k’fl’-k’7"x’ ,y)b, .bl<l,

with a similar identity obtained by interchanging fl and fl’ as well as x and y.
In the same way we can find identities corresponding to each of the operators
(1.15)-(1.23).

To compute more complicated matrix elements we make use of our model
(1.25)-(1.27). Consider the 5-dimensional complex Lie algebra with basis

{J+,J-,j3,E+,E-}
and commutation relations

[j3, j+] +j+, [j+,j-] 2j3,

(1.32)
[j+,e-] _e+, [j-,e+] _e-,
[J+,E +] [J-,E-] O,

[j3, E_+-] _+_1/2E +, [E +, E-] 0.

This is the Lie algebra of the matrix group ISL(2) with elements

a b

c d g2

0 0

A SL(2, C), gjC,
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and multiplication law

(1.34) {A, g} {A’, g’} {AA’, Ag’ + g}.

The relation between the Lie algebra and the group can be chosen in the form

b +{A,g} exp(geE-)exp(glE+)exp --dJ exp(-cdJ-)exp(’cJ3),
(1.35)

e:/2 d- .
The Lie algebra isl(2) can be embedded as a subalgebra of s/(5, C) in many

distinct ways. For example, the operators {E, E_ s, J, E,, E} satisfy the com-
mutation relations (1.32) as do the operators {E, E_, d, Ea, Ea}. Indeed, each
of the ten triplets (1.12) occurs in several nonconjugate ways as a {J+, J-, j3} in
embeddings of isl(2) in s/(5, (12).

Using the embedding {E, E_ s, d, E, Ey}, we compute the action of ISL(2)
in our 4-variable model:

T(A, g)f(s, u, v, t) T(exp g2E)T(exp g,E)T,(A)f

(1.36)
(d bs) -1 a id---S-s, u(1 (ge + gs)t),

t(d bs)
v(1 (g2 + gas)t),

(g2 + gls)t
Applying this operator to the basis vectors

fnj(S, U, l), t) S+nu+nzu#b+n3t+n4
we find that

(.37) X{A g}f. (A "g).f.
or

o+nl

a (d bs) -+"’-’- 1(1 (g2 gls)t)

(1.38)
s"lu"2Vrl3t"’ 2 T(A, g)",s";u"v"t"’4.

Computing th coefficient of "iut’ on th left-hand sid of this xprssion
w find that

{A >n4T sj."" 0 unless //2 n2, n3 n3, rt4

{A g}" +m,n2,n3,n,+k (_ 1)m+kgk2deo--o+n,-n-iT ?11,1’12 ,r13 ,r14

(1.39)
aO+,,_m_lc_, flo + flo 70 + nz + na n,

k

re)F1 -o nl + 1,co-To+n1 -n, 1,-k;
F(1

bc cg
-m + 1;ad, ag2

ifk > 0.
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The group multiplication property for ISL(2) implies the addition theorem

(1.40) T(AB Ah + g}; T{A g}’’T{B,h}"’
nj

ml=

for the functions F1. Now that we know the matrix elements we can use (1.37) and
our six-variable model to compute other identities for the F. In the six-variable
model we find that

as(1 g;t) + c(1 + gst)
T {A, g}f(s, u, v, t, x, y) f [_- + gst) + bs(1 gat)’

u[as(1 g2t) + c(1 + gxst)l v[as(1 g2t) + c(1 + glst)J
as + c(1 x) as + c(1 y)

(1.41)
st six + g2t(l x) + gist]

as(1 g2t) + c(1 + gst)’ [as(1 gzt) + c(1 + gst)][as + c(1 x)]’

sly + g2t(1 y) + gst] ]
[as(1 g2 t) + c(1 + g;h)ja c(1 x)iJ"

Substitution of (1.4), (1.39) and (1.41) into (1.37) yields the desired identities.
Note that the sum in (1.37) is a double sum over n’ and n, in the general case.
In a similar manner each embedding of ISL(2) in SL(5, C) yields a family of
identities for the F1.

2. Transformation formulas and generating functions. The transformation
formulas for the F are simple consequences of the SL(5, C) symmetry. Let

(2.1) l= 010) SL(2, C).

From (1.4) and (1.15) we find tha

(- ) + r’( )r()
T1(I), F(7)

(2.2)
__x Y (1 x)-a(1 y)-t’s-+utvt’F.F ’/’/’;7;x- l’y-

On the other hand,T (I), is a simultaneous eigenfunction of J, Ja,, Ja,_a,, Jr
which is analytic at x y 0. Therefore,

(2.3) T (I), kFl(7 , fl, fl’; 7; x, y)s-+uv’F,

and the constant k can be determined by setting x y 0 in (2.2) and (2.3).
This yields the transformation formula

x Y }=F(- y;;x y)(2.4) (l-x) a(1-y)-aF e, fl, ff;y,x_ l’y- 1’
(see [4]). Similarly, the expressionT 2(I)f#,y leads to

(2.5) (1 y)-V , y X y
F1(, fl, fl fl’" ;x y)e’fl’ ;Y;y- l’y-
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and T3(I)fflfl, leads to

(2.6) (l-x)-F1 o, , ff 7 x--X_ x
F(o 7 ff ff 7" Y).

The remaining two transformation formulas can be obtained by composition of
those derived here. Consideration of T4(I)fflfl, leads to the result that

(2.7) Fl(;fl fl’;e + fl +/3’- 7 + 1, x, y)

is a solution of equations (1.9), analytic at x y 1, consideration of TT(I)fat,
shows that

(2.8)

is a solution of equations (1.9) and consideration of T8(I)fa, shows that

(2.9)

is also a solution of (1.9). The operator T9(I yields an analogous result with the
interchanges fl ,-, fi’, x ,--, y. By applying all possible combinations of these
transformations to a basis of solutions of (1.9) near x y 0, one can obtain
the full 60 solutions of (1.9) (see [5]).

We can obtain many more generating functions for the F by considering
expressions Tj(A)Ja, where A is bounded away from the identity. As we have
seen, for A far enough from the identity the matrix elements (1.29) may no longer
be valid. As another example, consider the operator exp cE in the six-variable
model:

s x + cst y + cst
U,V(2.10) (expcE)f(s u v t, x y) f - cst’ ’1 + cst + cst

For Icl sufficiently small, we have

k=O
fo + k,flfl’,7 + ck

or

(2.11)

(1 + c)-F1
x+c Y+Cc),fl, fl’;7;1 + c’ +

fl +" fl’-- 7)()kFl( _+_ k fl fl’k
;7 +k;x,Y)c ]cl < 1.

If c and [r[ < where z s-it-1, then exp Ef, is not analytic at
x y r 0. However, applying exp E to the solution (2.7) and making use
of (1.10), we obtain

(2.12)

(1 + r)-F ,fl, fl’; + fl + fl’- , + l;z(1-X)l_+_.c 1-+-z(1-))_
hkFl(-k,fl,ff;7 o k; x,y)rk.

k=O
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Setting x y 0 we find that

( + r-f ,/,3’; + 3 + 3’- + ; $ r, + r
(1 + z)-2fl O{,fl / fl’;O / 3 + fl’-- 3; + 1;

+ z

E hkzk
k-O

or

(2.13)

k (o/fl/fl’-y/ 1)k

from [3, p. 211] and Vandermonde’s theorem
For our second example, we expand TI(A)ft/, as a power series in r s

(2.14)

a-b + +--(1 -x
a

+--a l-y) F e,fl, ;7;(b+dz)(a+cz(1-x))’
Y )=(b + dr)(a + cr(1 y))

hkFl(-k, fl;fl’;7;x,Y)zk.
k=O

Setting x y 0 and using [3, p. 206, (5.124)] we find that

(2.15) h a--kc ad- bc 1.

If a d b l, c 0, this identity simplifies to

(2.16)

(l+z)_F fl,,
xz yz

fl, "Y;1 /z’l /z

k=O k
Fl(-k fl ,7,

and if a c 1, b -co- 1, it becomes

(1 /z) + +’-[1 /(1-co)z]-[1 /(1-x)z]-[1 /(1-y)z]-

XZco
F1 , fi, fl’; 7;

[1 + (1 co)z][1 + (1 x)z]’

(2.17)
yzco

[1 +(1 co)z][1 + (1

Fl(-k fl, fl’; 7;x, y)zk,
I1 < min (1, I1 x1-1, I1 Y1-1, I1 col-1).
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Finally we discuss a more general method for computing generating functions
(basically Weisner’s method) which includes all of the above as special cases.
Here we characterize a solution of Cf= Cf= 0 by requiring that f be analytic
at x y 0 and that it will be a simultaneous eigenfunction of four independent
operators constructed from the Lie algebra sl(5, C). Such a characterization of the
f,r is given by expressions (1.7), (1.8). (A more detailed description of this
method can be found in [1].)

We illustrate the met.hod with another example. Consider the solution
f(s, u, v, t, x, y) of the simultaneous equations

Ef=f, Jt,f= fl’ +--- f,

Cf=O, C7=0,

which is analytic at x y 0. The first four equations have the general solution

f h
x ) exp (-s-1)uv’t
S

where h is arbitrary. Substituting this expression into the remaining two equations
we find that

h(x, y) (fl, fl’; 7; x, y)

()m(’)n xmy
(2.19)

m,,=0 (7).,+,, rn

F a,fl, fl"
x Y-lim- ,7;-,

unique to within a constant multiple. Writing Tl(A)fas a power series in
we find that

[dr + b ] (a + ctr)+’-’[a + cr(1 x)] -exp a +

(2.20)

[a + cr(1 y)]-a’(I) fl’ fl’;7;(a + cr)[a + c’c(1 x)]’

(a + c-c)[a + c-c(1 y)] hFl(-k,fl, fi’;7;x,y)z,
k=O

ad- bc 1.

Setting x y 0 and making use of a generating function for the generalized
Laguerre polynomials [3, p. 190, (5.101)], we find that

(2.21) h a- e-/" Lr-1)
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where L)(x) is a generalized Laguerre polynomial. If b c 0, a d 1, this
identity becomes

(2.22) exp (- r)O(fl, fl’; 7; xr yr) k (- 1)
k!

Fl(-k’ fl’ fl’;T;x’y)’ck.

If a c d-1 (_D-1/2, b 0, there results

exp
+ r

(1 + r)/’-[1 + r(1 -x)]-[1 + :(1 -y)]-’

(, xoo yor
(2.23) fl’;Y;(1 + "c)[1 + "c(1 x)]’(1 + z)[1 + (1 y)]

Ltk- 1)(6o)F, k, fl, fl’; 7 x, y)’ck,
k=0

Ir[ < min(1,1x 1[-1, lY 11-1).

Finally, if b -c 1, a d 0 we find for Tl(A)fthe expression

xs ys uv,te(1 x)- a(1 y)- a’sO fl fl’ 7 x’l y

Expanding as usual in powers of s, we obtain

e(1 x)-(1 Y)-a’@ fl’fi’;T; x’l y k=o..F1(7 + k fi ,7,x,y)

Using similar techniques one can derive a large number of such generating
functions.

3. Mellin-Barnes integrals. We now apply Vilenkin’s method [6] for
computing Mellin-Barnes integral identities to the F 1. For this purpose the four-
variable model (1.27) is most useful. To show how the method works, we consider
a modification of the representation of ISL(2) defined by the operator T(A, g)
(see (1.36)). Let ISL(2, R) be the subgroup of ISL(2) consisting of all {A,g} with
real parameters, and let D(/t, co) be the space of all complex-valued C-functions
f(s, t) in the real variables s, such that

are also C. Here # and co are fixed complex constants. The operators

a_s__----
bs
c t(d

(g2 +
ks)
gls)t](3.2) B(A,g)f(s, t) 11 (g2 + gls)tl’[d bslUfLd

define a global representation of ISL(2, R) on D(/, o)). With each fe D(/x, co), we
associate the vector-valued function

F(2, ) (F+ +(2, ), F+_(2, ), F_ +(2, ), F__(2, )



LIE THEORY AND THE APPELL FUNCTIONS 653

defined by

(3.3)

These integrals converge absolutely in the region 0 < Re 2 < -Re/, 0 < Re
< -Re co. It follows from the inversion formula for the Mellin transform that

(3.4) f(s, t)

d2 dOF+ +(2, O)s-a(t)-,-ii.,v-ioo a-ioo

s, > O,

_f
v+im +imd2 dOF + _(2, g/)s- (- t)---i.,v-ioo

s>0, t<0,

_Iv+i +io

d2 dg/F_ +(2, 0)(- s)- (t)- s<0, t>0,

_f’+i +id). dOF_ _(2, 0)(- s)- 4(_ t)-o- - s, < O,

where0<v< -Re/,0< < -Reco.
The operators B(A, g) induce a representation of 1SL(2, R) on the Mellin-

transform space"

(3.5) IB(A, g)F]+,+(2, 9) ds dt(s)x+_ a(t)+_- 1B(A, g)f(s, t).

Iff(s, t) in (3.5) is expressed in terms of F+,+(2, ) by (3.4) and if it is permissible
to interchange the order of integration, one obtains

(3.6)
+io

[B(A, g)F](2, 0) do dr/K(2, 0; P, t/; A, g)F(p, r/),
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where K is the 4 x 4 matrix

(3.7) K

++ K+- K + K--K++ ++ + ++

++ K+- K-+ K--K+_ + +_ +

K++ K+- K-+ K----+ --+ + +

K ++ K+- K-+ K--

defined by

lX2K:3,(2 ,p,rI,A g)

(3.8)
-1

dsdta + bsl-"-211 + t(g2(a + bs) + gl(dS + c))l -’-2
4n2

La + bsJ. + r(gz(a + bs)+ gl(dS + C))
04

where j +. The domain of validity of (3.6) depends on {A, g}. These matrix
elements can all be expressed in terms of the functions F and their limiting cases.
For example, if a, b, c, d, g l, g2 > 0, we find that

-1
++ 4rc2

__aO-O-.- b- c- (g2a q- glC)n-O

(3.9)
r(e, + + )r( )

-1
p, 2, (p r/;/ r/ + 3;

bc’b(ga + g2c)

for Rep< 1, Re (O r/) > 0, Re(co+r/+ 1)>0, Re(/t+p-r/+2)>0. For
g 0 the matrix elements are hypergeometric functions 2F, exactly as computed
in [6, Chap. 71. For A the identity matrix, the elements are products of gamma
functions. The group multiplication law for ISL(2, R) implies the matrix identity

Each of these 16 equations is valid exactly when both sides of the equation are
defined. Choosing {A gl} and {A2, g2} in an appropriate fashion, one can obtain
an enormous variety of identities for the F which contain the results.of Vilenkin
6, Chap. 7 as a special case. Similarly, by choosing subgroups of SL(5, R) other
.a, !SL(2, R), one can obtain new identities of the form (3.10). All of these
comp..,.tions arc straightforward but tedious.
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HILBERT TRANSFORMS, PLEMELJ RELATIONS,
AND FOURIER TRANSFORMS OF DISTRIBUTIONS*

MARION ORTON?

Abstract. Using the theory of analytic representations, it is shown that a generalized Hilbert
transformation may be defined on the space 9’ of Schwartz distributions. It yields extended Plemelj
and dispersion relations for all distributions in ’. Distributions which are limits of functions analytic
in the upper or lower half-plane are seen to be completely characterized by a certain Fourier transform
property. Corresponding results were previously obtained for distributions in the subspaces ’ and

O’s of ’.

1. Introduction. Classically the Hilbert transform of a functionfis defined as
the Cauchy principal value of the integral

fo f(t)
dt,

provided it exists. In this work it is shown that the Hilbert transformation can be
extended to the space 9’ of Schwartz distributions defined on the set of real
numbers. Using the Hilbert transform, extended Plemelj and dispersion relations
are proved to be valid in ’, in analogy to the classical case [9], [28]. Furthermore,
some Fourier transform properties are derived which generalize results that
previously were known to hold in Lp-spaces, for p => [8], and for tempered
distributions [6], [29]. Some theorems on products of certain distributions are
included to facilitate the application of our results to distributional Hilbert
problems, that will be discussed in another work.

Hilbert transforms for distributions in various subspaces of 9’ were inves-
tigated by a number of authors in [1], [3]-[5], [11]-[16], [18]-[21], [23], and [10,
vol. I]. To this author’s knowledge, there is, to date, no comprehensive treatment
of the Hilbert transformation for arbitrary distributions in 9’. However, many of
the results established here are closely related to and extend those discussed by
Beltrami and Wohlers [1], [3], [4], Lauwerier [18], Bremermann [6], and
Vladimirov [29], all of which apply to distributions in ’, as well as those results
obtained by Mitrovi6 in [19]-[21], which pertain to distributions in the spaces
O; (5]).

In agreement with much of the literature, we define the distributional Hilbert
transformation in terms of analytic representations of distributions, which take
the place of the Cauchy integrals used in the classical theory. Since extensive use
will be made of certain fundamental results from the theory of analytic representa-
tions, we recall briefly those definitions that will be needed.

All distributions in 9’ and test functions in @ are assumed to be real-valued
unless otherwise indicated.

Received by the editors October 26, 1971.
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DEFINITION 1.1. Let fe 9’. An analytic representation of f is any function
f(z) defined and analytic on the complement of the support of f such that for all
test functions 0 e 9,

lim [f(x + iy) f(x -iy)]q(x)dx (f(x), q(x))
Y-0+

THEOREM 1.1. Letf 9’ be a distribution ofcompact support. Then an analytic
representation off is given by the generalized Cauchy integral

(1.1) f(z) (t),

where z x + iy, y V= O. For given f, f(z) is determined uniquely within the space
offunctions which are analytic for y V= 0 and satisfy an inequality of the form
(1.2) If(z)] _-< M]y]-" forO < ]y] < 1,

for some integer n and a constant M.
A proof of this theorem is found in [6] or in [24].
THEOREM 1.2. Let f be a tempered distribution, that is let f 6 ’. Then there

exist analytic representations off. These may be chosen within the space offunctions
which are analytic for y V= 0 and satisfy an inequality of the form
(1.3) If(z)] _-< M(1 + ]zlZ)mly] for 0 < ]y] < 1,

for some integers m, n, and a constant M. For givenf 5’, its analytic representations
are determined by (1.3) modulo a polynomial of degree <= 2m.

This theorem is proved in [27].
THEOREM 1.3. Every distribution f 9’ has an analytic representation f(z) such

that

(1.4) If(z)l M(Izl)lYl -"11 for O < lYl < 1,

for some continuous, monotonely increasing functions M and n. Any two analytic
representations off differ by an entire analytic function which obeys (1.4).

Proof. A complete proof is found in [27] and [5]. Parts of the proof are
repeated here, since they will be used later. Let fe 9’ be given. Let Ik (k 1,k + 1)
for k 0, _+ 1, _+2,.... Then by [10, vol. I], there exists a partition of unity
{Ok}k= such that ok e 9, (Zk(X) 0 if x q# I for k 0, _+ 1, ..., and o=

1. For each k, let fk----kf" Then f- =_oo fk. Let fk(Z) be an analytic
representation offk, as given by Theorem 1.1. Then fk(Z) is analytic for [z[ __< Ikl 1.
Hence there exist polynomials hk(Z for k _+ 1, _+ 2, such that

Ilk(Z)- hk(z)l < 2 -k for Izl _--< Ikl- 1.

Let

g(z)-- L(z) + Z Elk(z) hk(Z)]"
O<lkl<oo

Then g(z) is an analytic representation off and satisfies an inequality of the form
(1.4). Every analytic representation f(z) of f is of the form f(z) g(z) + e(z),
where e(z) is an entire analytic function and f(z) satisfies (1.4).
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2. Definition and basic properties of the distributional Hilbert transformation.
The following lemma will provide the basis for the definition of the Hilbert
transformation for arbitrary distributions.

LEMMA 2.1. Let f ’ and let f(z) be an analytic representation off. Then the
limit

lim i[f(x + iy) + f(x iy)]q)(x)dx

exists for every q) !, and defines a continuous linear functional on 9.
Proof. Define u and v for y > 0 by

and

u(x, y) f(x -+- iy) f(x iy)

v(x, y)-- --i[f(x + iy) + f(x iy)].

It is easily seen that u satisfies Laplace’s equation for y > 0. Moreover, v is a
harmonic conjugate of u for y > 0, that is u and v satisfy the Cauchy-Riemann
equations

Ux=V and u= -v fory>O.

Let g(q; y) be a function of y defined for y __> 0 by

g(q);y) dt Ux(X, t)q)(x)dx for y > O,

g(q); O) lim dt u(x, t)q)(x) dx for y O,-
0+

where a > 0. Note that lim,_o+ j’_ Ux(X, t)(x) dx (f(1)(x), q(x)).
For y > 0 we obtain from the Cauchy-Riemann equations

g(q; y) v(x, y)o(x) dx v(x, a)o(x) dx.

Since g(q; y) is a continuous function of y for" y >= 0, the limit

(2.1) lim v(x, y)q)(x) dx g(p O) + v(x, a)o(x) dx
Y0+

exists for a > 0. This limit is, in fact, independent of the choice of a, since for a > 0,

da
g((p;O) + v(x, a)q)(x) dx

ux(x, a)q)(x)dx + va(x, a)q)(x) dx
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Hence the limit (2.1) is a constant function of a for a > 0, and therefore it is well-
defined. Now let

(f(x), q(x)) lim v(x, y)q)(x) dx.
Y-0+

Then 3(x) is a distribution in ’ by [10, vol. I, p. 147]. This completes the proof.
It should be mentioned that the statement of Lemma 2.1 may be inferred

from the work of Tillmann 27]. We gave another proof here to provide us with a
method that has applications in particular to the theory of distributional boundary
value problems, which will be discussed in another work.

In order to simplify the notation, we introduce the following definition.
DEFINITION 2.1. Let u(x, y) be a function defined for y 0. A distribution

f ’ is called the distributional limit of u at 0, written as f(x) limyo u(x, y),
if for every test function

lim u(x, y)O(x) dx (f(x), O(x)).

We are now in a position to make the following definition.
DEFINITION 2.2. Let f e ’ and let f(z) be an analytic representation of f.

Then the Hilbert ansform off relative to f(z) is defined to be the distributional
limit

f(x) lim i[f(x + iy) + f(x iy)].
yO

To justify the nomenclature, consider a distribution f of compact support.
An analytic representation of f is given by (1.1) and yields the distributional
limit

f(x) lim i[f(x + iy) + f(x iy)]
yO

(2.2)

x
yolim _1 f(x) * x 2 + y2 f(x) * pV--,X

by [10, vol. I, p. 95]. This agrees with the usual definition of the Hilbert transform
for distributions of compact support [5].

Suppose now that f(z) and le(z) are analytic representations of the same
distribution f @’. It follows from Lemma 1.3 that f(z)- .(z)= e(z) for some
entire function e(z), which satisfies an inequality of the form (1.4). Thus-
differs from ffg/e(x) by a term f(x)- ffgP(x)= 2i e(x). This shows that the
Hilbert transform f(x) contains an entire function that depends onf(z), but not
on f. More generally we have the following.

LEMMA 2.2. The Hilbert transformation defines a mapping of 9’ onto itself
The Hilbert transform of a distribution f 9’ relative to any analytic representation

f(z) agrees with an entire analyticfunction on if and only iff agrees with an entire
analytic function.
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Proof Let f e 9’, f(z) be an analytic representation off and g(x)= /gf(x).
Then ,(z)= -isgn yf(z) is an analytic representation of g and f(x)= 9f,(x).
This shows that the Hilbert transform maps 9’ onto itself. Now let f be a distri-
bution in 9’ which agrees with an entire function e. Let e(z) be the analytic continua-
tion of e to the complex plane. Then every analytic representation of f is of the
form f(z)= (1/2)sgn y e(z)+ eo(z for some entire function e0. Hence 3/gf(x)

2i eo(x), and is entire. Conversely, suppose that for some analytic representation
f(z), f(x) agrees with an entire function e on [. Then 0(z) (1/2) sgn y e(z) and
[(z) sgnyf(z) are both analytic representations of 2/ff(x). Therefore, there is an
entire function el(z) such that f(z) -(1/2) e(z) sgn y el(z). Since

f(x)= lim [f(x + iy)- f(x- iy)] -2ie,(x),
yO

f agrees with an entire function.

3. Extended Plemelj and dispersion relations. Analogous to the case of
ordinary functions, the distributional Hilbert transformation enables us to derive
extended Plemelj and dispersion relations.

LEMMA 3.1 (Plemelj relations). Let f 9’. Then the distributional limits

lim f(x + iy)= f+(x) and lim f(x + iy)= f_(x)
yO y-oO-

exist for every analytic representation f(z) of f and satisfy the Plemelj relations

(3.1a) f+(x) 1/2 f(x) + fii f(x),

(3.1b) f_(x) -1/2f(x) + i 2,f(x).

Let (I)+(z) and (I)_(z) be any two functions analytic for Im z > 0 and for
Im z < O, respectively. Suppose that for some f e 9’ and all q) e 9 we have

f yli f_(3.2) (f(x), q(X))= lim aP+(x + iy)q)(x)dx- m op_(x + iy)q)(x)dx.
Y0+

Define

Jt’z +(z) for Im z > O,

_(z) forImz<O.

Then f(z)is an analytic representation off. Let f+ and f_ be defined as in Lemma
3.1. The pair (f+, f_) will be called a Hilbert decomposition of f. From the above
argument it follows that every Hilbert decomposition off is given in terms of an
analytic representation.

Suppose now that (f+, f_) and (//, _) are two Hilbert deeompositions of f.
Then it follows from Lemma 1.3 that

(3.3) +(x) f+ (x) -_ (x) f_ (x) e(x)
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for some entire analytic function e(z). We note also that the Hilbert transform

fhas the decomposition

0.4) Jff(x) i[f+ (x) + f_
DEFINITION 3.1. The space 9’+ is the space of all distributions f ’(E) such

that f(x) f+(x) for some analytic representation f(z) off. The space 9’_ is the
space of all distributions f ’(E) for which f(x)= -f_(x) for some analytic
representation f(z).

Distributions in 9’+ are characterized by the following lemma.
LEMMA 3.2 (dispersion relations). Let f 6 9’ be complex-valued and suppose

that fx Re f, and f2 Im f. Then f 9’+ if and only if there exist analytic
representations fl(z) and fz(z) of fl and f2 such that the dispersion relations hold;
that is

(i) .l;(x)= oVgfz(X),
(ii) fz(X)

If such a pair fl(z), fz(z) exists, then it is unique.

Proof. Let us first prove the uniqueness. Suppose that fl(Z) and /#l(Z) are
analytic representations of fl for which (ii) holds. Then there exists an entire
function el(z), such that

fl(z) /7l(z) e(z).

From (ii) we have

glf(x) .f2(x) f(x) Igf (x) + 2ie (x),

so that el(x): 0 almost everywhere on . Since el is entire, this implies that
el(z) 0 by the uniqueness of analytic continuations. Hence fl(z)=
Similarly we obtain that if f2(z) and P2(z) are two analytic representations of f2
such that (i) holds, then f(z) P2(z).

Now let f ’+. Then there exist analytic representations fl(z) and f2(z) of

fl and f2 such that for f(z) f(z) +/f2(z) we have f(x) f+ (x). It follows from
the Plemelj relations in Lemma 3.1 that

f(x) f+(X) 1/2f(x) + off(X)

Therefore we have

and hence

Re f(x) 1/2]] (x) + 1/2ff2(x) fl(x),

Imj’(x) =’:j2(x) 1/2’fl(x) f2(x),

ji(x) L(x),
ji(x) f(x).
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Conversely, suppose that f 9’ and for fl Re f, f2 Im f, there exist
analytic representations fl(z) and fz(z), respectively, such that (i) and (ii) hold.
Let f(z) f(z) + /fz(z). Then f(z)is an analytic representation off and

lim f(x + iy) 1/2f(x) + f(x)
y-O

1/2[fl(x) + if2(x)] + [)(f(x) + if2(x)]

1/2f (x) + 1/2fz(X)+ i[1/2fz(x)

L(x) + iA(x)

f(x).

This completes the proof.
From Lemma 3.2 there follow these corollaries.
COROLLARY 3.3. Let f e ’, f Re f, f2 Im f. Then f 9’_ if and only if

there exist analytic representations fl(z) and fz(z) such that
(i) f(x) f2(x),
(ii) f2(x) f (x).

If such f(z) and f2(z) exist, they are unique.
COIOIIAI 3.4. Letf e 9’+. Iff is real-valued, then fagrees with a real entire

function.
Proof. If f f + if2 is real-valued then f2 0. By Lemma 3.2, fl is the

Hilbert transform of an entire function (namely of zero). Thus f is entire by
Lemma 2.2.

The following is an extension of a theorem given in [4, 3] for distributions
in 5’+ ’f’l 9’+.

LEMMA 3.5. Let f(z) be an analytic representation off e 9’+. Let f2 be an open
subset of . Then f(z) may be continued analytically across f if and only if the real
part off agrees with an analytic function on f2.

Proof. Without loss of generality it may be assumed that f is an interval.
Suppose first that f Re f agrees with an analytic function on f. Let f(z) be an
analytic representation of f, with u(x, y)= Re f(x + iy), v(x, y)= Im f(x + iy)
and limy_o+f(x + iy)=f(x). Then u(x,y) has the distributional limit
limy_.0+ u(x, y) f(x). Define

G(x + iy) (1/2)[u(x, y) + iv(x, y)]

G(x + iy)= -G(x- iy) fory<0.

fory > 0,

Then

lim [G(x + iy) G(x iy)] lim [G(x + iy) + G(x + iy)]
yO yO

lim u(x,y)=f(x).
y0

Since G(z) is analytic for y :/: 0, it is therefore an analytic representation of j[.
Thus we may write G(z) f(z). It follows that f(z) 2fl(z) for y > 0.
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Let K be a compact subset of f. Choose 0 e such that e(x)= if x e K
and e(x)= 0 if x eft. Let g(x)= (x)fl(x) and h(x)= [1 -o(x)fl(x). Then g
agrees with an analytic function on K, whereas h(x) 0 for x e K. Let ,(z) and
(z) be analytic representations of g and h such that fl(z) ,(z) + (z) with fl(z)
as above. By [22, p. 38], ,(x + iT) and (x + iT) converge uniformly on K to

+ (x) and + (x), respectively, as y 0 +, since both g and h agree with an analytic
function on K. ,

+ (x) and + (x) are analytic on K. Define F(z) by

Jr(z) forImz>0,
F(z)

f() forlmz<0.
Then F(z)= 2[(z) + h(z)] for Im z > 0. Hence F(x + iT) converges uniformly
on K as y 0 + and as y - 0- to 2[oa+ (x) +/ + (x)] and agrees with an analytic
function on K. This proves that F(z) and thus f(z) have an analytic continuation
across K from Im z > 0 to Im z < 0. Since K was an arbitrary compact subset off,
it follows that f(z) may be continued analytically across f. Any other analytic
representation of f differs from f(z) by an entire function, and may therefore be
continued analytically across f as well.

Conversely, suppose that f has an analytic representation f(z) that may be
continued analytically across f. Since f @’+, f(x) f+ (x) + e(x) for some entire
analytic function e. This shows that f agrees with an analytic function on f,
and so does fl Re f.

4. The Fourier transforms off+, f_, andYt./ In this section we will derive the
Fourier transforms of the distributions f+f_, and Y. for arbitrary f
and any analytic representations f(z) of f. As expected, the results are generaliza-
tions of the classical theorems and extend earlier results of other authors for
distributions in subspaces of @’().

We will need the corresponding Fourier transforms pertaining to distributions
of compact support in order to derive the identities for the general case. Let f be a
distribution of compact support. By Theorem 1.1, an analytic representation off
is given by

From (2.2) we have

u{/(x) -lf(x) , pvl.
Applying the convolution theorem for the distributional Fourier transform, we
obtain

(Wf)(s) ff -l(s)f(s)

(4.1)
-i sgn sf(s).

Using the Plemelj relations (3.1), we have

-(Y{,/) (s)f+() f() +

(4.2) kf(s) k sgn sf(s)

I-I(- s)f(s).
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Here H(s) denotes Heaviside’s unit step function. Similarly we obtain

(4.3) f_(s) H(s)Wf(s).

We now turn to the general case of distributions in @’.
THEOREM 4.1. Let f e 9’ and let f(z) be an analytic representation off. Then

(4.4) fff+(s) H( s)f(s) + a.ib(J)(s),
j=O

(4.5) fff_(s) -H(s)f(s)+
j=O

(4.6) W(Yff)(s) -i sgn sWf(s) + 2i
j=0

where the aj are constants such that =o aj(iz) is an entire analytic function
depending only on f(z) but not on f.

Remark. The products on the right sides of equations (4.4)-(4.6) are not well-
defined. They are to be interpreted in the following sense.

For suitably chosen distributions f, ofcompact support such that f , f,,
there exist constants a,j, n 1,2,...,j 0, 1,..., k,, such that

(4.7) + 14(- + Z
j=0 j=0

Here the cj, j 0, 1, ..., are constants such that j=o cj(iz) is an entire analytic
function. For the same f,’s,

(4.8)

(4.9)

f_(s) 1 -H(s)f,(s)- a,fiJ)(s) + cj6J)(s),
j=0 j=0

(,f)(s) -i sgn sf(s) 2i aj((s)
j=0

+ 2i c((s).
j=O

Theorem 4.1 will be proved using this interpretation.
Proof of Theorem 4.1. Let f e ’ and let f(z) be given. By Theorem 1.3 there

exists an entire function e(z)such that

f(z) fo(Z) + Z [fv(z)- h(z)] + e(z),

where j), f, f(z) and h(z) for v + 1, 2,..., are defined as in Theorem 1.3.
Let 9 Z be given by .q) for o 9. Then there exists an integer N such that
:" (o c (-N + 1, N- 1). We note that for Iv[ > N, fv(z) is analytic for Iz]
=< N ,nd N.--_. Iv] [fv(Z) hv(z)] converges uniformly to a function analytic
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for ]z] __< N 1. By the definition of the distributional Fourier transform, we have

We may apply the results for distributions of compact support to the first
finite sum. For the infinite series we observe that the series converges uniformly
on the support of q to an analytic function. Each term converges uniformly as
y 0 + to f+(x) h(x) by [22, p. 381. Thus, by the continuity of the functionals
involved we may interchange limits, sums, and integrals to obtain

(f+(s), O(s)) (H(-s)o,fo(s) + H(-s)’f(s) av6(J)(s) ,O(s
O<lvl<N j=O

(f+ (x) h(x), q)(x))

+ - (e(x), o(x)5

@(- s)fo(s) +
O<lvl<

"qI-(j=oCJ((J)(s),O(S))
H(- s),fv(S) j-o aJbJ)(s)

where the a., j 0, 1,..., k" v +_1, ___2,..- are constants such that hv(z)
o a(iz) and cj, j 0, !, are constants such that e(z)= Zj=o cj(iz).

With aoo 0, ko 0, we thus obtain, since was arbitrary,

f+ (s) H(- s)f(s) a.6(J)(s)

+ c(s).
j=O



666 MARION ORTON

Similarly, for the same fv and constants avj, cj,

f (s) Z H(s)f(s) (s

+ c6s),
j=0

(f)(s) -isgn sf(s) 2i ajf)(s)

+ 2i
j=0

Using Theorem 4.1 we find that distributions in 9’+ are characterized by the
following lemma.

LEMMA 4.2. Let f 9’. Then f 9’+ if and only if there exist distributions
f,, n 1, 2, of compact support such that f , f, and

,f(s) H(- s)f,(s)
n=l j=

+ y
j=O

for some constants a,j, j 0, 1, ..., k, n 1, 2, ..., and cj, j 0, 1, ..., such that

o cj(iz) is entire.

Proof. Without loss of generality we may assume that all but a finite number of
the f, vanish on any compact subset of . For 1, 2, ..., let N be the smallest
integer such that for all n > N f,(x) 0 for x (-i, i). Let No 0. Define

Ni+l

gi(x) f,(x), O, 1,2,...
n=Ni+

Then gi is a distribution of compact support for i= 0, 1,... and gi(x)= 0 for
x e (-i, i). Furthermore, f io gi. Define i(z) by

( fori=0P,i(z) gi(t)’
t- z

Let hi(z) be polynomials such that for 1, 2, ...,

I’(z)- h(z)l < 2 -i for Iz[ N i- 1,

and ho(z =- O. Let f(z) be an analytic representation of f. Then there exists (analo-
gous to Theorem 1.3) an entire function e(z) for which

(z) 2 [i(z)- hi(z)] -t- e(z).
i=0
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As in Theorem 4.1 we obtain

.,f+(s) ., H(-s)ffg,(s) b,fit)(s) + Y’. dbt)(s),
i=0 j=O j=O

where 2jmi=o bij(iz) hi(z and jo dj(iz) e(z).
Now consider f(s). By assumption f(s) has the form

fff(s) ., H(- s)f,,(s) a,,jbg)(s) + cj6J)(s)
n=l j= j=O

H(- s)o.f,(s) (s + (s)
i=0 n=Ni + j= j=0

H(- s)-gi(s) (s + (s).
i= n=Ni+ j= j=0

Thus we have

Therefore,

where

f(s) -f+ (s) o bij((J)(s) anj((J)(s)
i= j=O n=Ni+ j=

+ (c-
j-O

f(x)- f+(x)= [hi(x)- pi(x)] + leo(x)- e(x)],
i=0

Ni- kn

Pi(Z) 2 E a,q(iz) and Co(Z)= Q(iz}i.
n=Ni+ j=O j=O

Now, in the sense of equality in @’,

[hi(x)- Pi(X)] o bij(ix)J- a’q(ix)J
i=0 i= j=0 n=Ni+ j=

2 ejxj

for some constants ej, since limits and sums are interchangeable in 9’. This series
converges in _@’, since it is the inverse Fourier transform ofa series which converges
in Z’. This shows that {’=0 [hi(x)- Pi(X)]}= converges in 9’. However, con-
vergence of a power series in the topology of 9’ implies the uniform convergence
of the series on every compact subset of R. Thus, io [hi(x) pi(x)] agrees with an
entire analytic function on [R and so does f(x) f+ (x). Therefore, f e 9’+.

For f e ’, let f(z) be as in Theorem 1.2. Let 5’+ ’ (q 9’+. Then Lemma
4.2 implies that fe ’+ if and only if f(s) is a distribution in 5e’ which has its
support contained in (- , 0], or, equivalently, if and only iff is the Fourier trans-
form of a distribution with support on the positive half-axis. This result is well
known [29], [6].
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5. Multiplication in 9 /. As was mentioned above, the space / S’ f3 9 /

is identical to the space of all distributions in Se’ whose Fourier transforms have
support on the negative half-axis. Thus for f, g S), the convolution product
fff* fig is well-defined. Therefore the product of f and g exists and may be
explained [6, I29] as

(f g)(x) -(f* ffg)(x).

In the light of Theorem 4.1 and Lemma 4.2, this definition has an obvious generali-
zation to distributions in 9’ fl Z’ whose Fourier transforms are again in 9’ fl Z’.
However, there does not appear to be known an analogous result for arbitrary
distributions in 9_. Therefore we restrict ourselves here to the discussion of
particular products that are useful in the solution of distributional Hilbert prob-
lems.

LEMMA 5.1. Let f 9’. Let [(z) be an analytic representation of an infinitely
d!fferentiable ,function h. Then the distributional limit

lim [(x + iy)f(x + iy) [ + (x)f+ (x)
y-O

exists and agrees with the usual product, for every analytic representation f(z) off.
Proof. Let q 9([) have support K. Define a 9([) to be such that a(x)
on K. Then (af)(x) has compact support. Thus there exists a continuously

differentiable function g of compact support such that

dg
(af)(x) x-x(X) for x K.

By [22, p. 38], the Cauchy integral ,(z)= 1/(2ni)(g(t), 1/(t- z)) converges uni-
formly to + (x)as Im z --, 0 +. Iffz(x) [1 a(x)]f(x), thenf(x) (cf)(x) + fz(x).
Pick an analytic representation of f of the form

dz)flz) + Liz)

for some analytic representation fz(Z) of f2. Then fz(Z) agrees with an analytic
function on K and thus h(x + iy)fz(X + iy) converges uniformly to h+(X)fz+(X)
as y - 0 +. Therefore we obtain

lim (x + iy)f(x + iy)q)(x)dx
y-*O

yO .]
(x + iy),tk)(x + iy)q(x) dx

+ lim (x + iy)fz(x + iy)q)(x)dx
yO

cl
lim (-1)’(x + iy)--r-((x + iy)q)(x))dx
0+
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Thus

((f)+ (x)h + (x), q)(x)) + (h + (x)f+ (x),

(h+(x)f+(x), q)(x)).

lim (x + iy)f(x + iy)= +(x)f+(x).
y-O

Other analytic representations off differ from f(z) by an entire function, so that
the corresponding limits still exist.

LEMMA 5.2. Let h @’. Suppose h agrees with an infinitely differentiable function
on except possibly at x O. Then the distributional limit

lim (x + iy)f(x + iy)
yO

exists for every f 9’ and all analytic representations f(z) off and ft(z) of h, and
represents a distribution in 9’+.

Proof. Let Uo be a neighborhood of zero. Let be such that (x)= 0 for
all x Uo and (1 )s 9. Let h h, and h2 (1 cz)h. Let fl be such that
fl(x) 0 in a neighborhood of the support of (1 ), and (1 fl) 9. Define

fa flf and f2 (1 fl)f.
f(x) vanishes in a neighborhood of the support of h2, so that every analytic

representationf (z) offl is analytic in a neighborhood (in the z-plane) of the support
of h2. Hence the distributional limit

lim h2(x at- iy)fl(x + iy)= 12+(x),t2+(x
y-O

exists by Lemma 5.1 and is a distribution in 9’+.
Lemma 5.1 also applies to

lim l l(x -[- iy)[fl(x + iy) + f2(x + iy)] h + (x)EI + (x) -- L +
y-0+

since h is infinitely differentiable.
Since f2 and h2 are both distributions of compact support, they may be con-

sidered distributions in ’, so that we may choose analytic representations f2(z)
and 2(z) of f2 and h2 such that f + and h2 + are in ’+. Then

lim h2(x + iy)f(x + iy) h2+ (x)f2+ (x)
y0

is a distribution in 6’+ ’+. Thus for the particular analytic representations of
land h given in terms off(z),f:(z),-and (z), (z)as above, byf(z) fl(Z) + f(z)
and h(z) h(z) + (z), the distributional limit limy_,0 f(x + iy)t(x + iy) exists
and represents a distribution in ’+. Any other analytic representations of f
and h differ from f(z) and h(z) by an entire function. From Lemma 5.1 it follows
that the corresponding limits exist and are in ’+.

CORROLLARY 5.3. Let h ’ agree with an infinitely differentiable function
except at a finite number of points. Then

lim (x + iy)f(x + iy)
yO

exists and is in ’+ for every analytic representation (z) and for all analytic rep-
resentations f(z) of any distribution f ’.



670 MARION ORTON

REFERENCES

1] E.J. BELTRAMI AND M. R. WOHLERS, Distributional boundary value theorems and Hilbert transforms,
Arch. Rational Mech. Anal., 18 (1965), pp. 304-309.

E2] --, Distributional boundary values offunctions holomorphic in a half-plane, J. Math. Mech.,
15 (1966), pp. 137-146.

[3] --, Distributions and the Boundary Values ofAnalytic Functions, Academic Press, New York,
1966.

[4] --, The Cauchy integral oftempered distributions andsome theorems on analytical continuation,
SIAM J. Appl. Math., 15 (1967), pp. 1077-1087.

[5] U. J. BREMERMANN, Distributions, Complex Variables, and Fourier Transforms, Addison-Wesley,
Reading, Mass., 1965.

[6] --, Some remarks on analytic representations and products of distributions, SIAM J. Appl.
Math., 15 (1967), pp. 929-943.

[7] H. J. BREMERMANN AND L. DURAND, Or/ analytic continuation, multiplication, and Fourier trans-

formations of Schwartz distributions, J. Math. and Phys., 2 (1961), pp. 240-258.
E8] P. L. BUTZER AYD W. TREEIS, Hilbert Transformation, gebrochene Integration und Differentiation,

Forschungsberichte des Landes Nordrhein-Westfalen, Nr. 1889, Westdeutscher Verlag,
K61n, Germany, 1968.

9] F. D. GAIHOV, Boundary Value Problems, Addison-Wesley, Reading, Mass., 1966.
[10] I. M. GEL’rAND AND G. E. SHILOV, Generalized Functions, Academic Press, New York, vol. I,

1964, vol. II, 1968.
Ill] W. G)TTINGER, Generalized functions and dispersion relations in physics, Fortschr. Physik, 14

(1966), pp. 483-602.
I12] --, Generalizedfunctions in elementary particle physics and passive systems theory, SIAM J.

Appl. Math., 15 (1967), pp. 964-1000.
I13] J. HORVATH, Sur l’iteration de la transformke de Hilbert d’une distribution complexe, C. R. Acad.

Sci. Paris S6r. A-B, 237 (1953), pp. 1480-1482.
[14] --, Hilbert transfbrms of distributions in R", Proc. International Congress of Mathematics,

Amsterdam, 1954, pp. 122-123.
I15] --, Singular integral operators and spherical harmonics, Trans. Amer. Math. Soc., 82 (1956),

pp. 52-63.
[16] D. S. JONES, Some remarks on Hilbert transforms, J. Inst. Math. Appl., (1965), pp. 226-240.
I17] G. KOTHE, Die Randverteilungen analytischer Funktionen, Math. Z., 57 (1952),.pp. 13-33.
E18] H.A. LAUWERIER, The Hilbert problem for generalizedfunctions, Arch. Rational Mech. Anal., 13

(1963), pp. 157-166.
[19] D. MIXROW6, Plemeljformulas and analytic representations ofdistributions, Glasnik Mat. Ser. III,

3 (1968), no. 23, pp. 231-239.
[20] Analytic representations of distributions in 0’, Ibid., 5 (1970), no. 25, pp. 43-49.
I21] The Plemelj distributional formulas, Bull. Amer. Math. Soc., 77 (1971), pp. 562-563.

[22] N. I. MUSKHELSHVILI, Singular Integral Equations, P. Noordhoff, Groningen, the Netherlands,
1958.

[23] R. W. NEWCOM, Hilbert transforms and positive realfunctions, Proc. IRE, 50 (1962), pp. 2516-
2517.

I24] H. G. TILLMANN, Randverteilungen analytischer Funktionen und Distributionen, Math. Z., 59
(1953), pp. 61-83.

[25] --, Die Fortsetzung analytischer Funktionale, Abh. Math. Sem. Univ. Hamburg, 21 (1957),
pp. 139-154.

[26] Distributionen als Randverteilungen analytischer Funktionen II, Math. Z., 76 (1961),
pp. 5-21.

[27] --, Darstellung der Schwartzschen Distributionen durch analytische Funktionen, Ibid., 77
(1961), pp. 106-124.

28] E. C. Ta’CIMARSI, Introduction to the Theory of Fourier Integrals, Oxford University Press,
London, 1948.

[29] N. VIADIMIROV, Construction of envelopes of holomorphy for regions of a special type and their
application, Trudy Mat. Inst. Steklov, 60 (1961), pp.101-104.



SIAM J. MATH. ANAL.
Vol. 4, No. 4, November 1973

A-STABLE METHODS AND PADI APPROXIMATIONS
TO THE EXPONENTIAL*

BYRON L. EHLE

Abstract. The set of Pad6 approximations to the exponential function is studied. It is shown that
all entries on the first and second subdiagonal of the Pad6 table are analytic and bounded by in the
entire left half-plane. These results are then applied to the problem of producing A-stable numerical
methods for solving initial value problems. It is shown that they easily permit one to generate several
classes of methods of arbitrarily high order which are A-stable.

1. Introduction. There is currently considerable interest in numerical methods
for solving systems of ordinary differential equations which exhibit the property of
stiffness. A number of numerical methods have been proposed to solve such prob-
lems I8], 9], [12], [13]. Nearly all are designed to produce an approximation to
the exponential function whose modulus is bounded by when solving the initial
value problem

(1) y’-- qy, y(O) 1,

with an arbitrary step size h, when q is any complex number with negative real part.
Methods satisfying this condition are called A-stable [5]. A-stable methods
generally permit the use of significantly larger step sizes than is possible with the
classical fourth order Runge-Kutta or Adams’ methods, for example, once the
initial transient region is passed. This is because the A-stability condition guaran-
tees that rapidly decaying terms will continue to decrease for any step size used.
One difficulty in developing such methods has been a lack ofsuitable approximations
to the exponential function which had moduli bounded by in the entire left
half-plane. Such approximations will be called A-acceptable in the remainder of
this paper.

It has been shown by Varga 16] that the set of diagonal Pad6 approximations
to the exponential are A-acceptable. Unfortunately, the moduli of all of these
approximations approach as Izl - , Re (z) < 0 and this is not consistent with
the behavior of e z. A more satisfactory approximation to the exponential would
be one that was not only A-acceptable but also satisfied the property that as
Iz]--* , with Re (z) < 0, its modulus approached zero. Such an approximation
will be called L-acceptable. In a recent paper, Wright [19] has shown that the
first eleven entries on the first subdiagonal ofPad6 approximations are L-acceptable.

In this paper it is shown, by an entirely different technique, that the set of all
first and second subdiagonal Pad6 approximations to the exponential function
are L-acceptable. Furthermore, evidence is given to suggest that these are the only
L-acceptable Pad6 approximations to the exponential.

Finally, several classes of arbitrarily high order A-stable methods which
produce L-acceptable approximations to the exponential are given.
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2. Preliminary theorems and definitions. A great deal is known about the
Pad6 approximations to the exponential. In particular, if we denote by P,,(z)
the unique Pad6 approximation to the exponential with numerator N,,(z) of
degree k and denominator D,,(z) of degree j, then it is known [111, [15] that

(2)

@ (j + k m)
Nj,k(Z) ,,,/= o (J + k) !m !(k m)

Z

(j+ k- m)!j!
Dj,k(2) m=O/ (J + k)!m!(j m)!

In order to establish the L-acceptability of P,+ 1,n(Z) and P,+ 2,n(Z) we must
establish three results:

(I) Pj,,(z) e O(zm+ 1), m >= O,
(II) IPj,k(z)l - 0 as Re (z) ,

(III) IPj,k(z)l =< for Re (z)=< 0,
for j n + or n + 2, k n, and n 0, 1, 2,.... Results (I) and (II) follow
immediately from the fact [17, p. 394] that

Pj,(z) e O(zJ + + ),

and that P,+ 1,,(z) and P,+ 2,n(Z) have denominators of higher degree than their
numerators.

The proof that (III) is also satisfied is the subject of this paper. First it is
established that IP,+ l,,(z)l and IP,+z,,(z)l are bounded by along the imaginary
axis. Then it is shown that there are no zeros of D, + 1,,(z) and D, + 2,,(z) in the left
half-plane. Consequently, P,+,,(z) and P,+z,,(z) are analytic for Re(z)__< 0,
n 0, 1,2, and the maximum modulus theorem may be applied to establish
boundedness.

In order to effect the above proof, a number of relationships which hold
between various Nj,(z) and Dj,,(z) as given by (2) will be needed. In particular it is
easily verified that"

(A) Oj,(z) N,j(-z) for j, k > 0 and all z.

(B) Nn,,,(iy Dn,n(iY and Dn,n(iY U,,.,,(iy), y real.
(C) For all j, k >__ and all z,

(i) Nj,,(z) Nj,,_ (z) + AzNj_ 1,,- l(Z),
(ii) Dj,,(z) Dj,,_ l(z) + AzDj_ 1,,- (z),

(iii) Nj,,(z) Nj_ 1,,(z) + BzNj_I,,_ l(z),
where

A=j/[(j+k)(j+k- 1)] and B= -k/[(j+k)(j+k- 1)].

(D) The polynomial F,(z) N,,,(z). D,,,,,(z) has no odd terms.

(E) For all n >__ 2,

N,,,,(z) N,,_ 1,,-1 (z) + Az2N,_ 2,,- 2(z)

and

D,,,,,(z) D,,_ ,,,_ (z) + AzZD,_ 2,,- 2(z),
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where

A 1/[4(2n- 1)(2n- 3)].

LEMMA 1. For all n >= 1, the only term with an odd power of z in the product
D.,.(z)N._ 1,.-1(z) is the term of highest power, namely,

(- 1)"n!(n 1)!z2n-

(2n) !(2n 2)!

Proof. The proof is by induction. For n 1, we have

Dl,l(z)No,o(Z) (1 z/2)(1).

Now by property (E),

Z
2

D.,.(z)N.-1,.- l(Z) Dn- l,n- lNn- l,n-1 + 4(2n- 1)(2n- 3) Dn-z’n-Nn-l’n-l"

Assume the only odd term in Dn_l,n_l(z)Nn_2,n_e(Z) is of the form given by the
theorem. By property (D), the first term on the right has no odd terms, and by
property (A), the product has only the stated odd term. As an immediate corollary
we have the following.

COROLLARY 1. For all n > and all z,

z
Nn,n(z)Dn-l,n-,(z)] (- _-.

(2n 1) [Dn’"(z)u"-l’"-l(z) 1)nL(2n 1)!_]

3. Bounds on the imaginary axis. To establish that IPn+ 1,n(Z)] and IPn+ 2,n(Z)]
are bounded by on the imaginary axis, it is sufficient to show that ID.+ 1,.(iY)I
>= INn+ ,n(iY)] and that IO.+ 2,n(iY)[ INn+ 2,n(iY)[ for y real. To establish the first
inequality we prove the following theorem.

THEO.EM 1. For all n >= 1, if z iy, y real, then

]Dn’n-l(z)12-lNnn-l(z)lZ:[(n-1)!]2’(2n 1)! y2n >_ O,

and hence [Pn+ ,n(iY)l <= 1 for y real and n >__ O.
Proof. Employing property (C) and observing that INn,n(iy)[ IDn,n(iY)l for

y real, n => 0, we have

[D.,._ ,(iy)l 2 INn,.-l(iy)l 2

iy

2(2n 1)
[un’n(iy)Nn- a,n-(iy) Nn,n(iy)N 1,n-(iy)

Dn,n(iy)Dn ,,n -1 (iy) + Dn,n(iY) D ,,n -1 (iY)]

We obtain the required result by applying property (B) to remove all conjugates
and then applying Corollary 1.

In order to establish a similar result for Pn + Z,n(Z), it is first necessary to observe
the following.
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and

LEMMA 2. For all n >= 2 and all z,

N.,._ 2(z)
2(n 1)
(4n 2)N,,,,,(z) (2n + z)N._ ,.._(z)]

D.,,,_ 2(z)
2(n 1)
[(4n 2)D.,.(z) (2n + z)D._ ,._ (z)].

Proof. The two results follow from equations (2).
THEOREM 2. For all n >= 2,/f z iy, y real, then

IDnn-2(7")[2-[Nnn-2(z)12--I(n-2)!12’(n 2)! y2n >= 0

and hence [P,,+ 2,n(iY)[ <= 1 for y real and n > O.
Proof. Using Lemma 2 with z iy, y real, we obtain

ID.,._ 2(iy)l 2 IN.,._ 2(iy)l 2

2(2n- 1)-_- li[-(2n- iy)D.,.D._,._ -(2n + iy)D...D._.._

+ (2n iy)N.,.N._ ,._ + (2n + iy)N.,.N._ ,._ 1].

Applying property (B) and Corollary completes the proof.
Before proceeding to the proof that P.+ ,.(z) and P.+z,.(z) are analytic for

Re (z) =< 0, it seems appropriate to note that the following theorem can be es-
tablished for P.+ ..(z).

TI-IEOREI 3. For all n >_ 3, y real,

[(n 3)’Y"- 12]D.,._(iy)]2 ]N.,._(iy)12 (y2 n2. + 2n) in 3)!

and hence [P.,._ (iy)[ is not bounded by one over the interval

-v/n2 2n < y < w/nz 2n for n >_ 3.

The proof of this theorem proceeds in a fashion similar to Theorems and 2
after establishing that

(n- z- 2) z(n + z)
Nn,n-3(z) (n- 2) N._,._(z) +

2(n 2)(2n- 3) N’-z’"-z(z)

and that a similar result for D.,._ 3(z) is true.
Since it is easily verified that IP4,0(z)[ is not bounded by on the imaginary

axis, and since it is also known that IP.,0(z)l is not bounded by in the left half-
plane for n __> 5 [7, p. 25], there seems to be little likelihood that P. +,.(z) can be
L-acceptable for any n >= 0 with j >= 3. For this reason we direct our attention to
establishing the L-acceptability of only P. + ,.(z) and P. + 2,.(z) in the remainder of
this paper.
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4. The zeros of D./ 1,.(z) and D/ ..(z). As was noted in 2, the proof of the
L-acceptability of P + 1,(z) and P. + ..(z) would be complete if we could establish
that no zeros ofD+ 1,.(z) and D+ 2,(z) were in the left half-plane. By property (A),
this is equivalent to showing that all the zeros of N..+ (z) and N,/ 2(z) are in the
left half-plane. We choose to work with the numerators because all the coefficients
are positive while those of the denominator alternate in sign.

Wimp [18] has shown that all the zeros of the Bessel polynomials

k=O

(n + 6)kz"-k, 6 >--0, n >_ !,

where

(n+6)k=(n+6)(n + + 1)...(n+6+ k- 1),

(n + 6)0 1,

are in the left half-pl,ane. It is easily verified that N.,.+ (z) [n!/(2n + 1)!]P(.+ a(z)
and hence it follows that the set of first subdiagonal Pad6 approximations to the
exponential are L-acceptable. Unfortunately, N.,.+ 2(z) In !/(2n + 2)!]Pt.-5-)(z),
and Wimp’s result does not apply to the second subdiagonal.

In trying to verify and extend Wimp’s result, an attempt was made to prove
that all the zeros of N.,.+ (z) and N.,.+ 2(z) were in the left half-plane in a manner
similar to Varga’s proof [16] for P.,,,(z). This was unsuccessful because the resulting
continued fraction expansions were not easily related to one another. Instead, the
proof is based on establishing the following two theorems.

THEOREM 4. Iffor some j, k >= O, Nj,k(Z has all of its zeros in the open left half-
plane, thenfor all m >= j, Nm,k(Z has all of its zeros in the open left half-plane also.

THEOREM 5. For any n >= 0, if N.+ 1,.+ (z) has all of its zeros in the left half-
plane, then N.,.+ 2(z) also has all of its zeros in the left half-plane.

Assuming for the moment that the required proofs have been given, we note
that the only zero of N,(z) 4- z/2 is in the left half-plane. It then follows by
repeated application of Theorems 5 and 4 as indicated by Fig. 1, that all the zeros
of N,+ a(z) and N.,. + 2(z) are in the left half-plane. As noted above, it follows that
none of the zeros olD.+ ,.(z) and D.+ 2,.(z) are in the left half-plane. Thus we would
have established the following result.

THEOREM 6. For all n >= 0, P.+ x,.(z) and P.+ 2,.(z), the first and second sub-
diagonal Padk approximations to the exponential function, are analytic in the entire

left half-plane. Furthermore, they are bounded in absolute value by in the entire

left half-plane and hence are L-acceptable approximations to the exponential
function.

Clearly we could have stated Theorem 5 in a more positive way since one of
Varga’s results in establishing the A-acceptability of the diagonal Pad6 approxi-
mations was that all the zeros of N.+ 1,.+ (z) were in the left half-plane. By stating
the theorem without including this result, however, an alternative proof of the
location of the zeros of N.+ ,.+ (z) as well as N.,. +l(z) is provided.

5. Proof of Theorems 4 and 5. We begin by recalling a result given in Marden
14, p. 69].
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No,2

N, N, .N1,

2,2 N2,4

Theorem 5
Theorem 4

FIG. 1. Basis ofprooffor Theorem 6

THEOREM. Iff(z) =o akzk’ fll l and all the zeros off(z) lie in a circular
region C, then every zero Z of the polynomial

L(Z) 1 f(z) zf’(z)

may be written in the form Z or in thejbrm

where is a point of C.
Observing that

Nj,k(Z)
(j+k+ 1)
(k+ 1) Nj,k + l(Z) for all j, k > 0

follows immediately from (2), we can easily establish that

(j + k + 1)Nj+ 1,k (J + k + 1)Nj, zN,
follows from property (C(iii)). With fll J + k + and q k, it follows from
the theorem [14] just given that all the zeros of Nj+ 1,k are in the left half-plane
provided all the zeros of Nj,k are also. Thus Theorem 4 is established.

In order to prove Theorem 5, it is necessary to establish a relationship between
N. + 1,. + 1(z) and N.,. + 2(z). The following lemma will prove useful in this regard.

LEMMA 3. For all j >= O, k >= O,

Ng,k+ I(Z)- [1 / z/(j + 1)]Nj+ 1,k(Z)- [z/(j + 1)]Nj+ l,k(Z).

Proof. The proof follows directly from equation (2).
We now define O.(z) to be

Nnn+2(z) [-(n + l) l] + N’.+ + l(Z),nO.(z)
(-z/(n + 1))N.+ 1,n+ 1(Z) Z N.+ 1,n+ I(Z)

The second equality is obtained using Lemma 3 with j n and k n + 1.
Now, clearly all the zeros of N.,.+ 2(z) which are not zeros of O.(z) are zeros of

N.+ 1,.+ (z). Conversely, all the zeros of O.(z) are zeros of Nn,n+z(Z). Thus, if

N.+ 1,.+ (z) has zeros only in the left half-plane and we can show that all the zeros
of O.(z) are in the left half-plane, then we will have shown that all the zeros of
N.,.+ 2(z)are also in the left half-plane.

In order to study the zeros of O.(z) we consider the region S, bounded by the
curve C, which is shown in Fig. 2. The boundary curve C is composed of the semi-
circle ]z] R, Re (z) =< 0, R chosen so that all the zeros of N.+ ,.+ (z) are inside

Izl R together with the semicircle Izl r, r > 0, Re (z) __> 0, r chosen so that all
the zeros of N.,.+z(Z) are outside the circle Izl r together with the imaginary
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FIG. 2. Region containing zeros of O,(z)

axis from-R__<y__< -randr_<y=<R. That values of R < andr>0canbe
found which satisfy these conditions follows at once from the k.own form of the
polynomials N, + 1,, + 1(z) and N,,, + 2(z) and several well-known results of Cauchy
[14, p. 123-126].

The following well-known theorem [1, p. 123 from complex analysis will
now be useful.

THEOREM. Letf(z) be meromorphic inside and on a simple closed curve C which
does not pass through any of the zeros or poles off(z). Then

2rci
dz Nc(f)- Pc(f),

where Nc(f) and Pc(f) are, respectively, the numbers of zeros and poles off(z)
inside C.

Applying this theorem to O,(z), we obtain the following.
LEMMA 4. If all the zeros of N,+ 1,,+ (z) are in the left half-plane, then

1 ;c UnI,ZJ
Uc(Un,n+ 2(z)) (n + 2) + -A- dz,

where C is the curve in Fig. 2.
Turning our attention to the evaluation ofc (O’n/On)dz, we observe that this

can be done by determining the index of On(C) with respect to the origin, that is, the
index of the curve into which C is mapped by On(Z) taken relative to the origin.
For convenience, we call this new curve C*. We shall now show that as C* is
traversed, its real part is always negative and hence its index with respect to the
origin is zero.

LEMMA 5. For Izl R, R sufficiently large, Re (0n(Z)) < 0.
Proof. For Izl large enough, O,(z) + O(1/z); hence for sufficiently large

R, the result follows.

Dieudonn6 has used this technique in considering a problem which is similar in spirit to the one
we are considering ([14, p. 87], [6]).
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LEMMA 6. For [z[ r, r > O, r sufficiently small, and Re (z) > 0, Re (O.(z)) < O.
Proof. Since as Izl--, 0, (N’/a./I(Z)/N/I.n/x(z))-. 1/2. we have that for r

sufficiently small, Re (N’.+ 1.+ (z)/N.+ 1,.+ l(Z)) =< 1/4. Thus for r sufficiently small,
we have

Re(0.(z))< [-(n+l)Re(z)_ 1] +1/4<0
r2

LEMMA 7. For y real and n >= O, if N.+ ,.+ (z) has all of its zeros in the left
half-plane, then

Re N"+-!’" + -(iY)l < 1/2
Nn+l,n+l(iY)]

and hence Re(O.(iy)) <= -1/2forO < r <= [y[ =< R < .
Proof. With j k n + 1, property (C(i)) can be written

N.Nn+ 1,n + 1,n+ 2(2n + 1)

It follows by Lemma and property (B) that

N.,. 2N’,,+ 1,n+ 1"

Re (N’,, + 1,n+ l(iy)Nn+ 1,n+ (iy)) - N.+ ,.+ l(iy)Nn+ 1,n+ I(iY)

and thus

[(n + 1)!]2y2n+27

where

Re (N’,,+ 1,n+ I(iy)/N.+ 1,n+ x(iY)) (1 t)/2,

[(n + 1)!]222n + 2

[(2n + 2)!321N.+ 1,n+ l(iy)l 2
0.

Thus the first inequality is established. The second inequality follows directly
from the first using the definition of O.(z) with z iy.

Lemmas 5, 6 and 7 establish the next lemma.
LEMMA 8. IfN.+ 1,.+ 1(z) has all of its zeros in the left half-plane, then the index

C* with respect to the origin is zero, and hence

fc O’.(z)
2rci 0- dz O.

Lemmas 4 and 8 now establish that all the zeros of N.,.+ 2(z) are inside the
region S of Fig. 2 provided all the zeros of N.+ ,.+ (z) are in the left half-plane.
But since all the zeros of N.,.+ 2(z) are outside the circle of radius r, we are also
able to conclude that all the zeros of N.,.+ 2(z) are in the region S’ given in Fig. 3.
Noting that S’ is entirely in the left half-plane, we have provided the necessary
proof of Theorem 5.

6. Conclusions. Based on the results given above, it is possible to construct
many new methods which are A-stable. We mention only two possibilities here,
both being generalizations ofideas given in [8]. The first is to choose the coefficients
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FIG. 3. Region containing zeros of N.,.+ 2(z)

in the generalized one-step method

c ,,i) n 1,2,3,(3) Y,+ y, --k hi(aiYni) + t"i.Yn+
i=1

so that it reduces to a first or second subdiagonal Pad6 approximation to the
exponential when solving the initial problem given by (1).

The appropriate choice for a first subdiagonal Pad6 approximation P,,,_ l(Z)
is clearly

ai=(2n- i)!(n- 1)!/[(2n- 1)!i!(n- 1- i)!], i= 1,2, ...,n- 1,

a (),

and

/i (2n i)!n!/[(2n 1)!i!(n i)!], 1,2,..., n,

and for a second subdiagonal Pad6 approximation P,,, _2(z) the choice is

a (2n- 2- i)!(n- 2)!/[(2n- 2)!i!(n 2- i)!], i= 1, 2, ..., n- 2,

an an-1 0,

and

i (2n 2 i)!n !/[(2n 2)!i !(n i)!].
Hermite [10], Hummel and Seebeck [11] and others have studied (3) and

have observed that the coefficients given above are also those needed to make (3) a
general method of order 2n 1 and 2n 2, respectively. Thus we have two sets
of methods which are of arbitrarily high order and produce L-acceptable approxi-
mations to the exponential.

The second class of L-acceptable methods we consider is based on the implicit
Runge-Kutta processes studied by Butcher [2], [3]. The obvious choice is to
look at his methods based on Radau and Lobatto quadrature. Unfortunately, it
is easily shown using the method given in [8] that none of the methods he proposes
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using these two quadratures are A-stable, since they reduce to above diagonal
Pad6 approximations to the exponential when solving (1). Ehle [7], however, has
shown that it is possible to construct implicit Runge-Kutta methods from these
quadrature rules which reduce to subdiagonal Pad6 approximations P. + 1,.(z) and
P.+ 2,.(z) for small n. Chipman [4] has recently been able to show that the rules
developed in [7] produce implicit Runge-Kutta processes which result in first
and second subdiagonal Pad6 approximations for all n. This combined with
Butcher’s result about the order of such methods gives a second class of L-accept-
able methods of arbitrarily high order.
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SPHERICAL SUMMABILITY OF CONJUGATE MULTIPLE FOURIER
SERIES AND INTEGRALS AT THE CRITICAL INDEX*

Dedicated to the Memory of Michael Hanna

G. E. LIPPMAN?

Abstract. In Euclidean k-space, k >__ 2, for Bochner-Riesz summability at the critical index
(k 1)/2, we obtain a localization theorem for Fourier integrals conjugate with respect to spherical

harmonic kernels. It is also shown that this result is best possible with respect to the index of sum-
mability and that localization does not hold at the critical index for conjugate multiple Fourier series.

1. Introduction. Let T be the k-dimensional torus, k 2, f be a function
integrable on Tk and periodic in each coordinate of Ek, and x a point in Tk.
Bochner [1] proved that the limit behavior at x of the Bochner-Riesz partial
sums of order for the Fourier series of f depends only on the values of f in any
neighborhood (no matter how small) of x, as long as remains greater than
(k 1)/2. In the same paper Bochner proved an analogous result for Bochner-
Riesz means of order , for greater than or equal to (k 1)/2, for Fourier trans-
forms of functions integrable on gk, and that localization fails in the Fourier
integral case for an index of summability less than the critical index (k- 1)/2.
In the same paper Bochner gave an ingenious proof of the existence of a function

f periodic in Ek, integrable on Tk, identically zero in an open ball centered at the
origin, with the property that the Bochner-Riesz sums of order (k- 1)/2 for
its Fourier series diverge at x 0, thus proving the failure of localization at the
critical index of summability for Bochner-Riesz sums of Fourier series.

Calder6n and Zygmund [2], using their singular integral theory, defined
the notion of conjugate multiple Fourier series, and Shapiro [6] proved localiza-
tion theorems for Bochner-Riesz summability, of order greater than the critical
index, for conjugate Fourier-Stieltjes series, under very general conditions on
the conjugate kernel. In this paper we prove a localization theorem for Bochner-
Riesz means of order (k- 1)/2 of Fourier integrals conjugate with respect to
spherical harmonic kernels, and we prove that localization fails below the critical
index of summability for such conjugate Fourier integrals. We also prove that
localization fails at the critical index for conjugate Fourier series.

2. Definitions and notation. We shall work in k-dimensional Euclidean space,
Ek, k >= 2, using the following notation"

x (Xl, "’", Xk), Y (Yl, "’", Yk), (X, y) xlyl + + XkYk, Ix[ (X, X) 1/2.
B(X, r) will be the open k-ball with center x and positive radius r. S(x, r) will
represent its boundary, S {x Ek" j < Ixl _-< j / l, T will designate the
k-dimensional torus T {xI 1" < Xj n’j 1,’’’, k}, m will be an
integral lattice point in E and ) will be used to represent the surface-of the
unit (k 1)-sphere in Ek.

In this paper we shall work with a special class of Calder6n-Zygmund
kernels in defining conjugate series and integrals, namely the spherical harmonic
kernels.

* Received by the editors August 22, 1972.

" Department of Mathematics, California State University, Hayward, California 94542.
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Letting x’ x/[x[, we shall call K(x) a spherical harmonic kernel if

(1) K(x) P(x’)/lx]*,
where P(x) is a surface spherical harmonic of degree n, n => 1; thus P is a homo-
geneous harmonic polynomial. For such a kernel, the principal-valued Fourier
transform

(2) /(y) lim lm (2n)-* f e-itx’y)K(x)dx
2--*m 0 -]B(0,2)-B(0,e)

exists and is finite for every y (see [6, p. 69]).
For a multiple trigonometric series S a eitm’x), the conjugate series

with respect to the kernel K is defined to be

(3) , am(m ei(m’x),
m=/=O

where K is as defined in (2). Throughout this paper, 7 will be used to denote the
critical index

(4) 7 (k 1)/2.

3. Statement of the main results.

THEOREM 1. lff iS integrable on E,, k >- 2, and K(x) P(x’)/Jx]* is a spherical
harmonic kernel P, of degree n >= 1, then at every point Xo in E, for which

(5) t- f(xo + t)P() dn() dt < + c

for some r > O,

(6)

lim {f R(p)(p)eitp’’)(1-lpl2/RZ)dp
R--} (O,R)

-(2rt)-k f f(xo-x)K(x)dx}
Ek-B(O,1/R)

Note. If f satisfies the restricted "Dini" condition at Xo, that is, if for some
q>0,

(7) - If(xo + tg) f(xo)l dn()dt < + c,

then, since P() is bounded on fl and its integral over the sphere D is zero (due
to harmonicity), the inequality (5) holds.

THEOREM 2. If f iS integrable on E,, k >= 2, and satisfies condition (5) at Xo,
K is a spherical harmonic kernel of degree n >= 1, and if 7 fl, 0 <= fl < 1,
then

lim {f R,(p)f(p)eitp,o)(1-,p,2/R2)dp
R-oo (0,R)

(8)

2=)-*
1/R) f(xo-x)K(x)dx}=O
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if and only if

lim Rt | Ixla{f(x) f(xo)}
R--} ]Ek-B(O,1/R)

(9)

K(-x)cos(Rlxl-(k+n-fl))dx-O.
For fl > 0, condition (9) need not hold, even for an integrable function f(x) which
vanishes outside a finite ball centered at the origin. However, for fl 0, condition
(5) implies condition (9), so that with respect to the index ofsummability, Theorem
is the best possible result we can obtain.

For example, we may construct such a function as follows.
Define

Ixl 1-lYfl(lx[)p(- x), 0 Ixl 2re,
f(x)

0, Ixl > 2re,

where t’(Ixl) is the periodic function given in Theorem 13.7, Chapter 6, of [9],

2r { (2r)- }qa(r)= lim ra-l+(r+2z)a- + +(r+2nn)a-- na

a(r) has Fourier series

’ Ijl- a exp (- ziB sgn j/2) ei.

Then for integer values ofj,

j Ixlf(x)g( x) cos jlxl dxim
JE B(O, 1/j)

limfl Wa(r)cosjr IP(-)l 2 d() dr
j /j

const, lim ja Wa(r) cosjr dr

=const. 0 asj

since the Fourier coeNcients of Wa(r) are Oljl -. Therefore (9) does not hold for
f as defined.

THEOREM 3. Let 0 < < 1 be given. There exists a function f, periodic in
E, integrable on T, and identically zero in B(O, ), with the property that

lim sup I#(f, x)l + ,
R

(10)

where

(11)
0<lml_<R

f(m).(m) ei(m’x)(1 Iml/R2).
Remark. Since f is identically zero in a neighborhood of the origin,

Ekf(-x)K(x)dx is finite (see Shapiro [6, p. 45]). Theorem 3 shows that the
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difference between the Bochner-Riesz means of order 7 of the conjugate Fourier
series and the principal-valued Hilbert transform of f is divergent as R increases
to plus infinity.

4. Lemmas necessary to prove main results. Stein [7] proved important
theorems relating the Dirichlet kernel for multiple Fourier series to the corre-
sponding kernel for Fourier integrals in Ek, k __> 2. Chang [3] extended the ideas
of Stein to obtain similar results for conjugate multiple Fourier series and
integrals. In obtaining his results Chang established the following lemmas.

LEMMA 1. If P(x) is a spherical harmonic of degree n >_ 1, the dimension k
is greater than or equal to one, and s is complex with Re (s) > -(k + 1)/2, then for
every y Ek,

P(x/lx])(1 ]xlZ/RZ)+ ei(y’x) dx i"R"+kP(y)E(k, s, n, Rly]),

where

u/: y,, (-1)Jr(j + (n + k)/2)r(, +s + 1) ) 2j

(13) E(k hi)S, n, --j’-oj!F(j + [c-/ n)F(7 + s + 1 + j + (n + k)/2)

for u complex. The radius of convergence of this power series is +
LEMMA 2. Let k >= 2, n >= 1 be integers and suppose that s a + iz has its

real part a confined to 1 >= a >_ -1. Then, for all u >= 1, we have

1 G l(S, u)
E(k, s, n, u) c(k, n),,--y- +

U + +

(14)

+ u+,++ + a(k,s) cos u- k+ s + n 7ru,+k+,
where

(15)

(16)

c(k n)= rck/22kF(n + k) / F(n/2)
2

a(k s)= 7r,(k-1)/22s+k’ k + 1
2

+s

(17) IGl(S,U)l Ak,. exp (lzl),
(18) IG2(s,u)lAk,.exp ll),
where Ak,, is a constant depending only on k and n.

LEMMA 3. The Poisson summation formula. Suppose R >__ 1/z, s cr + iz with
>_ tr > O. Then the function qg(x) defined by

(19)

P(x/Ixl)(1 -Ix12/R2);’+ /f0 < Ixl < R,

q(x) 0 /f x o,
0 /f Ixl _-> R
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satisfies the Poisson summation formula, for all x T, in the following sense"

(20) q)(m)ei(m’x)-- Z 2 f(x + 2gin),
0 m_Sj

where

(21) O(y) t qg(x) ei(x’y) dx.
dEk

5. Proof of Theorem 1. Without loss of generality we may assume xo is the
origin, for if not, set g(x)= f(x + Xo). Then ,(p)= f(p)ei(p’x) and f(xo- x)

g( x). The function g is integrable on Ek and satisfies the hypotheses ofTheorem
at the origin. We also note that since

(22) lim K(x) dx 0,
2 .] B(O,)O- B(O,1/R)

we may assume f(0) 0, for

(23) f f(-x)K(x)dx lim f {f(-x)-f(O)}K(x)dx.
k-n(o,1/R) ).--,oo dB(O,2)-B(O,1/R)

Therefore we must show that, as R goes to + oe, the difference

f I(p)f(p)(1- [pl2/R2)’ dp (2n)-k fv f(-x)K(x)dx
(0,R) B(O, 1/R)

goes to zero.
By Remark I, p. 69 of [6], we have that/(y) exists for all y in Ek and for

y#O,

(24) /(y) (- i)"P(y/lyl)F(n/2)
2krck/ZF((n + k)/2)"

Define

(25) I(R) f(p)(p)(1 --[plZ/R2) dp.
(0,R)

By the definition of the Fourier transform of f, Fubini’s theorem, and the expres-
sion for the principal-valued Fourier transform of K,

(26) I(R) (-i)b(n,k) f f(x)dx f e-"V’(1 IPl2/R2)rP(p/IPl)dp,. E dB(O,R)

where

(27) b(n, k)= F(n/2)/F( n, +k)2 (2:rc)3//22/2"

By Lemma 1, I(R) is equal to

(28) b(n, k)R"+ f f(x)P(- x)E(k, 0, n, Rlxl) dx..E
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We now break I(R) up into two integrals

I(R)- I’ + I",

where, from this point on in the proof, integrals I with superscripts and sub-
scripts will be understood to depend on R.

By (13),

(29)

I’ const. R + fB(0,1/R) f(x)P(-x)
{ o (-1)JF(j + (k + n)/2)F(), + 1)

= j!F(j k-/- n)F(7 + + j + (k + n)/2)

where the constant depends only on n and k.
By Lemma 2,

(Rlxl/2)2} dx,

I" b(n, k)R"+k | f(x)P(- x)
k-B(O,1/R)

(30) .c(k,n)(R[x[) -k-" + G(R[x[)(R[x[) -k-’-I

+a(k,0) cos elxl --(n / k) (elxl) -"-k dx,

where c(k, n) and a(k, 0) are the constants given in (15) and (16) respectively, and
G(R[x[) is bounded by a constant depending only on n and k.

We first show that I’ goes to zero as R increases to infinity. I’ is dominated by

const.
F(7 + )r(j + (n + k)/2)

j/-"o j!F(j + k/2 + n)F(7 + + j + (k + n)/2)

t)P() dt,

which goes to zero as R goes to infinity by hypothesis (5), since the series is uniformly
bounded by a constant independent of R.

We now deal with I". Using Lemma 2 we have shown in (30) that I" can be
written as I"- 11 / I2 + I3, where

(31) 11 (2n) -k f. f(x)K(-x) dx,
B(O, 1/R)

since K(x) Ixl-"-’P(x) and by (15) and (27) c(n, k)b(n, k) (2n) -k,

(32)

and

(33)

I 2 const. (l/R) f(x)K( x)Ixl-X G(RIxl) dx

13 const, rE,,- B(O, 1/R)
f(x)K( x) cos [R[x[ (n ]+ k) dx,
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where the constants depend only on n and k. In order to complete the proof we
need only show

(34) lim I2 0
R--

and

(35) lim 13 0,

since expression (31) is equal to the second term in (6) with Xo equal to zero.
For the moment let 6 be a fixed positive number, independent of R. In order

to prove (34) we must show that

(36) lim (1/R){fB + f tf(x)K(-x)lxl-lG(Rlxl)dx O.
R--* (0,6) B(O, 1/R) B(O,6)

The function f(x)K(-x)lxl-aG(Rlxl) is integrable over Ek- B(0, 6) since it is
dominated by 6 -"+ Ak, sup [P(O[" If(x)[, where the sup is taken over all e f.
Therefore, as R goes to infinity, the second integral, when multiplied by 1/R,
goes to zero.

The first term of (36) can be written in the form

(37) f G(Rt)tk- fllim (l/R) -f f(tOP(- ) d() dr,
R R

which, since 1/(Rt) <_ 1, is dominated by a constant times

(38) fo -[l fn f(t)P() df() dr.

By hypothesis (5), for a given positive e, we choose 6 so small that (38) is less than
Thus limR_ I2 0, proving (34).

Proof of (35). We need only show

(39)

lim | f(x)K(- x)
Ro ]Ek-B(O,1/R)

{cos Rlxl cos (n + k) + sin Rlxl sin-(n + k) dx

We shall show

(40) lim fER- k-B(O,1/R)
f(x)K(- x) cos Rlxl dx O.

The proof for the term with sin Rlxl in it follows in similar fashion.
Let e > 0. Choose 6 > 0 from hypothesis (5) so that

(41) fB(O,a)- B(O, I/R)
f(x)K(-x)dx <= r f(r)P() df()

/R

dr <8,
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as was done in the proof that limR I’ O. We must show

(42) lim f f(x)K(- x) cos glxl dx O.
R"* dE- B(0,6)

However, using spherical coordinates, this limit is equal to limj’ r- cos Rr
{y.P(-)f(r)df()} dr. The function r-Z,(r) {j’n P(-)f(r)df()}, where

Z is the indicator function, is integrable in E, since it is dominated by

[P()l6-1 f [f(r)[ df((),sup

which is integrable with respect to r. Therefore by the one-dimensional Riemann-
Lebesgue theorem for Fourier integrals, (42) holds. This proves (35) and the
theorem.

6. Proof of Theorem 2. As before, we can assume x0 0 and f(0) 0. We
define

(43) I, ;(p)f(p)(1 ]p12/R2) dp.
(0,R)

By the techniques used in (25), (26), and (27) in the proof of Theorem 1, this is
equal to

b(n, k)R"+k f f(x)P(- x)E(k, fl, n, Rlxl)dx,

where b(n, k) is the constant, depending only on n and k, given in (27).
As in the proof of Theorem 1, we break up the integral I, into the sum of the

integral over B(0, I/R) and the integral over Ek- B(O, l/R). The integral over
B(O, l/R) goes to zero by the same argument as in the previous proof, and using
Lemma 2, we break up the second integral, which we shall call I", into four
terms,

UR" b(n, k)R"+k f f(x)P(- x) [c(k, n)(Rlxl) -"-k
B(O, 1/R)

(44) + GI(-fl, RIxI)(RIxl) --"-1 + Gz(-fl, Rlxl)(Rlxl)a-+"+l)

+a(k, -fl){cos (RIx[ (n/2)(k fl + n))}(Rlxl)-"+)] dx,

where G1 and G2 are bounded by constants depending only on k and n. The first
term of this expression plays the same role as in Theorem 1, that is, it is exactly
equal to the second term in (8) with Xo 0. The second term, by the same reasoning
as in the previous theorem, goes to zero as R goes to infinity as a consequence of
hypothesis (5). Up to a constant factor, the third term is equal to

Ra-lfF f(x)P(--x)
G2(RIxl)

dx
k-B(O,1/R) IX[n+k+ 1-fl
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which equals

(45) R-1 f f(x)K(-
Gz(Rlx])

x)
k-(o, lm) Ix[ -a

since K(y) P(y/lYl)/lyl P(Y)/IYI" + for all y E.
We break up (45) into the sum of two integrals

(46)

dx

Ra- ;8 f(x)K(- x)
Gz(R]xl)

(O,J)-B(O,1/R) IX] -fl dx

q- Rfl-1 fE f(x)K(-- x)
G2(Rlxl)

dx
k- B(o,a) Ix[

where 6 is a fixed positive number, independent of R. In the first term of (46),
(R[xl)a-1 1. Thus this term is bounded by

(47) IG2(Rr)lr -1 f(r)P() dn() dr.

As G2 is bounded by a constant depending only on n and k (see (17) and (18)), given
e > 0, we can choose 6 > 0 so that by hypothesis (5) expression (47) is less than e.

Since for 6 fixed independent of R, the function f(x)K(-x)G(Rlxl)lxf- is
integrable over E B(0, 6) and 0 _< fl < 1, the second term of (46) goes to zero
as R --, oe.

We are thus left with the term

b(n, k)A(k, fl)R f,,-a(O,/R) Ixlff(x)K(- x) cos Rlxl (k + n fi)) dx,

which goes to 0 as R - oo if and only if (9) holds. This completes the proof of
Theorem 2.

7. Proof of Theorem 3. To prove the theorem, for fl >-_ 0 we set

(48) R(X) R ’, R(m)ei(m’)(1 -ImlZ/RZ)+,

where we define

(49) OR(x)-= OOR(X).

Using Banach space techniques, the theorem will follow once we establish
the following.
(*) There exists Xo in T- B(0, 6) and an increasing sequence {Rj}j such
that

(50) lim IO(xo)l + ,
For consider the Banach space B consisting of all real-valued functions

integrable on T which vanish almost everywhere in B(0, 6). Then

(51) a,(f, O) (2n)- fT f(x)Onj (X) dx
k
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gives rise to a sequence of bounded linear functionals on B,

(52) Fj(f) a&(,f, 0).

If the conclusion to the theorem is false, then supj ]Fj(f)[ < + ov for each f e B.
But then by the Banach-Steinhaus theorem, supj ]]FjI[ is finite. However,

(53) IIFII (2g) -* sup

where the sup is taken over all x e T B(0, 6). Therefore,

(54) Ilgjll >_-(2rc)-*lR(xo)l,
and consequently

(55) sup IR.(xo)l < + .
This contradicts (*), therefore the theorem holds, pending the proof of (*). We
shall show more than (*), namely that

(56) lim sup IR(X)l +

for almost all x Tk.

The following lemma is due to Bochner [1, p. 192].
LEMMA 4. Let f(t) be a bounded measurable function in 0 < < o for which

(57) a(s) lim :- f(t) e -is’ dt

existsfor every s in 0 < s < oc. Then a(s) is differentfrom zerofor at most a countable
set ofnumbers which we denote by S {sl s2, ..}. If the numbers in S are linearly
independent with respect to integer coefficients, then

The next step in establishing (*) is to show that R- Ro r(X) e-zr dr tends to
a finite limit for 0 =< 2 < o. We do this in the following lemma.

LEMMA 5. If X is not of the form 2rcm, where m is a lattice point in Ek, then for
each 2, 0 <__ 2 < o,

(58) lim R- r(x) e-i dr

exists. If Z ’m for every m, the above limit is equal to O, with the exception that
when 2 O, the limit equals

i"P(x 2rcm)
(59) c(k,n)

o-" " --("meS

c(k, n) being given by (15) and the series being convergent by Lemma 9, in [3]. If
2 2,.(x) for some lattice point m, where 2re(X) ]X 2gm[, then the expression
(58) is equal to c.,q(x), where

(60) qm(X) P
Ix 2ml] Ix- 2rim

and c,, is a nonzero constant depending only on the dimension k and on n, the
degree of P.
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Since every x in T {0} is not of the form 2nm, and since, furthermore,
by continuity of P(), there exists an e > 0 such that IP()] > e.for all in some
spherical cap on , by the integral test

(61) Iq,(x)l +

we see from Lemmas 4 and 5 that we cannot have simultaneously supo <R o[(I)R(X)[
< + and {q,,(x)}m linearly independent with respect to integer coefficients.
Thus in order to complete the proof of the theorem we need only prove Lemma 5.

In order to prove Lemma 5 for r(x) as defined in (48) and (49), we will use
the Poisson summation formula (20) given in Lemma 3. For r > 1/n and 1 > fl > 0,

(62) (x) (i)"rk+"+a e(x + 2nm)E(k, , n, fix + 2nml),
0 meS

where Sj is the sphere of radius j centered at the origin. We can also take the inner
sum over m’ -m in Sj, in which case we can write

(63) (I)(x) i"r"+k+t P(x 2nm)E(k, fl, n, fix 2nm[).
0 mSj

We now use the decomposition (14) from Lemma 2, so that for r => Ro, where
Ro is chosen such that Ro _-> n-1 and

(64) Rolx 2rim[ >_ for all m e Ek,

Or (x) inrk +n + E Z P(x 2nm)
0 mSj

c(k, n) Gx(fl, rlx 2nml)
r,,+klx 2nml,+k

/
rn+k+ IIX 2nml,,+k+

(65)
G2(, fix 2nm[)

+ r.+k++ X[x 2nm[+k++

a(k fl)cos {rlx 2nml- (n/2)(k + n + fl)}
+ J’

which is equal to

r o i"P(x 2nm)c(k, n)

+ re -1 E E i"P(x 2nm)Gl(fl, rlx 2nml)

(66)
j=o mS IX 2nml"+k+

+ r- i"P(x 2nm)Gz(, rlx 2nml)
j=oomS. IX 2nm[k+"++

+
i"a(k, fl)cos {rlx 2nml- (n/2)(k + fl + n)}P(x- 2m)

j= 0 meSj IX 2nm[" + k + fl
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for r => Ro. As a result of this decomposition, for 0 < fl < 1/4 and r _>_ Ro,

i"P(x- 2rim)Off(x) c(k, n)rt
j-O mSj IX +

(67)
-a(k,)

i"P(x-2nm)
j=0 m.Sj [X 2m[

cos rlx 2zcml- (k + n + fl)

i"P(x- 2m)
jo mj IX 2rml"+k+l

GI(, rlx 2zm[)

+ i"P(x- 2rim)
G2(fl rlx- 2ml)

o mSj IX 2rml" + k + +

Due to [3, Lemma 9, p. 60] the series

(68)
i"P(x- 2zm)

mS

is uniformly convergent in x.
Since G and G2 are both bounded by Ak,., a constant depending only on

k and n (see (17) and (18)) and since P is bounded on the unit (k 1)-sphere, we
have each of the two series on the right-hand side of the inequality (67) dominated
by

r- 1/2 Ix 2ztml -k- o(1)

as r goes to plus infinity.
Notice, for 0 </3 < 1/4,

R- O(x) e-ix dr

(69)

<-_ (Ro/Z) sup I/(m)lRt-I

c’(k,n,x)
R1/2

by the definition (48) of O(x), where c’(k, n, x) is a constant depending on k, n,
and x, since Ro depends on x. Therefore for R > Ro,

(70)

OR(x) e iZdr_ c(k,n)R
i"P(x-2gm) R

r e- izr dr
meS IX 27m1

-a(k, fl)R- 2
i"P(x 2rim)

= os x 2m + +

cos rx-2ml-(k++n).e-ixdr

N const. R- r- / dr.

Thus the left-hand side of inequality (69) is dominated by O(R-1/2) as R .
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We now assume 2 2 for every m Ek. Consider the third integral on the
left-hand side of (70),

cos r2m-(k+fl+n) e-iadr

(71) 1/2exp --(k + fl + n) ei(x"-x dr

+1/2exp {-(k +

Putting the limits on the integrals, this is equal to

i ) [exp {iR(2 2)} exp {iRo(2 2)}]) exp ,-(k + fl + n i(2 2
(72)

{ui )} 1
[exp {-iR(2m + )}- exp {-iRo(2m + 2)}].-exp (k +fl+n i(2+2

Substituting this expression into (70), we see that the power of2 in the denominator
is now large enough to insure uniform absolute convergence of the series in the
third term of (70) for all fl, 0 fl < 1/4. Since the integrand in the second term
is finite and integrable for all fl, 0 < fl < 1/4, and independent of m, and since
the series in this term is uniformly convergent, we may pass to the limit as fl 0,
holding R fixed, under the integral sign in this term. Therefore, passing to the
limit as fl 0 on the left-hand side of (70) we obtain, for 2 # 0,

R -1 R(X) e-i2r dr c(k, n)R -1 E Ix ; e-i2r dr
mSj

iP(x- 2rim)

meS

"{exp(Ui i(2(n + k) 2)[exp (iR(X- 2))- exp (iRo(2m-
(73) - exp (n + k) 2[exp (-iR(2 + 2))- exp (-iRo(2m + 2))]

O(R-1/:) asR.
Integrating the second term with respect to r, we see that both the second and

third terms on the left-hand side of inequality (73) are O(R-) as R . Hence,

(74) lim R- (x) e-iX dr 0

for 2 2 for every m, and 2 0.
If 2 0, the second term on the left-hand side of (73) goes to

i"P(x- 2urn)
(75)

meSi
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as R goes to plus infinity. The third term is O(R-1). Hence,

(76) lim R- (x) e-ia dr c(k, n)Q(x)

if2 0.
We now suppose 2 2, for some m’ in E. We substitute 2, for 2 in inequality

(70), obtaining

R- (x) exp (-i2,) dr c(k, n)R- iP(x 2m)

(77) r exp (-i2,r) dr a(k )R-
iP(x 2m’)
2+

cos r2,- (k+B+n) exp(-i2,r)dr+ O(R-)

O(R- 1/2).

Due to uniform convergence of the series (68), we again may pass to the limit as
fl -} 0 in the second term, obtaining a term which is O(R- 1) as R . In the third
term of (77), the integral from Ro to R is equal to

exp (k + fl + n dr + exp (k +fl+ n exp(-2i2,r)dr

(78) =(R-Ro) exp -(k+B+n) +exp (k+B+n 2
exp 2i2,r).

Substituting this back into (77), passing to the limit as goes to zero, we see that

R- (x) exp (-i2,r) dr a(k, 0) exp -(k + n)

(79)
ffP(x- 2m’) + o(- O(-

Defining c,, a(k, 0)exp {-(g/2)(k + n)}i" and recalling (60), we have thus
established Lemma 5 and therefore Theorem 3.
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